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@ Infinite sequences
© Infinite series

© Power series
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Infinite sequences

Definition of sequences

A numerical sequence is a list of numbers:

@ Finite sequence: 2; %; 3:—5:\T:e.

o Infinite sequence: 1; —5;m; 19; %; .

Definition

An infinite sequence or simply a sequence is a function defined
on natural numbers. We denote it {a,}.

The terms of the sequence are: ai;ap; as;. ...

In the example above:

7
aa=1, a=-5 a3=m;, a =19; 35:5;....

ap is called the general term of the sequence.
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Infinite sequences

Examples of sequences

Examples: {n(n;—l)} ; {cos(nm)}; {cos (n%)} ; {n—;— ! }

1
@ For the sequence of general term a, = % we have

ai=1,a0=3;a3=6;a4 = 10;a5 = 15; ...
@ For the sequence of general term a, = cos(nm), we have
aa=-l,aa=1laz=—-1l,a3=1,a5 = —1;...

Notice that here the general term can be simply written
ap = (—-1)".
© For the sequence of general term a, = cos (”7”) we have

3120;32:—1;33:0;84:1;35:0;...
@ For the sequence of general term a, = "ng, we have

a;=2;a —3'3 —4'a —5'a —6'

1_12_213_314—4,5—5,...
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Infinite sequences

Sequences defined by their first terms

Remark: Sometimes, sequences are given by their first terms
following an implicite rule. Sometimes, a closed form of the
general term can be deduced and others no.

Examples:

@ A closed form of the general term of the sequence
1;1;2;2;3;3;4;4;... can be given by

N

{ n+lif s odd:
anp =

n
e or equivalently a, = PW .
3 if nis even, q Y an 2

The ceiling of x is defined by [x] = m, where m is an integer
satisfying m—1 < x < m.

o For the sequence 1;4:9;16;25;36;..., a, = n°.

@ For the sequence of prime numbers 2;3;5;7;11;13;17;19; ...,
we don't know a closed formula for the general term a,,.
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Infinite sequences

Limits of sequences

Remark: To move from an integer to another integer, we need to
jump. We cannot approach integers continuously from other
integers. That is why, for sequences, when we talk about limits we
mean n — oo and write simply lim a,.

o Let L € R. We say that lima, = L, if for any € > 0, there
exists an natural number N such that for all n > N, we have
lan — L| <e.

@ We say that lim a, = oo, if for any A > 0, there exists an
natural number N such that for all n > N, we have a, > A.

o We say that lim a, = —oo, if for any B < 0, there exists an
natural number N such that for all n > N, we have a, < B.

@ We say that lim a, does not exist if none of the properties
above is satisfied.
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Infinite sequences

Examples of limits of sequences

Examples:
@ limZ2 + —Ilm(l—i—l) =1.
3n +nl—n+1 __ _ _ 3
@ lim s = lim 3 503 = lim 3 5=5-
s 3nmd4nP—ntl .30 _
o lim o Rl lim 3 n2 =lim3n =00

@ The limits of the sequences (—1)", cos (4*), sin (45) do not
exist. In general, any periodic nonconstant sequence has no
limit.

To use the I'Hospital’s Rule, we need the following theorem:

If a, = f(n), for some function f defined on [1,00), and
lim f(x) =L e RU{xoo}, then lima, = L.

X—>00
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Infinite sequences

Using |'Hospital’s rule

Examples:
© For ap, = I”n", consider the function defined on [1, c0) by
| 1
f(x) = '”7)( We have lim f(x) = lim nx_ lim X =0
X0 X—00 X X—00

Therefore, lima, = 0.

@ For a, = <, consider the function defined on [1,00) by
« eX X
f(x) = <. We have XILngo f(x) XIme . XILrgo T =
Therefore, lim a, = oco.

What happens if ILm f(x) does not exist:
Consider f(x) = sin(mx). Because f(x) is a periodic func-
tion, ILm f(x) does not exist. However, for the sequence
defined by a, = f(n), we have a, = 0 for all n and
lim a, = 0. We deduce the following:

If lim f(x) does not exist, we cannot deduce nothing about lim a;.
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Infinite sequences

Convergent and divergent sequences

We say that a sequence is convergent if it has a finite limit.
Otherwise, it is divergent.

Theorem

Let {an}; {bn} be two sequences and f a real function such that

ap = f(bp). Iflimb, = ¢ € RU{xo0} and Iimz f(x) =L, then
X—r

lima, = L.

In particular, if f is continuous at ¢, then lim a, = f(¢).

Inn

Example: Consider the sequence {n%} We have n» — e'n". But

. nn .
we have already seen that lim — = 0. Because x +— €~ is
n

Inn

) L1 )
continuous at 0, we deduce that limn» =lime n = e = 1.
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Infinite sequences

Convergent and divergent sequences

Other examples:

1 n
@ Consider the sequence { <1 + ) }
n
In(1+1/n)

n
We have <1 + 1> = e”'“(1+%) —e 1/n
n

Consider f(x) = M Because lim 2 = 0, we compute
1
In(1 v
lim f(x) = lim I+ x) _ i T 1, by I'Hépital’s rule.
x—0 x—0 X x—0

Because x — €* is continuous at 1, we deduce that
lim (1+ %)n =el—e

X

. X\ "
@ In the same way, one can prove that lim (1 + 7> =e".
n
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Infinite sequences

Comparison between sequences

Let {an},{bn} be two sequences for which there exists N such that
forall n > N, a, = b,. We have lim a, = lim b,.

This theorem means that to compute a limit of a sequence, it
doesn’t matter what happens for the first terms. We have to focus
only on last terms.

Example: Consider the sequence of general term
n”+n+1 N {1000J <n! cos (n") + n”)

a":2n2—n+2 n 1+nlnn

We want to comput lim a,. We notice that for all n > 1000, we
have 0 < 1090 < 1 and therefore, |192%] = 0. Hence, for all

2
1
n > 1000, a, = nz+7n+ and lima, = %
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Infinite sequences

Comparison between sequences

Let {an},{bn} be two sequences such that a, < b, for all n.

@ /flima, = oo, then lim b, = co.

Q /flimb, = —o0, then lima, = —.

@ If{cn} is a third sequence such that a, < b, < ¢, for all n
and lima, = limc, =/, then lim b, = | (Sandwich theorem).

Examples:
@ Consider the sequence of general term a, = n® + (—1)"n?.
We have a, > n® — n?. But lim (n3 — n2) = oco. We deduce

that lim a, = oco.
cos n

@ Consider the sequence of general term a, = . Because

n
—1 < cosn <1 for all n, we have —% <a, < % But
lim —% = Iim% = 0. We deduce by Sandwich theorem that



Infinite sequences

Monotonic sequences

© A sequence {a,} is said to be increasing if for any n > 1, we
have ap11 > a,.

@ A sequence {a,} is said to be non-decreasing if for any
n>1, we have ap11 > a,.

© A sequence {a,} is said to be decreasing if for any n > 1, we
have a,11 < ap.

Q A sequence {a,} is said to be non-increasing if for any
n>1, we have ap11 < a,.

@ A sequence is said to be monotonic if it satisfies one of the
four conditions above.

Remark: Any increasing sequence is non-decreasing. Any
decreasing sequence is non-increasing. But the converse is not true.
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Infinite sequences

Monotonic sequences

Examples:
@ The sequence {e"} is increasing.
@ The sequence 1;1;2;2;3;3;4;4;5;5;... is non-decreasing.
However it is not increasing.
o The sequence {1} is decreasing.
@ The sequence {L&,?OJ} is non-increasing.

@ Any monotonic sequence has a limit in R U {+00}.
@ Let {an} and {bn} be two sequences satisfying a, < by, for all
n>1.
@ If{a,} is non-decreasing and {b,} is convergent, then {a,} is
convergent.
@ If{b,} is non-increasing and {a,} is convergent, then {b,} is
convergent.
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Infinite sequences

Bouned monotonic sequences

Example: Consider the two sequences defined by

1 1 1 1 _
an=qpt gttt
1 1 1
=14 — 4+ .
n T2 Taxs " +(n—1)n+

The sequence {a,} is increasing since a,+1 = a, + 311 +1), > a, for
all n > 1. Moreover, for all n > 1, we have a, < b,. On the other

1 1 1
hand, because =Dk = k=1 — k& We have

b, =1+ E_E_’_E_l_i_l_}_i_ + 1 _1 _2_1
" 1 2 2 3 3 4 n—1 n) = n

This implies that {b,} is convergent with lim b, = 2.
We deduce that {a,} is convergent.
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Infinite sequences

Bouned monotonic sequences

Definition
A sequence {a,} is said to be bounded, if there exist two real
numbers A and B such that A < a, < B for all n > 1.

As a consequence of the previous theorem:

Any bounded monotonic sequence is convergent.

2
For the sequence defined by a3y =1 and Vn > 1, a1 = 2a, — %.

We have 0 < a1 < 2. Assume 0 < a, <2 for n > 1. We have
_ LY
0< an(4—an) _ dray =2 — (an —2)

? ( )
an(2—a
Moreover, apy1 — ap = ———

<2

>0foralln>1,ieap1 > an.

Therefore, {a,} is bounded and monotonic. It is convergent.

Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



Infinite sequences

Geometric sequences

Definition

A geometric sequence {a,} is a sequence of non-zero terms with
constant ratio r = ag—tl The constant r is called the ratio of the
sequence.

More precisely, the sequence has the form:

ap;arr arr’ airs; .. arm L.

Examples:

@ The sequence 3;6;12;24;48;96;192; ... where a, = 3 x 2n—1
is divergent with lim a,, = oco.

@ The sequence 16;8;4;2;1; %; %; é; ... where

—1 . _
a, =16 x (%)n = % is convergent with lima, = 0.
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Infinite sequences

Geometric sequences

Iflim|ap| = 0, then lima, = 0.

@ The sequence 16; —8;4; —2;1; — 2 4, %;...where

-1 :
ap =16 x (—%)n is convergent with lim a, = 0.

In general, we have

Let {an} be a geometric sequence of ratio r.
@ If|r| > 1, then {an} is divergent.
@ If|r| ><, then {a,} is convergent.

@ Ifr =1, then {a,} is constant and therefore convergent.
Q Ifr=—1, then {a, = (—1)" a1} is divergent.

.
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Infinite series

Series

Definition
Let {a,} be a sequence. The series of terms a, is the "formal”
sum

atatat+---+ap+---

o0
It is denoted Z an or simply Z an.

n=1

Examples:
00333333 =3+ 343433
0 14+2+3+4+ - +n+---.
0o 1+ (-1 +1+ (-4 -+ (-1 +....
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Partial sums

Infinite series

Given a sequence {a,}, we

defined by:
S1
52

Sn

consider the sequence of partial sums

= a1,
= a1 + ay;

ap+ax+---+ ap;

The general term of some partial sums:

@ 1+2+43+---4n="001)

12422 432 ... 4 p? = ot)@ntl),

2]
2
n(n+1 X
o 13+23+33+-~+n3:(¥) ;
o

1 1 1 1 _ 1
etastaat ey =l
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Infinite series

Partial sums

For the sum s, =142+ 3+ ---+4+ n, we have
Sh = 1 + 2

+ 3 +---+ n
Sn = n + (n—=1) + (n—2) +---+ 1
2sp= (n+1) + (n+1) + (n+1) +---+ (n+1)

This gives, s, = "("2“).
A second method: we have

(n+1)2 =(12-0%)+ (22 =12+ + ((n+1)2 - )
((k+12=K)=> (2k+1)
k:q7 k=0

n
=2 k—l—Zl:an—i—n—l—l.
k=0 k=0

Therefore, 25, = (n+1)> —n—1=n’+nand s, = w
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Infinite series

Partial sums

o Forthesum s, =12+224+32 4 ... 4+ n?, we have
(n+1)3 :(13—03)+(23—13)+---+((n+1)3—n3)

n

_Z ((k+1)* )—Z(3k2+3k+1)
—3Zk2+32k+21_3s,, + 30 4 (h 4 1).

Therefore, s, = 2(”H)3—3"(tr;+1)—2(n+1) _

(n+1)(2(n+1)2-3n—2)  p(n+1)(2n+1)
6 - 6 ’

@ Do the same for the sum s, =13 +23+33 4+ ... + n to

3 2 1 2
obtain s, = %.
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Infinite series

Partial sums

Conversely, given the sequence {s,} of partial sums, we can find
back the sequence {a,} by

dl =81, @ =5 —S1,...,dp = Sp — Sp—1,-.-.
Examples:
_ 2 _ _ 2 2 _
@ Fors,=n% wehavea;=1anda,=n"—(n—1)*=2n-1
for n > 2.
_ 1 _ _1 1 1
oForsn—;,wehaveal—landan—;—nfl——mfor
n>2.
e Fors, =(—1)", we have a3 = —1 and

an=(-1)"—(=1)""t =2(-1)" for n > 2.
@ For s, = Inn, we have a; = 0 and
ap=Inn—In(n—1)=In_"5 for n > 2.
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Infinite series

Convergent series

@ If the sequence of partial sums {s,} is convergent and
s = lims,, we say that the series ) a, is convergent, s is the

o0
sum of the series and write Z an = S.
n=1
@ If the sequence of partial sums {s,} is divergent, we say that
the series ) a, is divergent.

Examples:
@ 0.333333---=3" lgn = % is convergent.
@ > n= oo is divergent.
@ > (—1)"is divergent.
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Infinite series

Geometric series

Forthesum s, =1+ r+r2+--- 4+ r"1 we have
rsp=r+rP+rr34. 4"

Therefore (1 —r)s, = s, — rs, =1 — r". Hence

1—r" . .
Lprgrgopemio | o fr7l
n, ifr=1.

Let {a,} be a geometric sequence of ratio r. We have

. . . a
@ If|r| <1, then the series ) a, is convergent with sum 171

@ If|r| > 1, then the series ) a, is divergent.
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Infinite series

The nt"—term test

If the series Y ap, is convergent, then lim a, = 0.

Indeed, if s = lims,, we have

lima, = lim(s, — s,—1) = lims, —lims,_; =s—s=0.
This means that if lim a, # 0, then the series ) a, is divergent.
This is called the nt"—term test for a divergence of a series.
Examples: The series > Inn, > (—1)", ”+} are all divergent,
directly from the nt"—term test.

If lim a, = 0, this is not enough to deduce that the series > a,

converges.

. . 1 _ 1 - . .
Example: lim - =0, but ) - is divergent as we will see.
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Infinite series

Comparision of series

© If we delete the first N — 1 terms of a series » | a, then the

(o] (o]
series Z an and Z ap are of the same nature.
n=1 n=N
@ If the series > a, and ) by, satisfy a, = b, for all n > N, for
some natural number N, then they are of the same nature.

Examples:
@ The series Y _ a,, where a, = n, for n < 10°, and a, = ﬁ
s 1
for n > 100, is convergent since Z = 106 is convergent.
n=106+1

@ The series Y a, and ) by, where b, = a, + (&,?OW are of the
same nature since a, = b, for all n > 1000.
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Infinite series

Series of non-negative terms

Recall that for a series ) aj,, the sequence of partial sums {s,}
satisfies a, = s, — s,_1 for all n > 2. Therefore, the general term
ap of the series is non-negative means that the sequence {s,} is
non-decreasing. Hence, all theorems for non-decreasing sequences
can be applied to series of non-negative terms.

Let " a, be a series of non-negative terms. If there exists M such
n

that Z ax < M for all n > 1, then the series Y a, is convergent.
k=1

Example: Consider the series > # For all n > 2, we have

o q
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Infinite series

Comparision of series of non-negative terms

Let > a, and Y b, be two series of non-negative terms such that
an < b, forall n>1.
@ If the series Y b, is convergent, then the series Y ap is
convergent.
@ If the series Y a, is divergent, then the series >_ by, is
divergent.

Q@ Let p>2. Wehave 0 < 2 < n2 < n(n ) for all n > 2. But
the series of positive terms n(n = =1 is convergent. We
deduce that the series of positive terms > 2 75 is convergent.

@ Let1>p>0. Wehave 0 < < L forall n>1. But the
series of positive terms Z% is divergent. We deduce that the
series of positive terms > % is divergent.
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Infinite series

The harmonic series

Definition
We call the series > % the harmonic series.

To prove that the harmonic series is divergent, consider the series
of general term a, = =, for 2k-1 < n < 2k Thatis a1 = 1;

2
32—2,33 1,34:%;35:%;36:%,....Wehave;23nfor
1 n
Nn>1 — .
all n and thenzk ak. On the other hand
k=1 k=1
2k
Za :1+l+1+1+1_’_1+1+1+...+i+i+...+i
" 272 2 4 4 4 4 ok ok 2k
n=1 S—_—— —
2 x 4 x 2k—1 %
1 1 1
:1—1—5—1—54—---—1—5 =1+ . Therefore Y a, is divergent.
kx
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Infinite series

The integral test

Theorem

Let > a, be a series of non-negative terms for which there exists a
function f defined on [1,00) such that a, = f(n) for all n > 1. If
the function f is non-increasing and continuous, then the series

o0

> an and the improper integral / f(x)dx are of the same nature

1
(Either they are both convergent, or both divergent).

Because f is continuous and non-increasing, it is integrable on any

n n+1
closed interval and we have / f(x)dx < a, < / f(x)dx for

n—1

[e'S) o0 o0

all n > 2. We deduce that / f(x)dx < Z ap < / f(x)dx.
1 p— 2

Hence, the series ) a, of non-negative terms and the improper

integral of the non-negative function f are of the same nature.
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Infinite series

Application of the integral test

For o > 0, consider the series n% of positive terms.

Q@ /f o > 1, the series is convergent.
Q If1 >« >0, the series is divergent.

Examples:
Q@ The series ) % > 713 S % are convergent.

ny/n’

@ The series > 1, 3 ﬁ > % > ﬁ are divergent.
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Infinite series

Application of the integral test to the series ) ni

Proof of the theorem: Consider the function defined on [1, 00)
by f(x) = . The function f is positive and continuous.
Moreover, because f'(x) = —art <0 for all x > 1, the function f
is decreasing. We can apply the integral test.

If o # 1, we have floo X%dx _ [Xl—a}jo.

-«

Q@ If a > 1, the improper integral floo X%dx = ﬁ is convergent,

1

and therefore, the series o is convergent.

@ If 0 < o < 1, the improper integral [ & dx = oo is
divergent, and therefore, the series ) % is divergent.

@ If a =1, the improper integral floo %dx =[Inx]{"=00is
divergent, and therefore, the harmonic series E% is divergent.

Exercise: Prove that the series 3~ — L is convergent for a > 1

nin®n
and divergent for 0 < o < 1.
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Infinite series

Another example for the integral test

. . 2 .
Exercise: Prove that the series ) 5 is convergent.
e

Solution: Consider the function f defined on [1,00) by f(x) = %5.

The function f is positive and continuous.

2xe”> —3x4e — X(2 3X
()

x > 1. Therefore, the function f is decreasing.

We can apply the integral test. We have

Moreover, we have f'(x) = ) <0 for all

is convergent.
. 2 .
We deduce that the series ) e”? is convergent.
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Infinite series

Comparision of series of positive terms

Let > a, and Y b, be two series of positive terms.

@ /f there exist m and M and N such that for all n > N,
0<m< Z—: < M, then the series Y a, and ) b, are of the
same nature.

Q Iflim = =/ € (0,00), then the series ) a, and ) b, are of
the same nature.

@ /flim a” = 0 and the series Y by, is convergent, then the
series Z a, is convergent.

Q /flim a" = 0o and the series Y, by, is divergent, then the series
> & IS divergent.

241 n°+n nt041
4+11 n6+11 en+n4

S 1 5 Sl se ~3, respectively, to deduce their nature.
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Infinite series

Comparision of series of positive terms

@ The first condltlon means that mb, < an < Mb, for all n > N

and then mZb <Zan§MZb Because > a, and

> by are of posmve terms, the two serles are of the same
nature.

@ The condition lim Z—: = ¢ > 0 implies that there exists N such
that for all n > N, % < Z—: < 2/¢, and then they are of the
same nature.

© The condition lim Z—'n’ = 0 implies that there exists N such that
forall n> N, ﬁ <1, that is a, < b, and the result follows.

© The condition I|m 2 = oo implies that there exists N such
that for all n > N, ‘92 > 1, that is a, > b, and the result
follows.
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Infinite series

Comparision of series of positive terms

Examples:
: 41 _ n’41 _ 1 :

@ For the series ) Pl let .a,j = i and b, = g Both series

> an and ) b, are of positive terms. Moreover, we have

2( .2

. an n (n +1) BT n4 o . 1

lim §2 = lim =77~ = lim {3 = 1. But the series 3 -5

convergent. We deduce that the series ) | ”4+1 is convergent.

n°+n _ n°+n 1 H

@ For the series > ol let an = ey and b, = n. Both series

> an and Y b, are of posmve terms. Moreover, we have

. 5

lim Z" = lim "(n"ﬁ:l") = lim 75 = 1. But the series Z = is

divergent. We deduce that the series 3~ %t is divergent.

g n6+1 g
: nl%+1 _ nl%41 _ 1

© For the series s let a, = P and b, = 7 Both

series > ap and > by, are of positive terms. Moreover, we

C A e2(n10+1) nl0e3 i n0
have lim o= lim e = lim = = lim 7= 0. But the

series ) ig is convergent. We deduce that the series
e
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Infinite series

The ratio test

Theorem (The ratio test)

Let > a, be a series of positive terms for which lim a;—tl exists.
@ /flim a’;—tl < 1, then the series Y_ a, is convergent.
Q@ /flim a’;—:l > 1, then the series Y _ a, is divergent.
im 22 — 1, then the test fails.
Q Ifl 33:1 1, then the test fail

For the case lim % =1, consider the following examples:
n

© The series Z 1 is of positive terms, satisfies this condition
lim a"“ =1 and the series 3_ 1 is divergent.

n+1
Q The series ) = 1 is of positive terms, satisfies this condition

2 . .
lim #2EL = |im G _';1)2 =1 and the series >~ - is convergent.
This is to say that it is not possible to make any deduction from
lim % =1.
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Infinite series

The ratio test

For the other two cases:

Q If lim 22 =/ < 1, consider / < r < 1. There exists N such
that for "all n >N, 32:1 < r. We have

dn _ dnN+1 an+2 o dn =N

ay an an+1 dn—1

Therefore, a, < f—ﬁr" for all n > N. But the series > r" is
convergent and a, is positive. We deduce that >_ a, is
convergent.

Q If lim a”“ =1/ >1, consider | > r > 1. There exists N such
that for “all n > N, 2ot > r. We find in the same way that

ap > 2r" for all n > "N. But the series > r"is divergent. We
deduce that > a, is divergent.

Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



Infinite series

The ratio test

Examples: Apply the ratio test to the series Z I and Z 2n),
deduce their nature.
© The series ) ,'7’—,', is of positive terms. Let a, = % We have

anrr  (n+ )" (n+1)n" n" 1

ap  nl(n+1)mt o (n41)n T (k1) (14 4T

But we have already seen that lim (1 + 1)" = e. We deduce
that lim @ = l < 1 and therefore, the series is convergent.

@ The series Z {omy1 is of positive terms. Let aj = (g,'f), We
have
1)12(2n)! 1)? 1
lim 21 :“mwznm (n+1) => <1
an (2n 4 2)!(n!)? (2n+1)(2n+2) 4
We deduce that the series Z ! is convergent.
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Infinite series

The root test

Theorem (The root test)

Let " a, be a series of positive terms for which lim /a, exists.
@ I/flim /a, < 1, then the series >_ a, is convergent.
@ Iflim y/a, > 1, then the series > a, is divergent.
© Iflim y/a, = 1, then the test fails.
o

If limy/a, =1 <1, consider | < r < 1. There exists N such
that for all n > N, /a, < r and then a, < r”. But the series
> r" is convergent since r < 1 and a, is positive. We deduce
that > a, is convergent.

@ If lim/a, =/ > 1, consider /| > r > 1. There exists N such
that for all n > N, /a, > r and then a, > r". But the series
> ris divergent since r > 1. We deduce that ) a, is
divergent.
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Infinite series

The root test

n
Examples: Apply the root test to the series ) (%Zﬁ) and

2

n
> ( 1 ) to deduce their nature.

n+1

3n+1

n
_ (2n+1 . i 2041 2
an = (3n+1> . We have lim y/a, = lim i1 =3 < 1. We

n
Q@ The series ) (2”+1) is of positive terms. Let

n
deduce that the series > (%Zﬁ) is convergent.

2
n
) is of positive terms. Let

@ The series ) (nil

2

n n
an = (#’1) . We have lim /a, = lim (nf_l) = % < 1. We
2

n
deduce that the series > (#’1) is convergent.
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Infinite series

Alternating series

Definition
An Alternating series is a series of the form > (—1)"a, or
S (—1)"*a,, where {a,} is a sequence of positive terms.

Examples: 3 (-3)", 3 (-3)", S & > (1}) > E are all

alternating series.

Let > (—1)"a, be an alternating series. If the sequence {a,} is
decreasing and lim a, = 0, then the series Y (—1)"a, is convergent.

Examples: All the sequences {4}, {1}, {%} {L} are
decreasmg and have limit 0. Therefore the alternating series

1)" 1)"
ACIEDY ( Z - Y 1 2 are all convergent.




Infinite series

Alternating series

Proof of the theorem: Consider the alternating series > (—1)"a,
and let {s,} be the sequence of its partial sums. We have
S1 = —a1, S = —ai+ ap, s3 = —a; + a» — as,.... Because the
sequence {a,} is decreasing, we have:
® Sy(nt1) — S2n = @2p+42 — A2n41 < 0, for all n > 1, which means
that the sequence {sy,} is decreasing.
@ S)(nt+1)+1 — S2n+1 = —a2n43 + azp42 > 0 for all n > 0, which
means that the sequence {spp41} is increasing.
Now, sp > Sop = Sop+1 + @2nt1 > Sont1 > S1, for all n > 1. This
means that the decreasing sequence {s,} is bounded bellow by s;
and the increasing sequence {sy,+1} is bounded above by s;.
Therefore, both sequences {sp,} and {syn+1} are convergent. Let
s and s’ be their respective limits. We have
SI —s=Ilim Sn+1 — lim Son = Iim(52n+1 — 52,,) = lim —azp+l1 = 0.
This proves that s’ = s and Y (—1)"a, is convergent.
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Infinite series

Absolute convergence

In all what follow, the series ) a,, is not necessarily of positive
terms. Some of the previous tests cannot be applied:

For example, the series (?fln)n is convergent as an alternating

series, while the series ) ((}1,3" + %) is divergent as a sum of a

convergent and a divergent series. So, they are not of the same
nature, although

(=" 1

This means that the condition of positivity in the comparision test
is important and cannot be dropped.

Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



Infinite series

Absolute convergence

Definition
A series > a, is said to be absolutely convergent if the series
> |an| is convergent.

Examples:
@ The series > (_,112)’7, > (_,113)", > (_2},)" are convergent and
absolutely convergent.

@ The series Z 1)n Y (?}n)n, > (_1):"'” are convergent but

not absolutely convergent.

@ The series » (—1)" is divergent and not absolutely
convergent.

Any absolutely convergent series is convergent.
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Infinite series

Absolute convergence

We say that a series is conditionally convergent if it is
convergent but not absolutely convergent.

Theorem

| \

If > an is a conditionally convergent series and | € R is any real
number, then we can always rearrange the terms of the series so
that the new series ) a,(n) converges to |.

Any series is of one of the following types:
@ It is absolutely convergent;
@ It is conditionally convergent;

@ It is divergent.
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Infinite series

The ratio test

If we drop the condition of positivity in the ratio test, the test still
works and it becomes:

Theorem (The ratio test)

an+1

exists.

Let " a, be a series of non-zero terms for which lim

an

Q /flim

an41
an

< 1, then the series ) a, is absolutely convergent.

Q /flim > 1, then the series ) a, is divergent.

ant1
an

@ /flim =1, then the test fails.

an+1
an

The second case comes from the fact that in the proof of the
theorem, there exists r > 1 and N > 1 such that for all n > N, we
have |a,| > Cr", where C > 0. But lim r” = co. Therefore,
lim|an| = co. Hence lima, # 0 and the series ) a, is divergent.
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Infinite series

The root test

In a similar way, if we drop the condition of positivity in the root
test, the test still works and it becomes:

Theorem (The root test)

Let > a, be a series for which lim {/|a,| exists.

@ Iflim {/|an| < 1, then the series _ a, is absolutely
convergent.

@ Iflim {/|an| > 1, then the series > a, is divergent.
@ Iflim {/|a,| = 1, then the test fails.

The argument for the second case is similar to the one for the ratio
test.
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Infinite series

Exercises

Exercises: For each of the following series, say if it is absolutely
convergent, conditionally convergent or divergent.

—_1\n 2nm —_n\"
) Z In((n:zl)’ (i) Zcosn3 - (i) Z( n!) ’
_ o (Inn\"™" tan~!n
) L () 0 D2
(vi) > (-1)" s.nQOT”
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Power series

A power series (centred at 0/in x) is a series of the form

o0
g anx" = ag + a1x + apx® + azx> + - -

n=0

depending on the real variable x.

Examples of power series:
O 2 3 4
X X X X
p— T T T
ozn! xS+ ot
n=0
2 3 4

(e.9]
X X X X
o nzln:x+2+3+4+---

o
(s ] ZXn:1+X+X2—|-X3—|—X4—|—'--
n=0
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Power series

Problem: For which values of x, the power series is convergent?
The set of such values is called the domain of convergence of
the series. Notice that all power series are convergent at x = 0.

Examples:
oo
@ The power series Zx” is a geometric series. It is absolutely
n=0

convergent when |x| < 1 and divergent when |x| > 1. Its
domain of convergence is (—1,1).

X  n
. X : .
@ For the power series E — the ratio test gives:
n!

n=0
Xn+1
: T X o
l (njnl)l = lim ' = 0. The series is absolutely
i n+1

convergent for all x € R. Its domain of convergence is R.
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Power series

[e.9]
@ For the power series Z n!x", the ratio test gives:
n=0
1)! n+1
i | DX (n 4 1)x] = 0, for x 0.
nlxn

The domain of convergence of the series is {0}.

> on
. X . .
@ For the power series g —, the ratio test gives
n

n=1
Xt
. 1 . n . .
lim [ 252 | = lim x| = |x|. The series is absolutely
n

convergent for |x| < 1 and divergent for |x| > 1.

oo

e For x =1, it is the harmonic series g — which is divergent.
n=1 n
— (—1)"
e For x = —1, it is the convergent alternating series E —_—
n
n=1

The domain of convergence of the series is [—1,1).
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Power series

Radius of convergence

If a power series is convergent at xo # 0, then it is absolutely
convergent at all |x| < |xo|.

This theorem means that the domain of convergence of any power
series is an interval centred at 0. It can be open (—r, r), closed
[—r, r] or half open (—r,r] or [—r,r), for some r € [0,00) U {o0},
called the radius of convergence of the series.
Examples:
; n n x" H
© The power series ) x", > nx", > % have radius of
convergence r = 1.
@ The power series > );—7 has radius of convergence r = co.

© The power series Y n!x" has radius of convergence r = 0.
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Power series

Radius of convergence

Proof of the theorem:

o0
Assume the power series Z anx" convergent at xg # 0 and let
n=0
x| < [xol.
We have lim a,x) = 0. Therefore, there exists N such that, for all
n> N, |anx§| < 1.

Hence, for all n > N, we have |a,x"| = |apx§| -

n
x
X0

n
<

X
X0

But, the geometric series ) is convergent since

% <L
We deduce that the series > a,x" is absolutely convergent.

x
0

Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



	Infinite sequences
	Infinite series
	Power series

