

Math 244 - Linear Algebra

Chapter 5: Inner Product

Dr. Malik Talbi
King Saud University, Mathematic's Department

November 9, 2025

Definition

An **inner product** on a real vector space V is a function that associates a real number $\langle \vec{u}, \vec{v} \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors \vec{u} , \vec{v} , and \vec{w} in V and all scalars k .

- ① $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ [Symmetry axiom]
- ② $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ [Additivity axiom]
- ③ $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ [Homogeneity axiom]
- ④ $\vec{u}^2 = \langle \vec{u}, \vec{u} \rangle \geq 0$ and $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = 0$
[Positivity axiom]

A real vector space with an inner product is called a **real inner product space**.

Examples of real inner products:

- On \mathbb{R}^3 , $\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = x_1x_2 + y_1y_2 + z_1z_2$. This is called the standard inner product of \mathbb{R}^3 .
- On \mathbb{R}^3 , $\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = 2x_1x_2 + 5y_1y_2 + 3z_1z_2$. In general $\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = ax_1x_2 + by_1y_2 + cz_1z_2$ with $a, b, c > 0$ is an inner product. On \mathbb{R}^3 ,
 $\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = x_1x_2 + ay_1y_2 + 3z_1z_2 + x_1y_2 + y_1x_2$ is an inner product iff $a > 1$.
- On \mathcal{P}_2 , $\langle P_1(X), P_2(X) \rangle = a_1a_2 + b_1b_2 + c_1c_2$ is the standard inner product where
 $P_i(X) = a_i + b_iX + c_iX^2, i = 1, 2$.
- On \mathcal{P}_2 , $\langle P(X), Q(X) \rangle = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$ is called the evaluation inner product on \mathcal{P}_2 .
- On $\mathcal{M}_2(\mathbb{R})$, $\langle A, B \rangle = \text{tr}(A^t B)$.

Definition

If V is a real inner product space, then:

- The **norm** (or length) of a vector \vec{v} in V is denoted by $\|\vec{v}\|$ and is defined by $\|\vec{v}\| = \sqrt{\vec{v}^2}$.
- The **distance** between two vectors is denoted by $d(u, v)$ and is defined by $d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\| = \sqrt{(\vec{u} - \vec{v})^2}$.

A vector of norm 1 is called a **unit vector**.

Theorem

If \vec{u} and \vec{v} are vectors in a real inner product space V , and if k is a scalar, then:

- ① $\|\vec{v}\| \geq 0$ with equality if and only if $\vec{v} = \vec{0}$.
- ② $\|k\vec{v}\| = |k| \cdot \|\vec{v}\|$.
- ③ $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$.
- ④ $d(\vec{u}, \vec{v}) \geq 0$ with equality if and only if $\vec{u} = \vec{v}$.

Cauchy–Schwarz Inequality

Theorem (Cauchy–Schwarz Inequality)

If \vec{u} and \vec{v} are vectors in a real inner product space V , then

$$|\langle \vec{u}, \vec{v} \rangle| \leq \|\vec{u}\| \cdot \|\vec{v}\|,$$

and equality holds if and only if the vectors \vec{u} and \vec{v} are proportional.

This enables us to define the angle θ between two vectors \vec{u} and \vec{v} to be

$$\theta = \cos^{-1} \left(\frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \cdot \|\vec{v}\|} \right).$$

Definition

Two vectors \vec{u} and \vec{v} in an inner product space V are called orthogonal if $\langle \vec{u}, \vec{v} \rangle = 0$.

Theorem

If \vec{u} , \vec{v} , and \vec{w} are vectors in a real inner product space V , and if k is any scalar, then:

- ① $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$ [Triangle inequality for vectors]
- ② $d(\vec{u}, \vec{v}) \leq d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$ [Triangle inequality for distances]
- ③ $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$ [The parallelogram identity]

Theorem (Generalized Theorem of Pythagoras)

Vectors \vec{u} and \vec{v} are orthogonal in a real inner product space if and only if

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Definition

A set of two or more vectors in a real inner product space is said to be orthogonal if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be orthonormal.

Theorem

If S is an orthogonal set of nonzero vectors in an inner product space, then S is linearly independent.

Orthogonal and orthonormal bases

Theorem

1 If $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is an orthogonal basis for an inner product space V , and if \vec{u} is any vector in V , then

$$\vec{u} = \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \frac{\langle \vec{u}, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 + \dots + \frac{\langle \vec{u}, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n,$$

and $\|\vec{u}\|^2 = \frac{\langle \vec{u}, \vec{v}_1 \rangle^2}{\|\vec{v}_1\|^2} + \frac{\langle \vec{u}, \vec{v}_2 \rangle^2}{\|\vec{v}_2\|^2} + \dots + \frac{\langle \vec{u}, \vec{v}_n \rangle^2}{\|\vec{v}_n\|^2}$.

2 If $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is an orthonormal basis for an inner product space V , and if \vec{u} is any vector in V , then

$$\vec{u} = \langle \vec{u}, \vec{v}_1 \rangle \vec{v}_1 + \langle \vec{u}, \vec{v}_2 \rangle \vec{v}_2 + \dots + \langle \vec{u}, \vec{v}_n \rangle \vec{v}_n,$$

and $\|\vec{u}\|^2 = \langle \vec{u}, \vec{v}_1 \rangle^2 + \langle \vec{u}, \vec{v}_2 \rangle^2 + \dots + \langle \vec{u}, \vec{v}_n \rangle^2$.

Theorem

Every nonzero finite-dimensional inner product space has an orthonormal basis.

Theorem (The Gram–Schmidt Process)

To convert a basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r\}$ into an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r\}$, perform the following computations:

Step 1. $\vec{v}_1 = \vec{u}_1$,

Step 2. $\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$,

Step 3. $\vec{v}_3 = \vec{u}_3 - \frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2$,

Step 4. $\vec{v}_4 = \vec{u}_4 - \frac{\langle \vec{u}_4, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_4, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 - \frac{\langle \vec{u}_4, \vec{v}_3 \rangle}{\|\vec{v}_3\|^2} \vec{v}_3$,

\vdots

(continue for r steps)

To convert the orthogonal basis into an orthonormal basis

$\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_r\}$, normalize the orthogonal basis vectors $\vec{q}_i = \frac{1}{\|\vec{v}_i\|} \vec{v}_i$.

