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Riemann Sum of a function of one variable

Recall that, for a function f : [a, b]→
R, a partition P = {a = x0 ≤
x1 ≤ · · · ≤ xn = b} of [a, b] and
a set Ω = {ω1, ω2, . . . , ωn}, where
ωk ∈ [xk−1, xk ] for k = 1, . . . , n, the
Riemann sum is defined by

R(f ,P,Ω) =
n∑

k=1

f (ωk)(xk − xk−1).

If f (x) ≥ 0 on [a, b], this is the sum of
the areas of the blue rectangles. If f
is continuous on [a, b], then the limit

a b

f

lim
||P||→0

R(f ,P,Ω), where ||P|| = max(xk − xk−1) exists. It is equal by

definition to

∫ b

a
f (x)dx , the definite integral of f .
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Riemann Sum of a function of two variables

Let R be a region bounded by a closed
curve in R2. For a function f : R → R,
consider a partition of R into small rect-
angles P = {R1,R2, . . . ,Rn} and a set
Ω = {ω1, ω2, . . . , ωn} ⊂ R, where ωk ∈ Rk

for k = 1, . . . , n. Let ∆Rk be the area
of the rectangles Rk , k = 1, . . . , n, and
||P|| = max ∆Rk .

R

Rk

The Riemann sum is defined by R(f ,P,Ω) =
n∑

k=1

f (ωk)∆Rk . If f (x) ≥ 0

on R, this is the sum of the areas of cubes of bases the Rk .
If the limit lim

||P||→0
R(f ,P,Ω) exists, we call this limit the double integral

of f on R and denote it

∫∫
R

f (x , y)dA. If f is continuous, then this limit

exists.
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Properties of the double integral

Let R be a region bounded by a closed curve in R2, P a partitions of R
into rectangles and Ω a set of taken from each rectangle. Notice that for
real functions f , f1, f2 defined on R and real number k , we have:

1 R(kf ,P,Ω) = kR(f ,P,Ω),

2 R(f1 + f2,P,Ω) = R(f1,P,Ω) +R(f2,P,Ω),

3 If f ≥ 0, then R(f ,P,Ω) ≥ 0.

We deduce the following

1

∫∫
R

kf (x , y)dA = k

∫∫
R

f (x , y)dA,

2

∫∫
R

(f1(x , y) + f2(x , y))dA =

∫∫
R

f1(x , y)dA+

∫∫
R

f2(x , y)dA,

3 If f ≥ 0, then

∫∫
R

f (x , y)dA ≥ 0.
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Properties of the double integral

4 If a curve divides a region R into two
subregions, R1,R2, then∫∫
R

f (x , y)dA =

∫∫
R1

f (x , y)dA+

∫∫
R2

f (x , y)dA.

R1 R2

Iterated double integral:
Usually, if we apply a simple integral twice, we shorten the notation by
omitting the brakets.

We write

∫ b

a

∫ d

c
f (x , y)dxdy instead of

∫ b

a

(∫ d

c
f (x , y)dx

)
dy .

This is called an iterated double integral. To compute a double integral,
most of the times we use iterated double integrals.
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Double integral over a rectangular region

Theorem (Fubini)

If R = [a, b] × [c , d ] is a rectangular region and
f : R → R is continuous, then

R

a b

c

d

∫∫
R

f (x , y)dA =

∫ d

c

∫ b

a
f (x , y)dxdy =

∫ b

a

∫ d

c
f (x , y)dydx .

Example 1: Compute

∫∫
[0,1]×[0,2]

(
x2 + xy − y 3

)
dA.

Solution: We have∫∫
[0,1]×[0,2]

(
x2 + xy − y 3

)
dA =

∫ 2

0

∫ 1

0

(
x2 + xy − y 3

)
dxdy

=

∫ 2

0

[
x3

3
+

x2y

2
− xy 3

]1

0

dy =

∫ 2

0

(
1

3
+

y

2
− y 3

)
dy =

[
y

3
+

y 2

4
− y 4

4

]2

0

= −7

3
.
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Double integral over a rectangular region

Another method: We have∫∫
[0,1]×[0,2]

(
x2 + xy − y 3

)
dA =

∫ 1

0

∫ 2

0

(
x2 + xy − y 3

)
dydx

=

∫ 1

0

[
x2y +

xy 2

2
− y 4

4

]2

0

dx =

∫ 1

0

(
2x2 + 2x − 4

)
dy =

[
2x3

3
+ x2 − 4x

]1

0

= −7

3
.

Example 2: Compute

∫∫
[0,1]×[−1,1]

1

y 3
e

x
y dA.

Solution: We have∫∫
[0,1]×[−1,1]

1

y 3
e

x
y dA =

∫ 1

−1

∫ 1

0

1

y 3
e

x
y dxdy =

∫ 1

−1

[
1

y 2
e

x
y

]1

0

dy

=

∫ 1

−1

(
1

y 2
e

1
y − 1

y 2

)
dy =

[
−e

1
y +

1

y

]1

−1

= 2 sinh 1 + 2.

Algebraically, we don’t know how to compute this double integral when
starting first by integrating with respect to y .
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Double integral over a non rectangular region

Theorem

Let f : R → R be a continuous function defined on the region

R = {(x , y)|a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}. We

have

∫∫
R

f (x , y)dA =

∫ b

a

∫ φ2(x)

φ(x)
f (x , y)dydx .

R

a b

Example 1: Compute

∫∫
R

x2y dA, where R is the region bounded by

the curves y = x and y = x2.

Solution: The intersection points of the two curves

are the solutions of the system

{
y = x
y = x2 . These

are the points (0, 0) and (1, 1).

R

1

1

0
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Double integral over a non rectangular region

First method: We have∫∫
R

x2y dA =

∫ 1

0

∫ x

x2

x2y dydx =

∫ 1

0

[
x2y 2

2

]x
x2

dx

=

∫ 1

0

(
x4

2
− x6

2

)
dx =

[
x5

10
− x7

14

]1

0

=
1

35
. 10 x

x2

x

Second method: We have∫∫
R

x2y dA =

∫ 1

0

∫ √y
y

x2y dxdy =

∫ 1

0

[
x3y

3

]√y
y

dy

=

∫ 1

0

(
y

5
2

3
− y 4

3

)
dx =

[
2y

7
2

21
− y 5

15

]1

0

=
1

35
.

1

0 y
√
y

y
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Areas and volumes

Theorem

Let R ⊆ R2 be a bounded region and f : R → R a nonnegative integrable
function.

1 The area of the region R is given by Area(R) =
∫∫
R 1 dA.

2 The volume of the solid over R bounded above by the surface given
by f is given by the formula Volume =

∫∫
R f (x , y) dA.

Example: Find the area of the region R bounded by the curves of
equations y =

√
x , y = 0 and 2x − 3y = 2.

Solution: We compute
∫∫
R 1 dA in two ways:

1 First way:

∫∫
R

1 dA =

∫ 2

0

∫ 3y+2
2

y2

1dxdy =∫ 2

0

(
3y + 2

2
− y 2

)
dy =

[
3y 2

4
+ y − y 3

3

]2

0

=
7

3
.

2

0

y

y2 3y+2
2
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Areas and volumes

2 Second way:∫∫
R

1 dA =

∫∫
R1

1 dA+

∫∫
R2

1 dA

=

∫ 1

0

∫ √x
0

1dydx +

∫ 4

1

∫ √x
2x−2

3

1dydx
1 40

R1

R2

x

√
x

2x−2
3

=

∫ 1

0

√
xdx +

∫ 4

1

(√
x − 2x − 2

3

)
dx =

[
2x

3
2

3

]1

0

+

[
2x

3
2

3
− x2 − 2x

3

]4

1

=
2

3
+

(
16

3
− 8

3

)
−
(

2

3
+

1

3

)
=

7

3
.
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Double integrals in polar coordinates

Recall that the relation between polar coordinates (r , θ) and Cartesian
coordinates is given by x = r cos θ, y = r sin θ and r =

√
x2 + y 2. Here

are examples of equations of some curves in polar coordinates:
1 The parabola y = x2 in polar coordinates: r sin θ = r 2 cos2 θ which

becomes r = sec θ tan θ.
2 The line x = 1 in polar coordinates: r cos θ = 1⇔ r = sec θ.
3 The circle x2 + y 2 = 1 in polar coordinates becomes r = 1.
4 The curve r = sin θ becomes in Cartesian coordinates x2 + y 2 = y ,

which is equivalent to x2 +
(
y − 1

2

)2
= 1

4 , which is a circle.

5 The equation of the spiral r = θ is written in
Cartesian coordinates
x =

√
x2 + y 2 cos

√
x2 + y 2,

y =
√

x2 + y 2 sin
√

x2 + y 2.

Some curves have equation in polar coordinates
much simpler than in Cartesian coordinates.

r = θ
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Double integrals in polar coordinates

In Cartesian coordinates, the region R is decomposed
into small rectangles whose area is ∆x∆y . This is
why we have dA = dxdy . However, in polar coor-
dinates, R is decomposed into small polar rectangles
R = {(r , θ)|r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2}. To compute
the area of the polar triangle, recall that the area of a
disc or radius r is πr 2, a half disc π

2 r 2 and a sector of

radius r and angle ∆θ = θ2 − θ1 is ∆θ·r2

2 . Therefore,
the area of the polar rectangle R is 0

R

θ1

θ2

r1
r2

R

∆R = ∆θ
2

(
r 2
2 − r 2

1

)
=
(
r1 + ∆r

2

)
∆r∆θ ≈ r1∆r∆θ, where ∆r = r2 − r1.

We deduce that in polar coordinates dA = rdrdθ.
Example 1: Compute the double integral of f : R → R, (r , θ) 7→ r 2 cos θ,
where R is the region bounded by r = sin θ. Solution: We have∫∫
R
r 2 cos θdA =

∫ π
2

−π
2

∫ sin θ

0
r 3 cos θdrdθ =

∫ π
2

−π
2

cos θ
sin4 θ

4
dθ =

[
sin5 θ

20

]π
2

−π
2

=
1

10
.
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Double integrals in polar coordinates

Example 2: Compute in Cartesian coordinates
and in polar coordinates the area of the region R
bouded by the parabola y = x2 and the line y = x .
Solution: We have 0

1 In Cartesian coordinates:∫∫
R
1dA =

∫ 1

0

∫ x

x2

1dydx =

∫ 1

0
(x − x2)dydx =

[
x2

2
− x3

3

]1

0

=
1

6
.

2 In polar coordinates:

∫∫
R
1dA =

∫ π
4

0

∫ sec θ tan θ

0
rdrdθ =∫ π

4

0

[
r 2

2

]sec θ tan θ

0

dθ =
1

2

∫ π
4

0
sec2 θ tan2 θdθ =

1

6

[
tan3 θ

]π
4

0
=

1

6
.
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