Math 203 - Differential and Integral Calculus

Chapter 2: Multiple Integrals

Dr. Malik Talbi King Saud University, Mathematic's Department

February 19, 2025

Chapter 2: Multiple Integrals (Dr. Malik TallMath 203 - Differential and Integral Calculus

Double integrals

- Areas and volumes
- Double integrals in polar coordinates
- Double integrals in polar coordinates
- Double integrals in polar coordinates
- Surface area

Triple integrals

- Moments and center of mass
- Cylindrical coordinates
- Spherical coordinates

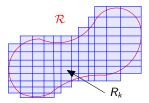
Riemann Sum of a function of one variable

Cha

Recall that, for a function
$$f : [a, b] \rightarrow \mathbb{R}$$
, a partition $\mathcal{P} = \{a = x_0 \leq x_1 \leq \cdots \leq x_n = b\}$ of $[a, b]$ and
a set $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, where
 $\omega_k \in [x_{k-1}, x_k]$ for $k = 1, \dots, n$, the
Riemann sum is defined by
 $\mathcal{R}(f, \mathcal{P}, \Omega) = \sum_{k=1}^{n} f(\omega_k)(x_k - x_{k-1})$.
If $f(x) \geq 0$ on $[a, b]$, this is the sum of
the areas of the blue rectangles. If f
is continuous on $[a, b]$, then the limit
 $\lim_{\|\mathcal{P}\|\to 0} \mathcal{R}(f, \mathcal{P}, \Omega)$, where $\|\mathcal{P}\| = \max(x_k - x_{k-1})$ exists. It is equal by
definition to $\int_a^b f(x) dx$, the definite integral of f .

Riemann Sum of a function of two variables

Let \mathcal{R} be a region bounded by a closed curve in \mathbb{R}^2 . For a function $f : \mathcal{R} \to \mathbb{R}$, consider a partition of \mathcal{R} into small rectangles $\mathcal{P} = \{R_1, R_2, \ldots, R_n\}$ and a set $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \subset \mathcal{R}$, where $\omega_k \in R_k$ for $k = 1, \ldots, n$. Let ΔR_k be the area of the rectangles R_k , $k = 1, \ldots, n$, and $||\mathcal{P}|| = \max \Delta R_k$.



The Riemann sum is defined by $\mathcal{R}(f, \mathcal{P}, \Omega) = \sum_{k=1}^{n} f(\omega_k) \Delta R_k$. If $f(x) \ge 0$

on \mathcal{R} , this is the sum of the areas of cubes of bases the R_k . If the limit $\lim_{||\mathcal{P}|| \to 0} \mathcal{R}(f, \mathcal{P}, \Omega)$ exists, we call this limit the double integral of f on \mathcal{R} and denote it $\iint_{\mathcal{R}} f(x, y) d\mathcal{A}$. If f is continuous, then this limit

exists.

Chapter 2: Multiple Integrals (Dr. Malik TaltMath 203 - Differential and Integral Calculus

Properties of the double integral

Let \mathcal{R} be a region bounded by a closed curve in \mathbb{R}^2 , \mathcal{P} a partitions of \mathcal{R} into rectangles and Ω a set of taken from each rectangle. Notice that for real functions f, f_1 , f_2 defined on \mathcal{R} and real number k, we have:

3 If
$$f \ge 0$$
, then $\mathcal{R}(f, \mathcal{P}, \Omega) \ge 0$

We deduce the following

Properties of the double integral

• If a curve divides a region $\mathcal R$ into two subregions, $\mathcal{R}_1, \mathcal{R}_2$, then

subregions,
$$\mathcal{R}_1, \mathcal{R}_2$$
, then

$$\iint_{\mathcal{R}} f(x, y) d\mathcal{A} = \iint_{\mathcal{R}_1} f(x, y) d\mathcal{A} + \iint_{\mathcal{R}_2} f(x, y) d\mathcal{A}.$$

Iterated double integral:

Usually, if we apply a simple integral twice, we shorten the notation by omitting the brakets.

We write
$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$
 instead of $\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dx \right) dy$.

This is called an iterated double integral. To compute a double integral, most of the times we use iterated double integrals.

Double integral over a rectangular region

Theorem (Fubini) If $\mathcal{R} = [a, b] \times [c, d]$ is a rectangular region and \mathcal{R} $f: \mathcal{R} \to \mathbb{R}$ is continuous, then $\iint_{\mathcal{P}} f(x,y) d\mathcal{A} = \int_{a}^{d} \int_{a}^{b} f(x,y) dx dy = \int_{a}^{b} \int_{a}^{d} f(x,y) dy dx.$ **Example 1:** Compute $\iint_{[0,1]\times[0,2]} (x^2 + xy - y^3) d\mathcal{A}$. **Solution:** We have $\iint_{[0,1]\times[0,2]} (x^2 + xy - y^3) \, d\mathcal{A} = \int_0^2 \int_0^1 (x^2 + xy - y^3) \, dx dy$ $= \int_{0}^{2} \left[\frac{x^{3}}{3} + \frac{x^{2}y}{2} - xy^{3} \right]_{0}^{1} dy = \int_{0}^{2} \left(\frac{1}{3} + \frac{y}{2} - y^{3} \right) dy = \left[\frac{y}{3} + \frac{y^{2}}{4} - \frac{y^{4}}{4} \right]_{0}^{2} = -\frac{7}{3}.$

Chapter 2: Multiple Integrals (Dr. Malik TallMath 203 - Differential and Integral Calculus

Double integral over a rectangular region

Another method: We have

$$\iint_{[0,1]\times[0,2]} \left(x^2 + xy - y^3\right) d\mathcal{A} = \int_0^1 \int_0^2 \left(x^2 + xy - y^3\right) dy dx$$
$$= \int_0^1 \left[x^2y + \frac{xy^2}{2} - \frac{y^4}{4}\right]_0^2 dx = \int_0^1 (2x^2 + 2x - 4) dy = \left[\frac{2x^3}{3} + x^2 - 4x\right]_0^1 = -\frac{7}{3}.$$

Example 2: Compute $\iint_{[0,1]\times[-1,1]} \frac{1}{y^3} e^{\frac{x}{y}} d\mathcal{A}$. **Solution:** We have

$$\iint_{[0,1]\times[-1,1]} \frac{1}{y^3} e^{\frac{x}{y}} d\mathcal{A} = \int_{-1}^1 \int_0^1 \frac{1}{y^3} e^{\frac{x}{y}} dx dy = \int_{-1}^1 \left[\frac{1}{y^2} e^{\frac{x}{y}} \right]_0^1 dy$$
$$= \int_{-1}^1 \left(\frac{1}{y^2} e^{\frac{1}{y}} - \frac{1}{y^2} \right) dy = \left[-e^{\frac{1}{y}} + \frac{1}{y} \right]_{-1}^1 = 2\sinh 1 + 2.$$

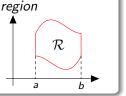
Algebraically, we don't know how to compute this double integral when starting first by integrating with respect to y.

Double integral over a non rectangular region

Theorem

Let $f:\mathcal{R}\rightarrow\mathbb{R}$ be a continuous function defined on the region

 $\mathcal{R} = \{(x, y) | a \le x \le b, \phi_1(x) \le y \le \phi_2(x)\}. We$ have $\iint_{\mathcal{R}} f(x, y) d\mathcal{A} = \int_a^b \int_{\phi(x)}^{\phi_2(x)} f(x, y) dy dx.$



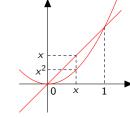
Example 1: Compute $\iint_{\mathcal{R}} x^2 y \ d\mathcal{A}$, where \mathcal{R} is the region bounded by the curves y = x and $y = x^2$.

Solution: The intersection points of the two curves are the solutions of the system $\begin{cases} y = x \\ y = x^2 \end{cases}$ These are the points (0,0) and (1,1).

Double integral over a non rectangular region

First method: We have

$$\iint_{\mathcal{R}} x^2 y \ d\mathcal{A} = \int_0^1 \int_{x^2}^x x^2 y \ dy dx = \int_0^1 \left[\frac{x^2 y^2}{2} \right]_{x^2}^x \ dx$$
$$= \int_0^1 \left(\frac{x^4}{2} - \frac{x^6}{2} \right) dx = \left[\frac{x^5}{10} - \frac{x^7}{14} \right]_0^1 = \frac{1}{35}.$$



1

ν

0

Second method: We have

$$\iint_{\mathcal{R}} x^2 y \, d\mathcal{A} = \int_0^1 \int_y^{\sqrt{y}} x^2 y \, dx dy = \int_0^1 \left[\frac{x^3 y}{3} \right]_y^{\sqrt{y}} \, dy$$
$$= \int_0^1 \left(\frac{y^{\frac{5}{2}}}{3} - \frac{y^4}{3} \right) dx = \left[\frac{2y^{\frac{7}{2}}}{21} - \frac{y^5}{15} \right]_0^1 = \frac{1}{35}.$$

Chapter 2: Multiple Integrals (Dr. Malik Tall Math 203 - Differential and Integral Calculus

 $y\sqrt{y}$

Areas and volumes

Theorem

Let $\mathcal{R} \subseteq \mathbb{R}^2$ be a bounded region and $f : \mathcal{R} \to \mathbb{R}$ a nonnegative integrable function.

- The area of the region \mathcal{R} is given by $Area(\mathcal{R}) = \iint_{\mathcal{R}} 1 \ d\mathcal{A}$.
- **2** The volume of the solid over \mathcal{R} bounded above by the surface given by f is given by the formula Volume = $\iint_{\mathcal{R}} f(x, y) d\mathcal{A}$.

Example: Find the area of the region \mathcal{R} bounded by the curves of equations $y = \sqrt{x}$, y = 0 and 2x - 3y = 2. **Solution:** We compute $\iint_{\mathcal{R}} 1 \ d\mathcal{A}$ in two ways:

• First way:
$$\iint_{\mathcal{R}} 1 \ d\mathcal{A} = \int_{0}^{2} \int_{y^{2}}^{\frac{3y+2}{2}} 1 dx dy = \int_{0}^{2} \int_{y^{2}}^{y} 1 dx dy = \int_{0}^{2} \left(\frac{3y+2}{2} - y^{2}\right) dy = \left[\frac{3y^{2}}{4} + y - \frac{y^{3}}{3}\right]_{0}^{2} = \frac{7}{3}.$$

February 19, 2025

11/15

Chapter 2: Multiple Integrals (Dr. Malik TallMath 203 - Differential and Integral Calculus

Areas and volumes

Second way:

$$\iint_{\mathcal{R}} 1 \, d\mathcal{A} = \iint_{\mathcal{R}_{1}} 1 \, d\mathcal{A} + \iint_{\mathcal{R}_{2}} 1 \, d\mathcal{A}$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x}} 1 \, dy \, dx + \int_{1}^{4} \int_{\frac{2x-2}{3}}^{\sqrt{x}} 1 \, dy \, dx$$

$$= \int_{0}^{1} \sqrt{x} \, dx + \int_{1}^{4} \left(\sqrt{x} - \frac{2x-2}{3}\right) \, dx = \left[\frac{2x^{\frac{3}{2}}}{3}\right]_{0}^{1} + \left[\frac{2x^{\frac{3}{2}}}{3} - \frac{x^{2}-2x}{3}\right]_{1}^{4}$$

$$= \frac{2}{3} + \left(\frac{16}{3} - \frac{8}{3}\right) - \left(\frac{2}{3} + \frac{1}{3}\right) = \frac{7}{3}.$$

Chapter 2: Multiple Integrals (Dr. Malik TaltMath 203 - Differential and Integral Calculus

- 2

Double integrals in polar coordinates

Recall that the relation between polar coordinates (r, θ) and Cartesian coordinates is given by $x = r \cos \theta$, $y = r \sin \theta$ and $r = \sqrt{x^2 + y^2}$. Here are examples of equations of some curves in polar coordinates:

- The parabola $y = x^2$ in polar coordinates: $r \sin \theta = r^2 \cos^2 \theta$ which becomes $r = \sec \theta \tan \theta$.
- **2** The line x = 1 in polar coordinates: $r \cos \theta = 1 \Leftrightarrow r = \sec \theta$.
- So The circle $x^2 + y^2 = 1$ in polar coordinates becomes r = 1.
- The curve $r = \sin \theta$ becomes in Cartesian coordinates $x^2 + y^2 = y$, which is equivalent to $x^2 + (y \frac{1}{2})^2 = \frac{1}{4}$, which is a circle.

 $r = \theta$

13/15

February 19, 2025

• The equation of the spiral $r = \theta$ is written in Cartesian coordinates

$$x = \sqrt{x^2 + y^2} \cos \sqrt{x^2 + y^2}, y = \sqrt{x^2 + y^2} \sin \sqrt{x^2 + y^2}.$$

Some curves have equation in polar coordinates much simpler than in Cartesian coordinates.

Double integrals in polar coordinates

In Cartesian coordinates, the region \mathcal{R} is decomposed into small rectangles whose area is $\Delta x \Delta y$. This is why we have $d\mathcal{A} = dxdy$. However, in polar coordinates, \mathcal{R} is decomposed into small polar rectangles $R = \{(r, \theta) | r_1 < r < r_2, \theta_1 < \theta < \theta_2\}$. To compute the area of the polar triangle, recall that the area of a disc or radius r is πr^2 , a half disc $\frac{\pi}{2}r^2$ and a sector of radius r and angle $\Delta \theta = \theta_2 - \theta_1$ is $\frac{\Delta \theta \cdot r^2}{2}$. Therefore, the area of the polar rectangle R is $\Delta R = \frac{\Delta \theta}{2} \left(r_2^2 - r_1^2 \right) = \left(r_1 + \frac{\Delta r}{2} \right) \Delta r \Delta \theta \approx r_1 \Delta r \Delta \theta$, where $\Delta r = r_2 - r_1$. We deduce that in polar coordinates $d\mathcal{A} = rdrd\theta$. **Example 1:** Compute the double integral of $f : \mathcal{R} \to \mathbb{R}, (r, \theta) \mapsto r^2 \cos \theta$,

where \mathcal{R} is the region bounded by $r = \sin \theta$. Solution: We have

$$\iint_{\mathcal{R}} r^2 \cos\theta d\mathcal{A} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sin\theta} r^3 \cos\theta dr d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \theta \frac{\sin^4\theta}{4} d\theta = \left[\frac{\sin^5\theta}{20}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{10}.$$

February 19, 2025 14 / 15

 θ_{2}

θı

Double integrals in polar coordinates

Example 2: Compute in Cartesian coordinates and in polar coordinates the area of the region \mathcal{R} bouded by the parabola $y = x^2$ and the line y = x. **Solution:** We have

In Cartesian coordinates:
$$\iint_{\mathcal{R}} 1 d\mathcal{A} = \int_{0}^{1} \int_{x^{2}}^{x} 1 dy dx = \int_{0}^{1} (x - x^{2}) dy dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1} = \frac{1}{6}.$$
In polar coordinates:
$$\iint_{\mathcal{R}} 1 d\mathcal{A} = \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sec \theta \tan \theta} r dr d\theta = \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sec \theta \tan \theta} r dr d\theta = \int_{0}^{\frac{\pi}{4}} \left[\frac{r^{2}}{2}\right]_{0}^{\sec \theta \tan \theta} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec^{2} \theta \tan^{2} \theta d\theta = \frac{1}{6} \left[\tan^{3} \theta\right]_{0}^{\frac{\pi}{4}} = \frac{1}{6}.$$