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Definition of sequences

A numerical sequence is a list of numbers:

Finite sequence: 2; 1
2 ; 3;−5;

√
7; e.

Infinite sequence: 1;−5;π; 19; 7
3 ; . . .

Definition

An infinite sequence or simply a sequence is a function defined
on natural numbers. We denote it {an}.

The terms of the sequence are: a1; a2; a3; . . ..

In the example above:

a1 = 1; a2 = −5; a3 = π; a4 = 19; a5 =
7

3
; . . . .

an is called the general term of the sequence.
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Examples of sequences

Examples:

{
n(n + 1)

2

}
; {cos(nπ)};

{
cos
(nπ

2

)}
;

{
n + 1

n

}
.

1 For the sequence of general term an = n(n+1)
2 , we have

a1 = 1; a2 = 3; a3 = 6; a4 = 10; a5 = 15; . . .

2 For the sequence of general term an = cos(nπ), we have

a1 = −1; a2 = 1; a3 = −1; a4 = 1; a5 = −1; . . .

Notice that here the general term can be simply written
an = (−1)n.

3 For the sequence of general term an = cos
(
nπ
2

)
, we have

a1 = 0; a2 = −1; a3 = 0; a4 = 1; a5 = 0; . . .

4 For the sequence of general term an = n+1
n , we have

a1 = 2; a2 =
3

2
; a3 =

4

3
; a4 =

5

4
; a5 =

6

5
; . . .
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Sequences defined by their first terms

Remark: Sometimes, sequences are given by their first terms
following an implicite rule. Sometimes, a closed form of the
general term can be deduced and others no.
Examples:

A closed form of the general term of the sequence
1; 1; 2; 2; 3; 3; 4; 4; . . . can be given by

an =

{
n+1

2 if n is odd;
n
2 if n is even,

or equivalently an =
⌈n

2

⌉
.

The ceiling of x is defined by dxe = m, where m is an integer
satisfying m − 1 < x ≤ m.

For the sequence 1; 4; 9; 16; 25; 36; . . ., an = n2.

For the sequence of prime numbers 2; 3; 5; 7; 11; 13; 17; 19; . . .,
we don’t know a closed formula for the general term an.
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Limits of sequences

Remark: To move from an integer to another integer, we need to
jump. We cannot approach integers continuously from other
integers. That is why, for sequences, when we talk about limits we
mean n→∞ and write simply lim an.

Definition

Let L ∈ R. We say that lim an = L, if for any ε > 0, there
exists an natural number N such that for all n ≥ N, we have
|an − L| < ε.

We say that lim an =∞, if for any A > 0, there exists an
natural number N such that for all n ≥ N, we have an ≥ A.

We say that lim an = −∞, if for any B < 0, there exists an
natural number N such that for all n ≥ N, we have an ≤ B.

We say that lim an does not exist if none of the properties
above is satisfied.
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Examples of limits of sequences

Examples:

lim n+1
n = lim

(
1 + 1

n

)
= 1.

lim 3n3+n2−n+1
2n3−n+2

= lim 3n3

2n3 = lim 3
2 = 3

2 .

lim 3n3+n2−n+1
n2−n+2

= lim 3n3

n2 = lim 3n =∞.
The limits of the sequences (−1)n, cos

(
nπ
2

)
, sin

(
nπ
30

)
do not

exist. In general, any periodic nonconstant sequence has no
limit.

To use the l’Hospital’s Rule, we need the following theorem:

Theorem

If an = f (n), for some function f defined on [1,∞), and
lim
x→∞

f (x) = L ∈ R ∪ {±∞}, then lim an = L.
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Using l’Hospital’s rule

Examples:
1 For an = ln n

n , consider the function defined on [1,∞) by

f (x) = ln x
x . We have lim

x→∞
f (x) = lim

x→∞

ln x

x
= lim

x→∞

1
x

1
= 0.

Therefore, lim an = 0.
2 For an = en

n , consider the function defined on [1,∞) by

f (x) = ex

x . We have lim
x→∞

f (x) = lim
x→∞

ex

x
= lim

x→∞

ex

1
=∞.

Therefore, lim an =∞.

What happens if lim
x→∞

f (x) does not exist:

Consider f (x) = sin(πx). Because f (x) is a periodic func-
tion, lim

x→∞
f (x) does not exist. However, for the sequence

defined by an = f (n), we have an = 0 for all n and
lim an = 0. We deduce the following:

If lim
x→∞

f (x) does not exist, we cannot deduce nothing about lim an.
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Convergent and divergent sequences

Definition

We say that a sequence is convergent if it has a finite limit.
Otherwise, it is divergent.

Theorem

Let {an}; {bn} be two sequences and f a real function such that
an = f (bn). If lim bn = ` ∈ R ∪ {±∞} and lim

x→`
f (x) = L, then

lim an = L.
In particular, if f is continuous at `, then lim an = f (`).

Example: Consider the sequence
{

n
1
n

}
. We have n

1
n = e

ln n
n . But

we have already seen that lim
ln n

n
= 0. Because x 7→ ex is

continuous at 0, we deduce that lim n
1
n = lim e

ln n
n = e0 = 1.
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Convergent and divergent sequences

Other examples:

Consider the sequence

{(
1 +

1

n

)n}
.

We have

(
1 +

1

n

)n

= en ln(1+ 1
n ) = e

ln(1+1/n)
1/n .

Consider f (x) = ln(1+x)
x . Because lim 1

n = 0, we compute

lim
x→0

f (x) = lim
x→0

ln(1 + x)

x
= lim

x→0

1
1+x

1
= 1, by l’Hôpital’s rule.

Because x 7→ ex is continuous at 1, we deduce that
lim
(
1 + 1

n

)n
= e1 = e.

In the same way, one can prove that lim
(

1 +
x

n

)n
= ex .
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Comparison between sequences

Theorem

Let {an}, {bn} be two sequences for which there exists N such that
for all n ≥ N, an = bn. We have lim an = lim bn.

This theorem means that to compute a limit of a sequence, it
doesn’t matter what happens for the first terms. We have to focus
only on last terms.

Example: Consider the sequence of general term

an =
n2 + n + 1

2n2 − n + 2
+

⌊
1000

n

⌋(
n! cos (nn) + nn

1 + n ln n

)
.

We want to comput lim an. We notice that for all n > 1000, we
have 0 ≤ 1000

n < 1 and therefore,
⌊

1000
n

⌋
= 0. Hence, for all

n > 1000, an =
n2 + n + 1

2n2 − n + 2
and lim an = 1

2 .
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Comparison between sequences

Theorem

Let {an}, {bn} be two sequences such that an ≤ bn for all n.

1 If lim an =∞, then lim bn =∞.

2 If lim bn = −∞, then lim an = −∞.

3 If {cn} is a third sequence such that an ≤ bn ≤ cn for all n
and lim an = lim cn = l , then lim bn = l (Sandwich theorem).

Examples:
1 Consider the sequence of general term an = n3 + (−1)nn2.

We have an ≥ n3 − n2. But lim
(
n3 − n2

)
=∞. We deduce

that lim an =∞.
2 Consider the sequence of general term an =

cos n

n
. Because

−1 ≤ cos n ≤ 1 for all n, we have − 1
n ≤ an ≤ 1

n . But
lim− 1

n = lim 1
n = 0. We deduce by Sandwich theorem that

lim an = 0.Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus
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Monotonic sequences

Definition

1 A sequence {an} is said to be increasing if for any n ≥ 1, we
have an+1 > an.

2 A sequence {an} is said to be non-decreasing if for any
n ≥ 1, we have an+1 ≥ an.

3 A sequence {an} is said to be decreasing if for any n ≥ 1, we
have an+1 < an.

4 A sequence {an} is said to be non-increasing if for any
n ≥ 1, we have an+1 ≤ an.

5 A sequence is said to be monotonic if it satisfies one of the
four conditions above.

Remark: Any increasing sequence is non-decreasing. Any
decreasing sequence is non-increasing. But the converse is not true.
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Monotonic sequences

Examples:

The sequence {en} is increasing.

The sequence 1; 1; 2; 2; 3; 3; 4; 4; 5; 5; . . . is non-decreasing.
However it is not increasing.

The sequence { 1
n} is decreasing.

The sequence
{⌊

1000
n

⌋}
is non-increasing.

Theorem

1 Any monotonic sequence has a limit in R ∪ {±∞}.
2 Let {an} and {bn} be two sequences satisfying an ≤ bn for all

n ≥ 1.
1 If {an} is non-decreasing and {bn} is convergent, then {an} is

convergent.
2 If {bn} is non-increasing and {an} is convergent, then {bn} is

convergent.
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Bouned monotonic sequences

Example: Consider the two sequences defined by

an =
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · · ;

bn = 1 +
1

1× 2
+

1

2× 3
+ · · ·+ 1

(n − 1)n
+ · · · .

The sequence {an} is increasing since an+1 = an + 1
(n+1)! > an for

all n ≥ 1. Moreover, for all n ≥ 1, we have an ≤ bn. On the other
hand, because 1

(k−1)k = 1
k−1 −

1
k , we have

bn = 1+

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+· · ·+

(
1

n − 1
− 1

n

)
= 2−1

n
.

This implies that {bn} is convergent with lim bn = 2.
We deduce that {an} is convergent.
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Bouned monotonic sequences

Definition

A sequence {an} is said to be bounded, if there exist two real
numbers A and B such that A ≤ an ≤ B for all n ≥ 1.

As a consequence of the previous theorem:

Theorem

Any bounded monotonic sequence is convergent.

For the sequence defined by a1 = 1 and ∀n ≥ 1, an+1 = 2an −
a2
n

2
.

We have 0 ≤ a1 ≤ 2. Assume 0 ≤ an ≤ 2 for n ≥ 1. We have

0 ≤ an(4− an)

2
= an+1 = 2− (an − 2)2

2
≤ 2.

Moreover, an+1 − an =
an(2− an)

2
≥ 0 for all n ≥ 1, ie an+1 ≥ an.

Therefore, {an} is bounded and monotonic. It is convergent.
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Geometric sequences

Definition

A geometric sequence {an} is a sequence of non-zero terms with
constant ratio r = an+1

an
. The constant r is called the ratio of the

sequence.

More precisely, the sequence has the form:

a1; a1r ; a1r 2; a1r 3; . . . ; a1rn−1; . . . .

Examples:

The sequence 3; 6; 12; 24; 48; 96; 192; . . . where an = 3× 2n−1

is divergent with lim an =∞.

The sequence 16; 8; 4; 2; 1; 1
2 ; 1

4 ; 1
8 ; . . . where

an = 16×
(

1
2

)n−1
= 8

2n is convergent with lim an = 0.
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Geometric sequences

Theorem

If lim |an| = 0, then lim an = 0.

The sequence 16;−8; 4;−2; 1;−1
2 ; 1

4 ;−1
8 ; . . . where

an = 16×
(
−1

2

)n−1
is convergent with lim an = 0.

In general, we have

Theorem

Let {an} be a geometric sequence of ratio r .

1 If |r | > 1, then {an} is divergent.

2 If |r | ><, then {an} is convergent.

3 If r = 1, then {an} is constant and therefore convergent.

4 If r = −1, then {an = (−1)n−1a1} is divergent.
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Series

Definition

Let {an} be a sequence. The series of terms an is the ”formal”
sum

a1 + a2 + a3 + · · ·+ an + · · · .

It is denoted
∞∑
n=1

an or simply
∑

an.

Examples:

0.333333 · · · = 3
10 + 3

100 + 3
1000 + 3

10000 + · · ·+ 3
10n + · · · .

1 + 2 + 3 + 4 + · · ·+ n + · · · .
1 + (−1) + 1 + (−1) + · · ·+ (−1)n+1 + · · · .
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Partial sums

Given a sequence {an}, we consider the sequence of partial sums
defined by:

s1 = a1;
s2 = a1 + a2;
...

sn = a1 + a2 + · · ·+ an;
...

The general term of some partial sums:

1 1 + 2 + 3 + · · ·+ n = n(n+1)
2 ;

2 12 + 22 + 32 + · · ·+ n2 = n(n+1)(2n+1)
6 ;

3 13 + 23 + 33 + · · ·+ n3 =
(
n(n+1)

2

)2
;

4 1
1×2 + 1

2×3 + 1
3×4 + · · ·+ 1

(n−1)×n = 1− 1
n .
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Partial sums

For the sum sn = 1 + 2 + 3 + · · ·+ n, we have

sn = 1 + 2 + 3 + · · ·+ n
sn = n + (n − 1) + (n − 2) + · · ·+ 1

2sn = (n + 1) + (n + 1) + (n + 1) + · · ·+ (n + 1)

This gives, sn = n(n+1)
2 .

A second method: we have

(n + 1)2 = (12 − 02) + (22 − 12) + · · ·+
(
(n + 1)2 − n2

)
=

n∑
k=0

(
(k + 1)2 − k2

)
=

n∑
k=0

(2k + 1)

= 2
n∑

k=0

k +
n∑

k=0

1 = 2sn + n + 1.

Therefore, 2sn = (n + 1)2 − n − 1 = n2 + n and sn = n(n+1)
2 .
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Partial sums

For the sum sn = 12 + 22 + 32 + · · ·+ n2, we have

(n + 1)3 = (13 − 03) + (23 − 13) + · · ·+
(
(n + 1)3 − n3

)
=

n∑
k=0

(
(k + 1)3 − k3

)
=

n∑
k=0

(3k2 + 3k + 1)

= 3
n∑

k=0

k2 + 3
n∑

k=0

k +
n∑

k=0

1 = 3sn + 3n(n+1)
2 + (n + 1).

Therefore, sn = 2(n+1)3−3n(n+1)−2(n+1)
6 =

(n+1)(2(n+1)2−3n−2)
6 = n(n+1)(2n+1)

6 .

Do the same for the sum sn = 13 + 23 + 33 + · · ·+ n3 to

obtain sn = n2(n+1)2

4 .
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Partial sums

Conversely, given the sequence {sn} of partial sums, we can find
back the sequence {an} by

a1 = s1, a2 = s2 − s1, . . . , an = sn − sn−1, . . . .

Examples:

For sn = n2, we have a1 = 1 and an = n2 − (n − 1)2 = 2n − 1
for n ≥ 2.

For sn = 1
n , we have a1 = 1 and an = 1

n −
1

n−1 = − 1
n(n−1) for

n ≥ 2.

For sn = (−1)n, we have a1 = −1 and
an = (−1)n − (−1)n−1 = 2(−1)n for n ≥ 2.

For sn = ln n, we have a1 = 0 and
an = ln n − ln(n − 1) = ln n

n−1 for n ≥ 2.
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Convergent series

Definition

1 If the sequence of partial sums {sn} is convergent and
s = lim sn, we say that the series

∑
an is convergent, s is the

sum of the series and write
∞∑
n=1

an = s.

2 If the sequence of partial sums {sn} is divergent, we say that
the series

∑
an is divergent.

Examples:

0.333333 · · · =
∑ 3

10n = 1
3 is convergent.∑

n =∞ is divergent.∑
(−1)n is divergent.
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Geometric series

For the sum sn = 1 + r + r 2 + · · ·+ rn−1, we have

rsn = r + r 2 + r 3 + · · ·+ rn.

Therefore (1− r)sn = sn − rsn = 1− rn. Hence

1 + r + r 2 + · · ·+ rn−1 =

{
1−rn
1−r , if r 6= 1;

n, if r = 1.

Theorem

Let {an} be a geometric sequence of ratio r . We have

1 If |r | < 1, then the series
∑

an is convergent with sum
a1

1− r
.

2 If |r | ≥ 1, then the series
∑

an is divergent.
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The nth−term test

Theorem

If the series
∑

an is convergent, then lim an = 0.

Indeed, if s = lim sn, we have

lim an = lim(sn − sn−1) = lim sn − lim sn−1 = s − s = 0.

This means that if lim an 6= 0, then the series
∑

an is divergent.
This is called the nth−term test for a divergence of a series.
Examples: The series

∑
ln n,

∑
(−1)n,

∑ n−1
n+1 are all divergent,

directly from the nth−term test.

Remark

If lim an = 0, this is not enough to deduce that the series
∑

an
converges.

Example: lim 1
n = 0, but

∑ 1
n is divergent as we will see.
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Comparision of series

Theorem

1 If we delete the first N − 1 terms of a series
∑

an then the

series
∞∑
n=1

an and
∞∑

n=N

an are of the same nature.

2 If the series
∑

an and
∑

bn satisfy an = bn for all n ≥ N, for
some natural number N, then they are of the same nature.

Examples:

1 The series
∑

an, where an = n, for n ≤ 106, and an = 1
n(n−1) ,

for n > 106, is convergent since
∞∑

n=106+1

=
1

106
is convergent.

2 The series
∑

an and
∑

bn, where bn = an +
⌈

1000
n

⌉
are of the

same nature since an = bn for all n > 1000.
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Series of non-negative terms

Recall that for a series
∑

an, the sequence of partial sums {sn}
satisfies an = sn − sn−1 for all n ≥ 2. Therefore, the general term
an of the series is non-negative means that the sequence {sn} is
non-decreasing. Hence, all theorems for non-decreasing sequences
can be applied to series of non-negative terms.

Theorem

Let
∑

an be a series of non-negative terms. If there exists M such

that
n∑

k=1

ak ≤ M for all n ≥ 1, then the series
∑

an is convergent.

Example: Consider the series
∑ 1

n! . For all n ≥ 2, we have

n∑
k=1

1

k!
≤ 1 +

n∑
k=2

1

k(k − 1)
= 1 +

n∑
k=2

(
1

k − 1
− 1

k

)
= 2− 1

n
< 2.

We deduce that the series
∑

1/n! of positive terms is convergent.
Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus
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Comparision of series of non-negative terms

Theorem

Let
∑

an and
∑

bn be two series of non-negative terms such that
an ≤ bn for all n ≥ 1.

1 If the series
∑

bn is convergent, then the series
∑

an is
convergent.

2 If the series
∑

an is divergent, then the series
∑

bn is
divergent.

1 Let p ≥ 2. We have 0 < 1
np ≤

1
n2 <

1
n(n−1) for all n ≥ 2. But

the series of positive terms
∑ 1

n(n−1) = 1 is convergent. We

deduce that the series of positive terms
∑ 1

np is convergent.
2 Let 1 ≥ p > 0. We have 0 < 1

n ≤
1
np for all n ≥ 1. But the

series of positive terms
∑ 1

n is divergent. We deduce that the
series of positive terms

∑ 1
np is divergent.
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The harmonic series

Definition

We call the series
∑ 1

n , the harmonic series.

To prove that the harmonic series is divergent, consider the series
of general term an = 1

2k
, for 2k−1 < n ≤ 2k . That is a1 = 1;

a2 = 1
2 ; a3 = 1

4 ; a4 = 1
4 ; a5 = 1

8 ; a6 = 1
8 ; . . .. We have 1

n ≥ an for

all n ≥ 1 and then
n∑

k=1

1

k
≥

n∑
k=1

ak . On the other hand

2k∑
n=1

an = 1 + 1
2 +

1

2
+

1

2︸ ︷︷ ︸
2 ×

+
1

4
+

1

4
+

1

4
+

1

4︸ ︷︷ ︸
4 ×

+ · · ·+ 1

2k
+

1

2k
+ · · ·+ 1

2k︸ ︷︷ ︸
2k−1 ×

= 1 +
1

2
+

1

2
+ · · ·+ 1

2︸ ︷︷ ︸
k×

= 1 + k
2 . Therefore

∑
an is divergent.

We deduce that the harmonic series is divergent.Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



Infinite sequences
Infinite series
Power series

The integral test

Theorem

Let
∑

an be a series of non-negative terms for which there exists a
function f defined on [1,∞) such that an = f (n) for all n ≥ 1. If
the function f is non-increasing and continuous, then the series∑

an and the improper integral

∫ ∞
1

f (x)dx are of the same nature

(Either they are both convergent, or both divergent).

Because f is continuous and non-increasing, it is integrable on any

closed interval and we have

∫ n

n−1
f (x)dx ≤ an ≤

∫ n+1

n
f (x)dx for

all n ≥ 2. We deduce that

∫ ∞
1

f (x)dx ≤
∞∑
n=2

an ≤
∫ ∞

2
f (x)dx .

Hence, the series
∑

an of non-negative terms and the improper
integral of the non-negative function f are of the same nature.
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Application of the integral test

Theorem

For α ≥ 0, consider the series
∑ 1

nα of positive terms.

1 If α > 1, the series is convergent.

2 If 1 ≥ α ≥ 0, the series is divergent.

Examples:

1 The series
∑ 1

n2 ,
∑ 1

n3 ,
∑ 1

n
√
n

,
∑ 1

n1.1 are convergent.

2 The series
∑ 1

n ,
∑ 1√

n
,
∑ 1

3√n ,
∑ 1

n0.9 are divergent.
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Application of the integral test to the series
∑

1
nα

Proof of the theorem: Consider the function defined on [1,∞)
by f (x) = 1

xα . The function f is positive and continuous.
Moreover, because f ′(x) = − α

xα+1 < 0 for all x ≥ 1, the function f
is decreasing. We can apply the integral test.

If α 6= 1, we have
∫∞

1
1
xα dx =

[
x1−α

1−α

]∞
1

.

1 If α > 1, the improper integral
∫∞

1
1
xα dx = 1

1−α is convergent,

and therefore, the series
∑ 1

nα is convergent.

2 If 0 ≤ α < 1, the improper integral
∫∞

1
1
xα dx =∞ is

divergent, and therefore, the series
∑ 1

nα is divergent.

3 If α = 1, the improper integral
∫∞

1
1
x dx = [ln x ]∞1 =∞ is

divergent, and therefore, the harmonic series
∑ 1

n is divergent.

Exercise: Prove that the series
∑ 1

n lnα n is convergent for α > 1
and divergent for 0 ≤ α ≤ 1.
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Another example for the integral test

Exercise: Prove that the series
∑ n2

en3 is convergent.

Solution: Consider the function f defined on [1,∞) by f (x) = x2

ex3 .
The function f is positive and continuous.

Moreover, we have f ′(x) = 2xex
3−3x4ex

3

(ex3)
= x(2−3x3)

ex3 < 0 for all

x ≥ 1. Therefore, the function f is decreasing.
We can apply the integral test. We have∫ ∞

1

x2

ex3 dx =

[
−1

3
e−x

3

]∞
1

=
1

3e

is convergent.
We deduce that the series

∑ n2

en3 is convergent.
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Comparision of series of positive terms

Theorem

Let
∑

an and
∑

bn be two series of positive terms.

1 If there exist m and M and N such that for all n ≥ N,
0 < m ≤ an

bn
≤ M, then the series

∑
an and

∑
bn are of the

same nature.

2 If lim an
bn

= ` ∈ (0,∞), then the series
∑

an and
∑

bn are of
the same nature.

3 If lim an
bn

= 0 and the series
∑

bn is convergent, then the
series

∑
an is convergent.

4 If lim an
bn

=∞ and the series
∑

bn is divergent, then the series∑
an is divergent.

Compare the series
∑ n2+1

n4+1
,
∑ n5+n

n6+1
,
∑ n10+1

en+n4 with the series∑ 1
n2 ,
∑ 1

n ,
∑

e−
n
2 , respectively, to deduce their nature.
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Comparision of series of positive terms

1 The first condition means that mbn ≤ an ≤ Mbn for all n ≥ N

and then m
∞∑

n=N

bn ≤
∞∑

n=N

an ≤ M
∞∑

n=N

bn. Because
∑

an and∑
bn are of positive terms, the two series are of the same

nature.

2 The condition lim an
bn

= ` > 0 implies that there exists N such

that for all n ≥ N, `
2 ≤

an
bn
≤ 2`, and then they are of the

same nature.

3 The condition lim an
bn

= 0 implies that there exists N such that
for all n ≥ N, an

bn
≤ 1, that is an ≤ bn and the result follows.

4 The condition lim an
bn

=∞ implies that there exists N such
that for all n ≥ N, an

bn
≥ 1, that is an ≥ bn and the result

follows.
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Comparision of series of positive terms

Examples:
1 For the series

∑ n2+1
n4+1

, let an = n2+1
n4+1

and bn = 1
n2 . Both series∑

an and
∑

bn are of positive terms. Moreover, we have

lim an
bn

= lim n2(n2+1)
n4+1

= lim n4

n4 = 1. But the series
∑ 1

n2 is

convergent. We deduce that the series
∑ n2+1

n4+1
is convergent.

2 For the series
∑ n5+n

n6+1
, let an = n5+n

n6+1
and bn = 1

n . Both series∑
an and

∑
bn are of positive terms. Moreover, we have

lim an
bn

= lim n(n5+n)
n6+1

= lim n6

n6 = 1. But the series
∑ 1

n is

divergent. We deduce that the series
∑ n5+n

n6+1
is divergent.

3 For the series
∑ n10+1

en+n4 , let an = n10+1
en+n4 and bn = 1

e
n
2

. Both

series
∑

an and
∑

bn are of positive terms. Moreover, we

have lim an
bn

= lim e
n
2 (n10+1)
en+n4 = lim n10e

n
2

en = lim n10

e
n
2

= 0. But the

series
∑ 1

e
n
2

is convergent. We deduce that the series∑ n10+1
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The ratio test

Theorem (The ratio test)

Let
∑

an be a series of positive terms for which lim an+1

an
exists.

1 If lim an+1

an
< 1, then the series

∑
an is convergent.

2 If lim an+1

an
> 1, then the series

∑
an is divergent.

3 If lim an+1

an
= 1, then the test fails.

For the case lim an+1

an
= 1, consider the following examples:

1 The series
∑ 1

n is of positive terms, satisfies this condition
lim an+1

an
= lim n

n+1 = 1 and the series
∑ 1

n is divergent.

2 The series
∑ 1

n2 is of positive terms, satisfies this condition

lim an+1

an
= lim n2

(n+1)2 = 1 and the series
∑ 1

n2 is convergent.

This is to say that it is not possible to make any deduction from
lim an+1

an
= 1.
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The ratio test

For the other two cases:

1 If lim an+1

an
= l < 1, consider l < r < 1. There exists N such

that for all n ≥ N, an+1

an
≤ r . We have

an
aN

=
aN+1

aN
· aN+2

aN+1
· · · an

an−1
≤ rn−N .

Therefore, an ≤ aN
rN

rn for all n ≥ N. But the series
∑

rn is
convergent and an is positive. We deduce that

∑
an is

convergent.

2 If lim an+1

an
= l > 1, consider l > r > 1. There exists N such

that for all n ≥ N, an+1

an
≥ r . We find in the same way that

an ≥ aN
rN

rn for all n ≥ N. But the series
∑

rn is divergent. We
deduce that

∑
an is divergent.
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The ratio test

Examples: Apply the ratio test to the series
∑ n!

nn and
∑ n!2

(2n)! to
deduce their nature.

1 The series
∑ n!

nn is of positive terms. Let an = n!
nn . We have

an+1

an
=

(n + 1)!nn

n!(n + 1)n+1
=

(n + 1)nn

(n + 1)n+1
=

nn

(n + 1)n
=

1(
1 + 1

n

)n .
But we have already seen that lim

(
1 + 1

n

)n
= e. We deduce

that lim an+1

an
= 1

e < 1 and therefore, the series is convergent.

2 The series
∑ n!2

(2n)! is of positive terms. Let an = n!2

(2n)! . We
have

lim
an+1

an
= lim

(n + 1)!2(2n)!

(2n + 2)!(n!)2
= lim

(n + 1)2

(2n + 1)(2n + 2)
=

1

4
< 1.

We deduce that the series
∑ n!2

(2n)! is convergent.
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The root test

Theorem (The root test)

Let
∑

an be a series of positive terms for which lim n
√

an exists.

1 If lim n
√

an < 1, then the series
∑

an is convergent.

2 If lim n
√

an > 1, then the series
∑

an is divergent.

3 If lim n
√

an = 1, then the test fails.

1 If lim n
√

an = l < 1, consider l < r < 1. There exists N such
that for all n ≥ N, n

√
an ≤ r and then an ≤ rn. But the series∑

rn is convergent since r < 1 and an is positive. We deduce
that

∑
an is convergent.

2 If lim n
√

an = l > 1, consider l > r > 1. There exists N such
that for all n ≥ N, n

√
an ≥ r and then an ≥ rn. But the series∑

rn is divergent since r > 1. We deduce that
∑

an is
divergent.
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The root test

Examples: Apply the root test to the series
∑(

2n+1
3n+1

)n
and∑(

n
n+1

)n2

to deduce their nature.

1 The series
∑(

2n+1
3n+1

)n
is of positive terms. Let

an =
(

2n+1
3n+1

)n
. We have lim n

√
an = lim 2n+1

3n+1 = 2
3 < 1. We

deduce that the series
∑(

2n+1
3n+1

)n
is convergent.

2 The series
∑(

n
n+1

)n2

is of positive terms. Let

an =
(

n
n+1

)n2

. We have lim n
√

an = lim
(

n
n+1

)n
= 1

e < 1. We

deduce that the series
∑(

n
n+1

)n2

is convergent.
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Alternating series

Definition

An Alternating series is a series of the form
∑

(−1)nan or∑
(−1)n+1an, where {an} is a sequence of positive terms.

Examples:
∑

(−3)n,
∑(
−1

2

)n
,
∑ (−1)n

n ,
∑ (−1)n√

n
,
∑ (−1)n

n2 are all

alternating series.

Theorem

Let
∑

(−1)nan be an alternating series. If the sequence {an} is
decreasing and lim an = 0, then the series

∑
(−1)nan is convergent.

Examples: All the sequences { 1
2n }, {

1
n}, {

1√
n
}, { 1

n2 } are

decreasing and have limit 0. Therefore, the alternating series∑(
−1

2

)n
,
∑ (−1)n

n ,
∑ (−1)n√

n
,
∑ (−1)n

n2 are all convergent.
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Alternating series

Proof of the theorem: Consider the alternating series
∑

(−1)nan
and let {sn} be the sequence of its partial sums. We have
s1 = −a1, s2 = −a1 + a2, s3 = −a1 + a2 − a3, . . .. Because the
sequence {an} is decreasing, we have:

s2(n+1) − s2n = a2n+2 − a2n+1 < 0, for all n ≥ 1, which means
that the sequence {s2n} is decreasing.

s2(n+1)+1 − s2n+1 = −a2n+3 + a2n+2 > 0 for all n ≥ 0, which
means that the sequence {s2n+1} is increasing.

Now, s2 ≥ s2n = s2n+1 + a2n+1 > s2n+1 ≥ s1, for all n ≥ 1. This
means that the decreasing sequence {s2n} is bounded bellow by s1

and the increasing sequence {s2n+1} is bounded above by s2.
Therefore, both sequences {s2n} and {s2n+1} are convergent. Let
s and s ′ be their respective limits. We have
s ′ − s = lim s2n+1 − lim s2n = lim(s2n+1 − s2n) = lim−a2n+1 = 0.
This proves that s ′ = s and

∑
(−1)nan is convergent.
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Absolute convergence

In all what follow, the series
∑

an is not necessarily of positive
terms. Some of the previous tests cannot be applied:

For example, the series
∑ (−1)n√

n
is convergent as an alternating

series, while the series
∑(

(−1)n√
n

+ 1
n

)
is divergent as a sum of a

convergent and a divergent series. So, they are not of the same
nature, although

lim

(−1)n√
n

(−1)n√
n

+ 1
n

= lim
1

1 + (−1)n√
n

= 1.

This means that the condition of positivity in the comparision test
is important and cannot be dropped.
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Absolute convergence

Definition

A series
∑

an is said to be absolutely convergent if the series∑
|an| is convergent.

Examples:

The series
∑ (−1)n

n2 ,
∑ (−1)n

n3 ,
∑ (−1)n

2n are convergent and
absolutely convergent.

The series
∑ (−1)n

n ,
∑ (−1)n√

n
,
∑ (−1)n ln n

n are convergent but

not absolutely convergent.

The series
∑

(−1)n is divergent and not absolutely
convergent.

Theorem

Any absolutely convergent series is convergent.
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Absolute convergence

Definition

We say that a series is conditionally convergent if it is
convergent but not absolutely convergent.

Theorem

If
∑

an is a conditionally convergent series and l ∈ R is any real
number, then we can always rearrange the terms of the series so
that the new series

∑
aσ(n) converges to l .

Any series is of one of the following types:

It is absolutely convergent;

It is conditionally convergent;

It is divergent.
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The ratio test

If we drop the condition of positivity in the ratio test, the test still
works and it becomes:

Theorem (The ratio test)

Let
∑

an be a series of non-zero terms for which lim
∣∣∣an+1

an

∣∣∣ exists.

1 If lim
∣∣∣an+1

an

∣∣∣ < 1, then the series
∑

an is absolutely convergent.

2 If lim
∣∣∣an+1

an

∣∣∣ > 1, then the series
∑

an is divergent.

3 If lim
∣∣∣an+1

an

∣∣∣ = 1, then the test fails.

The second case comes from the fact that in the proof of the
theorem, there exists r > 1 and N ≥ 1 such that for all n ≥ N, we
have |an| ≥ Crn, where C > 0. But lim rn =∞. Therefore,
lim |an| =∞. Hence lim an 6= 0 and the series

∑
an is divergent.
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The root test

In a similar way, if we drop the condition of positivity in the root
test, the test still works and it becomes:

Theorem (The root test)

Let
∑

an be a series for which lim n
√
|an| exists.

1 If lim n
√
|an| < 1, then the series

∑
an is absolutely

convergent.

2 If lim n
√
|an| > 1, then the series

∑
an is divergent.

3 If lim n
√
|an| = 1, then the test fails.

The argument for the second case is similar to the one for the ratio
test.
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Exercises

Exercises: For each of the following series, say if it is absolutely
convergent, conditionally convergent or divergent.

(i)
∑ (−1)n

ln(n + 1)
, (ii)

∑ cos 2nπ
3

n
, (iii)

∑ (−n)n

n!
,

(iv)
∑

(−1)n
(

ln n

n

)ln n

, (v)
∑ tan−1 n

n2 + n + 1
,

(vi)
∑

(−1)n sin
20π

n
.
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Definition

A power series (centred at 0/in x) is a series of the form

∞∑
n=0

anxn = a0 + a1x + a2x2 + a3x3 + · · ·

depending on the real variable x .

Examples of power series:

1

∞∑
n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · ·

2

∞∑
n=1

x

n
= x +

x2

2
+

x3

3
+

x4

4
+ · · ·

3

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + · · ·
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Problem: For which values of x , the power series is convergent?
The set of such values is called the domain of convergence of
the series. Notice that all power series are convergent at x = 0.
Examples:

1 The power series
∞∑
n=0

xn is a geometric series. It is absolutely

convergent when |x | < 1 and divergent when |x | ≥ 1. Its
domain of convergence is (−1, 1).

2 For the power series
∞∑
n=0

xn

n!
, the ratio test gives:

lim

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ = lim

∣∣∣∣ x

n + 1

∣∣∣∣ = 0. The series is absolutely

convergent for all x ∈ R. Its domain of convergence is R.

Chapter 1: Sequences and Series Math 203 - Differential and Integral Calculus



Infinite sequences
Infinite series
Power series

1 For the power series
∞∑
n=0

n!xn, the ratio test gives:

lim

∣∣∣∣(n + 1)!xn+1

n!xn

∣∣∣∣ = lim |(n + 1)x | = 0, for x 6= 0.

The domain of convergence of the series is {0}.

2 For the power series
∞∑
n=1

xn

n
, the ratio test gives

lim

∣∣∣∣∣ x
n+1

n+1
xn

n

∣∣∣∣∣ = lim

∣∣∣∣ n

n + 1
x

∣∣∣∣ = |x |. The series is absolutely

convergent for |x | < 1 and divergent for |x | > 1.

For x = 1, it is the harmonic series
∞∑
n=1

1

n
which is divergent.

For x = −1, it is the convergent alternating series
∞∑
n=1

(−1)n

n
.

The domain of convergence of the series is [−1, 1).
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Radius of convergence

Theorem

If a power series is convergent at x0 6= 0, then it is absolutely
convergent at all |x | < |x0|.

This theorem means that the domain of convergence of any power
series is an interval centred at 0. It can be open (−r , r), closed
[−r , r ] or half open (−r , r ] or [−r , r), for some r ∈ [0,∞) ∪ {∞},
called the radius of convergence of the series.
Examples:

1 The power series
∑

xn,
∑

nxn,
∑ xn

n have radius of
convergence r = 1.

2 The power series
∑ xn

n! has radius of convergence r =∞.

3 The power series
∑

n!xn has radius of convergence r = 0.
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Radius of convergence

Proof of the theorem:

Assume the power series
∞∑
n=0

anxn convergent at x0 6= 0 and let

|x | < |x0|.
We have lim anxn

0 = 0. Therefore, there exists N such that, for all
n ≥ N, |anxn

0 | ≤ 1.

Hence, for all n ≥ N, we have |anxn| = |anxn
0 | ·
∣∣∣ xx0

∣∣∣n ≤ ∣∣∣ xx0

∣∣∣n .
But, the geometric series

∑∣∣∣ xx0

∣∣∣n is convergent since
∣∣∣ xx0

∣∣∣ < 1.

We deduce that the series
∑

anxn is absolutely convergent.
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