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Q7.1:

The number of deaths from leukemia and other cancers among survivors of the Hiroshima
atom bomb are shown in Table 7.12, classified by the radiation dose received. The data refer
to deaths during the period 1950-1959 among survivors who were aged 25 to 64 years in 1950
(from dataset 13 of Cox and Snell 1981, attributed to Otake 1979).

Table 7.12: y = Number of Deaths from leukemia and other cancers classified by radiation
dose received from the Hiroshima atomic bomb.

Radiation dose (rads)

Deaths 0 1-9 1049 50-99 100-199 200+
Leukemia 18 5 5 3 4 18
Other cancers 378 200 151 47 31 33
Total cancers 391 205 156 50 35 51

(a) Obtain a suitable model to describe the dose-response relationship between radiation
and the proportional cancer mortality rates for leukemia.

(b) Examine how well the model describes the data.

(c) Interpret the results.

Let:

n; = Total cancers

y; = Number of deaths from leukemia

n; — y; = Number of deaths from other cancers

x; = radiation dose (lower limit of radiation dose interval)i = 1,2,... ,N
N = 6 (Number of dif ferent values of radiation dose x;)

pi = % Proportion of deaths from leukemi
i

#Deaths by Leukemia

y<-¢(13,5,5,3,4,18)

#n=Total number of deaths by cancers
n<-c(391,205,156,50,35,51)

#Deaths by other cancers

n_y<- n-y

#P=Proportion of deaths from Leukemia

p=y/n

#x=radiation dose(lower Limit of radiation dose interval)
x<-c(0,1,10,50,100,200)
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Data on the table (df):

#but the data in table :
df<- data.frame(x,y,n_y,n,p)

df
#it X yny n p
## 1 0 13 378 391 0.03324808
## 2 1 5 200 205 0.02439024
## 3 10 5 151 156 0.03205128
## 4 50 3 47 50 0.06000000
## 5 100 4 31 35 0.11428571
## 6 200 18 33 51 0.35294118
_JYi
X Yi n; =y n; Pi ="
L
0 13 378 391 0.03324808
1 5 200 205 0.02439024
10 5 151 156 0.03205128
50 3 47 50 0.06
100 4 31 35 0.11428571
200 18 33 33 0.35294118
graph between x; and p; :
#plot x=radiation dose vs p=Proportion of deaths from leukemia :
plot(x,p , xlab = "radiation dose" , ylab = "Proportion of deaths from leukemia")
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Non-linear relationship:

The relationship between the two variables is not a simple linear one (i.e., it cannot be
represented by a straight line). Increasing mortality rate with increasing value X : Generally, as the
value of the independent variable (X) increases, the percentage of deaths due to leukemia (P) also
increases. This indicates a positive correlation between the two variables.

Because the study represents the probability of a binary outcome (in this case, whether a person
dies of leukemia or other cancer) based on one explanatory variable (X), The suggested modelis
the logistic regression model given by :

U .
ln( >=ﬁ1+ﬁzxi ,l=1,2,....N

1-— TT;
yi~Bin(n;, ;)
model<-glm(p~x ,family = binomial("logit"),weights = n)
summary (model)
#it
## Call:

## glm(formula = p ~ x, family = binomial("logit"), weights = n)
##
## Coefficients:

## Estimate Std. Error z value PR(>|Z])

## (Intercept) -3.488973 0.204062 -17.098 < 2e-16 ***
## x 0.014410 0.001817 7.932 2.15e=15 ***
H# ---

## Signif. codes: © '***' 9,001 '**' @.01 '*' ©0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
H##

H## Null deviance: 54.35089 on 5 degrees of freedom
H##

## AIC: 26.097

##

## Number of Fisher Scoring iterations: 4

The final estimate of is: b; = —3.488973 and b, = 0.014410

Model = 1n( "L) = by + byx; 1n( il ) = —3.489 + 0.01441x;

1-m; 1-m;

The Standard errorof bis : s.e(byy = 0.204062 and s.e(b,) = 0.001817

by +Z,_a*S.E(by) » —3.488973 + 1.96  0.204062 > (—3.889, —3.089)
2

b, +Z,_a*S.E(by) > 0.014410 + 1.96  0.001817 > (0.01085,0.01797)
2
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Deviance:
Dy =5435089 df=N—-q=6—-1=5
D, =043206 df =N—-p=6—-2=4

A (1 — a)100% confidence interval for #, and 8, :

confint.default(model ,level = 0.95)

#it 2.5 % 97.5 %
## (Intercept) -3.88892808 -3.08901798
## X 0.01084967 0.01797081

The variance-covariance matrix of b is:

var(b;) cov(bq, by)

Tl = Cov(ﬁ) = cov(b) = [cov(bl, b,)  var(by)

vcov(model)

it (Intercept) X
## (Intercept) ©0.041641483 -2.35714e-04
## x -0.000235714 3.30022e-06

The information matrixis:

Var(Ul) COV(Ul, Uz)

T = CO‘U(U) = [COV(U1. UZ) VaI'(Uz)

Tau<-solve(vcov(model))

Tau

it (Intercept) X
## (Intercept) 40.31297  2879.303
#H x 2879.30263 508660.621

Odds Ratio (OR):

OR = ef2 = 2014410 = 1 0145
exp(model$coefficients[2])

## X
## 1.014515
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95% C.l of OR:

e 2 <OR<e 2

80'01085 < OR < 80'01797
1.0109 < OR < 1.01813
exp(confint.default(model))

## 2.5 % 97.5 %
## (Intercept) 0.02046727 ©.04554666
## x 1.01090874 1.01813326

The estimate values of the probabilities ( 7t; ) ):

eb1+b2Xi e—3.4-89+0.014-41xi

T[- p—tl p—tl
E7 1 4 ebi+hex; | 4 ¢—3489+0.01441x;

#The estimates of probabilities (pi_hat) :
pi_hat<- fitted.values(model)
pi_hat

## 1 2 3 4 5 6
## 0.02962762 0.03004473 0.03406353 0.05905247 0.11425978 0.35276092

The fitted values of (y; ) are:
Yi=n;* ;

#Since E(Yi)=ni*pi, the fitted value of Yi (yhat):
yhat<- n*pi_hat
yhat

## 1 2 3 4 5 6
## 11.584398 6.159169 5.313911 2.952623 3.999092 17.990807

Goodness of fit Tests:

Hypothesis:
Hy: Model fit data well vs H;:Model dose not fit data well
Test statistics:

By Deviance statistic : D=0.4321 and By Pearson Chi-squared statistics : X? = 0.43
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Critical Value:
The critical value is Xz (v—p) = X.0s,(6-2) = Xo.05,4) = 9-48773

Decision:

SinceD = 0.4321 < Xczz,(N—p) , we conclude that the model fits the data well.
Since X? = 042 < )(gl,(N_p) , we conclude that the model fits the data well.

#Test statistics (Deviance)
D<- deviance(model)
D

## [1] 0.4320565

#df=N-p , p=# of parameters =2
df_D=6-2
df D

## [1] 4

#Critacl Value:
chi_table<- qchisq(1-0.05,df D)
chi_table

## [1] 9.487729

#Decision:
if(D>chi_table)
{print("Reject HO")
}else{
print("Do not Reject HO ")

}
## [1] "Do not Reject Ho "

or we can find Test statistics (Deviance) by using Deviance residual

#The Deviance Residuals:
Deviance_Residuals<-residuals(model, type = "deviance")
Deviance_Residuals

## 1 2 3 4
## 0.4142808205 -0.4899417477 -0.1399058934 0.0283527664
## 6
## 0.0026939960

5
0.0004823665
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#itest statistic (Deviance):
D_by Residual<- sum(Deviance_ Residuals~”2)
D_by Residual

## [1] ©.4320565
We conclude that the model is adequate for fitting the data based on the deviance
2- Pearson Chi-squared Statistic:

#The Pearson (Chi-Squared) Residuals:
Pearson_Residuals<- residuals(model, type = "pearson")
Pearson_Residuals

## 1 2 3 4 5
## 0.4222166621 -0.4742527478 -0.1385560523 0.0284235278 0.0004823824
## 6
## 0.0026941004

#itest statistic (Pearson Chi-Squar):
chi_square<- sum(Pearson_Residuals”2)
#Critacl Value: df=N-p

chi_table<- qchisq(1-0.05,4)

We conclude that the model is adequate for fitting the data based on the Pearson Chi-squared
statistics.

pseudo R?:

R_sq<- (model$null.deviance-model$deviance)/(model$null.deviance) ) *100
R_sq

## [1] 99.20506

2 Dy 2
Re=1- D_ = 0.99205 >»>> R* = 99.20%
0

The value (pseudo R? = 0.99) indicates that the model of interest provides good fit for the data

*R-Squared, ranges from 0 to 1, with higher values indicating a better model fit.
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The following table contains some calculations:

dfl<-data.frame(x,n,y,p,pi_hat,yhat ,Deviance_Residuals ,Pearson_Residuals)

dfl
## X ny p pi_hat yhat Deviance_Residuals
## 1 © 391 13 0.03324808 0.02962762 11.584398 0.4142808205
## 2 1 205 5 0.02439024 0.03004473 6.159169 -0.4899417477
## 3 10 156 5 0.03205128 0.03406353 5.313911 -0.1399058934
## 4 50 50 3 0.06000000 0.05905247 2.952623 0.0283527664
## 5 100 35 4 0.11428571 0.11425978 3.999092 0.0004823665
## 6 200 51 18 0.35294118 0.35276092 17.990807 0.0026939960
##  Pearson_Residuals
## 1 0.4222166621
## 2 -0.4742527478
## 3 -0.1385560523
## 4 0.0284235278
## 5 0.0004823824
## 6 0.0026941004
Xp | oy Yi |p = Yi ; €pi epi Vi
n; Deviance Residual | Pearson Residual
0 391 13 | 0.0332 | 0.029628 0.4143 0.4222 11.584
1 205 5 0.0244 | 0.030045 -0.4899 -0.4743 6.159
10 | 156 5 0.0321 | 0.034064 -0.1399 -0.1386 5.314
50 50 3 0.0600 | 0.059052 0.0284 0.0284 2.953
100 | 35 4 0.1143 | 0.114260 0.0005 0.0005 3.999
200 | 51 18 | 0.3529 | 0.352761 0.0027 0.0027 17.991
m ™m
. _ 2 _ 2 .
Sum z n; Zyl D = ZR=1E’Dk X2 = zk=1epk Z j}l
-ggg | =48 =(0.432057 =(.423196 =48

Graphs: Visualization of the fitted curve:

Plot x with p; and p,:

The following figures show:

(1) The observed proportions (pizﬁ) plotted against the radiation dose (x;).

ng

(2) The expected proportions (estimates of the probabilities) (17i) plotted against the radiation

dose (x;).

# Visualization of the fitted curve
#install.packages("ggplot2")
library(ggplot2)
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## Warning: package 'ggplot2' was built under R version 4.4.2

ggplot(df, aes(x = x, y = p)) +

geom_point(size = 2) +

stat_smooth(method = "glm", method.args = list(family = binomial(link = "logit"))
, se = FALSE, color = "blue") +

labs(title = "Dose-Response Relationship for Leukemia",
x = "Radiation Dose",
y = "Proportional Mortality Rate")

## ~geom_smooth()  using formula = 'y ~ x'

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

Dose-Response Relationship for Leukemia

Proportional Mortality Rate

0 50 100 150 200
Radiation Dose

Black dots represent the observed proportions of leukaemia deaths in each radiation dose
category.
The blue line represents the fitted curve estimated using a logistic regression model.
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ggplot(data=df, aes(x = x)) +
geom_point(aes(y = p), color="blue",shape=16) +
geom_point(aes(y = pi_hat), color = "red",shape=15) +
labs(x = "Radiation Dose",y = "Proportion of Deaths from Leukemia")

= =
P2 (o5
1 1

Proportion of Deaths from Leukemia

50 100 150 200
Radiation Dose

= -

Plot x withy; and y, :

The following figures show:

(1) The observed response (y;) plotted against the radiation dose (x;).
(2) The observed response (¥,) plotted against the radiation dose (x;).

#The observed response (yi) plotted against (x1).
#The fitted response (yhat) plotted against (xi).
plot(x,y,type="1",col="red")
lines(x,yhat,col="green")

Kholoud Basalim Stat335 - Chapter 7: Binary Variables and Logistic Regression



15

0 50 100 150 200

OR by code:

#or

ggplot(data=df, aes(x = x)) +
geom_line(aes(y = y), color="red") +
geom_line(aes(y = pi_hat*n), color = "green") +
labs(x = "Radiation Dose",y = "Number of Deaths ")
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