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Chapter 7 :Q1 
Kholoud Basalim 

2024-11-23 

Q7.1: 
 The number of deaths from leukemia and other cancers among survivors of the Hiroshima 
atom bomb are shown in Table 7.12, classified by the radiation dose received. The data refer 
to deaths during the period 1950–1959 among survivors who were aged 25 to 64 years in 1950  
(from dataset 13 of Cox and Snell 1981, attributed to Otake 1979).  

 
(a) Obtain a suitable model to describe the dose–response relationship between radiation 
and the proportional cancer mortality rates for leukemia.  
(b) Examine how well the model describes the data.  
(c) Interpret the results. 
 
Let: 
𝑛𝑖  =  𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑛𝑐𝑒𝑟𝑠 
𝑦𝑖  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑙𝑒𝑢𝑘𝑒𝑚𝑖𝑎 
𝑛𝑖  −  𝑦𝑖  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑛𝑐𝑒𝑟𝑠 
𝑥𝑖  =  𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 (𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 𝑖 =  1,2, … , 𝑁 
𝑁 =  6  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 𝑥𝑖) 

𝑝𝑖 =
𝑦𝑖
𝑛𝑖
 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑙𝑒𝑢𝑘𝑒𝑚𝑖 

#Deaths by Leukemia 
y<-c(13,5,5,3,4,18) 
#n=Total number of deaths by cancers 
n<-c(391,205,156,50,35,51) 
#Deaths by other cancers 
n_y<- n-y 
#P=Proportion of deaths from leukemia 
p=y/n 
#x=radiation dose(lower limit of radiation dose interval) 
x<-c(0,1,10,50,100,200) 
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Data on the table (df):  

#but the data in table : 
df<- data.frame(x,y,n_y,n,p) 
df 

##     x  y n_y   n          p 
## 1   0 13 378 391 0.03324808 
## 2   1  5 200 205 0.02439024 
## 3  10  5 151 156 0.03205128 
## 4  50  3  47  50 0.06000000 
## 5 100  4  31  35 0.11428571 
## 6 200 18  33  51 0.35294118 

𝑥𝑖  𝑦𝑖 𝑛𝑖 − 𝑦𝑖 𝑛𝑖  𝑝𝑖 =
𝑦𝑖
𝑛𝑖

 

0 13 378 391 0.03324808 
1 5 200 205 0.02439024 

10 5 151 156 0.03205128 
50 3 47 50 0.06 

100 4 31 35 0.11428571 
200 18 33 33 0.35294118 

 

graph between  𝒙𝒊 and 𝒑𝒊 : 

#plot x=radiation dose vs p=Proportion of deaths from leukemia :  
plot(x,p , xlab = "radiation dose" , ylab = "Proportion of deaths from leukemia") 
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Non-linear relationship: 

 The relationship between the two variables is not a simple linear one (i.e., it cannot be 
represented by a straight line). Increasing mortality rate with increasing value X : Generally, as the 
value of the independent variable (X) increases, the percentage of deaths due to leukemia (P) also 
increases. This indicates a positive correlation between the two variables. 

Because the study represents the probability of a binary outcome (in this case, whether a person 
dies of leukemia or other cancer) based on one explanatory variable (X),  The suggested model is 
the logistic regression model given by :  

{
ln (

𝜋𝑖
1 − 𝜋𝑖

) = 𝛽1 + 𝛽2𝑥𝑖      , 𝑖 = 1,2, … .𝑁

𝑦𝑖~𝐵𝑖𝑛(𝑛𝑖, 𝜋𝑖)
 

model<-glm(p~x ,family = binomial("logit"),weights = n) 
summary(model) 

##  
## Call: 
## glm(formula = p ~ x, family = binomial("logit"), weights = n) 
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -3.488973   0.204062 -17.098  < 2e-16 *** 
## x            0.014410   0.001817   7.932 2.15e-15 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 54.35089  on 5  degrees of freedom 
## Residual deviance:  0.43206  on 4  degrees of freedom 
## AIC: 26.097 
##  
## Number of Fisher Scoring iterations: 4 

The final estimate of 𝜷 is :   𝑏1 = −3.488973  𝑎𝑛𝑑   𝑏2 = 0.014410     

Model = ln ( 𝜋𝑖

1−𝜋𝑖
) = 𝑏1 + 𝑏2𝑥𝑖   ≫≫≫≫> ln (

𝜋𝑖

1−𝜋𝑖
) = −3.489 + 0.01441𝑥𝑖 

The Standard error of 𝒃 is  :   𝑠. 𝑒(𝑏1) = 0.204062  𝑎𝑛𝑑  𝑠. 𝑒( 𝑏2) = 0.001817       

 
𝒃𝟏 ± 𝒁

𝟏−
𝜶
𝟐
∗ 𝑺. 𝑬(𝒃𝟏) ≫  −3.488973 ± 1.96 ∗ 0.204062 ≫ (−3.889 , −3.089) 

𝒃𝟐 ± 𝒁
𝟏−

𝜶
𝟐
∗ 𝑺. 𝑬(𝒃𝟐) ≫ 0.014410 ± 1.96 ∗ 0.001817 ≫ (0.01085 , 0.01797) 
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𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆: 

 𝐷0 = 54.35089    𝑑𝑓 = 𝑁 − 𝑞 = 6 − 1 = 5      

 𝐷1 = 0.43206    𝑑𝑓 = 𝑁 − 𝑝 = 6 − 2 = 4  

 

A (𝟏 − 𝜶)𝟏𝟎𝟎% confidence interval for 𝜷𝟏 and 𝜷𝟐 ∶ 

confint.default(model ,level = 0.95) 

##                   2.5 %      97.5 % 
## (Intercept) -3.88892808 -3.08901798 
## x            0.01084967  0.01797081 

The variance-covariance matrix of 𝒃 is: 

𝝉−𝟏 = 𝒄𝒐𝒗(𝜷̂) = 𝒄𝒐𝒗(𝒃) = [
𝐯𝐚𝐫(𝐛𝟏) 𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐)

𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐) 𝐯𝐚𝐫(𝐛𝟐)
] 

 

vcov(model) 

##              (Intercept)            x 
## (Intercept)  0.041641483 -2.35714e-04 
## x           -0.000235714  3.30022e-06 

The  information matrix is: 

𝝉 = 𝒄𝒐𝒗(𝑼) = [
𝐯𝐚𝐫(𝐔𝟏) 𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐)

𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐) 𝐯𝐚𝐫(𝐔𝟐)
] 

 

Tau<-solve(vcov(model)) 
Tau 

##             (Intercept)          x 
## (Intercept)    40.31297   2879.303 
## x            2879.30263 508660.621 

Odds Ratio (OR): 

𝑶𝑹 = 𝒆𝜷𝟐 = 𝒆0.014410 = 𝟏. 𝟎𝟏𝟒𝟓 

exp(model$coefficients[2]) 

##        x  
## 1.014515 
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95% C.I of OR: 

𝑒
𝐛𝟐−𝐙𝟏−𝛂

𝟐
∗𝐒.𝐄(𝐛𝟐)

< 𝑂𝑅 < 𝑒
𝐛𝟐+𝐙𝟏−𝛂

𝟐
∗𝐒.𝐄(𝐛𝟐)

 

𝑒0.01085 < 𝑂𝑅 < 𝑒0.01797 

1.0109 < 𝑂𝑅 < 1.01813 

exp(confint.default(model)) 

##                  2.5 %     97.5 % 
## (Intercept) 0.02046727 0.04554666 
## x           1.01090874 1.01813326 

 

The estimate values of the probabilities ( 𝝅̂𝒊 ) ): 

𝜋̂𝑖 =
𝑒𝑏1+𝑏2𝑥𝑖

1 + 𝑒𝑏1+𝑏2𝑥𝑖
=

𝑒−3.489+0.01441𝑥𝑖

1 + 𝑒−3.489+0.01441𝑥𝑖
 

 

#The estimates of probabilities (pi_hat) :  
pi_hat<- fitted.values(model)  
pi_hat  

##          1          2          3          4          5          6  
## 0.02962762 0.03004473 0.03406353 0.05905247 0.11425978 0.35276092 

The fitted values of (𝒚𝒊 ) are: 

𝒚𝒊 = 𝒏𝒊 ∗  𝝅̂𝒊 

#Since E(Yi)=ni*pi, the fitted value of Yi (yhat):  
yhat<- n*pi_hat  
yhat  

##         1         2         3         4         5         6  
## 11.584398  6.159169  5.313911  2.952623  3.999092 17.990807 

Goodness of fit Tests:  

Hypothesis:  

𝐻0:𝑀𝑜𝑑𝑒𝑙 𝑓𝑖𝑡 𝑑𝑎𝑡𝑎 𝑤𝑒𝑙𝑙    𝑣𝑠     𝐻1:𝑀𝑜𝑑𝑒𝑙 𝑑𝑜𝑠𝑒 𝑛𝑜𝑡 𝑓𝑖𝑡 𝑑𝑎𝑡𝑎 𝑤𝑒𝑙𝑙  

Test statistics: 

By Deviance statistic : D=0.4321         and      By Pearson Chi-squared statistics : 𝑋2 = 0.43 
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Critical Value:  

The critical value is 𝜒𝛼,(𝑁−𝑝)
2 = 𝜒0.05,(6−2)

2 = 𝜒0.05,(4)
2 = 9.48773 

Decision:  

Since 𝐷 =  0.4321 < 𝜒𝛼,(𝑁−𝑝)
2  , we conclude that the model fits the data well. 

Since 𝑋2  =  0.42 < 𝜒𝛼,(𝑁−𝑝)
2  , we conclude that the model fits the data well. 

 

1- Deviance (D): 

#Test statistics (Deviance) 
D<- deviance(model) 
D 

## [1] 0.4320565 

#df=N-p , p=# of parameters =2 
df_D=6-2 
df_D 

## [1] 4 

#Critacl Value:  
chi_table<- qchisq(1-0.05,df_D) 
chi_table 

## [1] 9.487729 

#Decision: 
if(D>chi_table)  
{print("Reject H0") 
}else{ 
  print("Do not Reject H0 ") 
} 

## [1] "Do not Reject H0 " 

or we can find Test statistics (Deviance) by using Deviance residual 

#The Deviance Residuals: 
Deviance_Residuals<-residuals(model, type = "deviance")  
Deviance_Residuals 

##             1             2             3             4             5  
##  0.4142808205 -0.4899417477 -0.1399058934  0.0283527664  0.0004823665  
##             6  
##  0.0026939960 
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#test statistic (Deviance): 
D_by_Residual<- sum(Deviance_Residuals^2) 
D_by_Residual 

## [1] 0.4320565 

We conclude that the model is adequate for fitting the data based on the deviance  

2- Pearson Chi-squared Statistic: 

#The Pearson (Chi-Squared) Residuals: 
Pearson_Residuals<- residuals(model, type = "pearson") 
Pearson_Residuals 

##             1             2             3             4             5  
##  0.4222166621 -0.4742527478 -0.1385560523  0.0284235278  0.0004823824  
##             6  
##  0.0026941004 

#test statistic (Pearson Chi−Squar): 
chi_square<- sum(Pearson_Residuals^2) 
#Critacl Value: df=N-p 
chi_table<- qchisq(1-0.05,4) 

We conclude that the model is adequate for fitting the data based on the Pearson Chi-squared 
statistics. 

pseudo 𝑹𝟐: 

R_sq<- (model$null.deviance-model$deviance)/(model$null.deviance) ) *100 
R_sq 

## [1] 99.20506 

R2 = 1 − 
𝐷1
𝐷0

= 0.99205     ≫≫ R2 =  99.20%   

The value (𝑝𝑠𝑒𝑢𝑑𝑜 𝑅2 = 0.99) indicates that the model of interest provides good fit for the data 

*R-Squared, ranges from 0 to 1, with higher values indicating a better model fit. 
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The following table contains some calculations: 

df1<-data.frame(x,n,y,p,pi_hat,yhat ,Deviance_Residuals ,Pearson_Residuals) 
df1 

##     x   n  y          p     pi_hat      yhat Deviance_Residuals 
## 1   0 391 13 0.03324808 0.02962762 11.584398       0.4142808205 
## 2   1 205  5 0.02439024 0.03004473  6.159169      -0.4899417477 
## 3  10 156  5 0.03205128 0.03406353  5.313911      -0.1399058934 
## 4  50  50  3 0.06000000 0.05905247  2.952623       0.0283527664 
## 5 100  35  4 0.11428571 0.11425978  3.999092       0.0004823665 
## 6 200  51 18 0.35294118 0.35276092 17.990807       0.0026939960 
##   Pearson_Residuals 
## 1      0.4222166621 
## 2     -0.4742527478 
## 3     -0.1385560523 
## 4      0.0284235278 
## 5      0.0004823824 
## 6      0.0026941004 

 

 

Graphs: Visualization of the fitted curve: 

Plot  𝒙 with  𝒑𝒊 and 𝒑𝒊̂ :  

The following figures show: 

(1) The observed proportions (𝑝
𝑖=

𝑦𝑖
𝑛𝑖

) plotted against the radiation dose (𝑥𝑖). 

(2) The expected proportions (estimates of the probabilities) (𝜋 𝑖) plotted against the radiation 
dose (𝑥𝑖). 

# Visualization of the fitted curve 
#install.packages("ggplot2") 
library(ggplot2) 
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## Warning: package 'ggplot2' was built under R version 4.4.2 

ggplot(df, aes(x = x, y = p)) + 
  geom_point(size = 2) + 
  stat_smooth(method = "glm", method.args = list(family = binomial(link = "logit"))
, se = FALSE, color = "blue") + 
  labs(title = "Dose-Response Relationship for Leukemia", 
       x = "Radiation Dose", 
       y = "Proportional Mortality Rate")  

## `geom_smooth()` using formula = 'y ~ x' 

## Warning in eval(family$initialize): non-integer #successes in a binomial glm! 

 

Black dots represent the observed proportions of leukaemia deaths in each radiation dose 
category. 
The blue line represents the fitted curve estimated using a logistic regression model. 
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ggplot(data=df, aes(x = x)) + 
     geom_point(aes(y = p), color="blue",shape=16) + 
     geom_point(aes(y = pi_hat), color = "red",shape=15) + 
     labs(x = "Radiation Dose",y = "Proportion of Deaths from Leukemia") 

 

Plot 𝒙 with 𝒚𝒊 and 𝒚𝒊̂ :  

The following figures show: 

(1) The observed response (𝑦𝑖) plotted against the radiation dose (𝑥𝑖). 

(2) The observed response (𝑦𝑖̂) plotted against the radiation dose (𝑥𝑖). 

#The observed response (yi) plotted against (xi). 
#The fitted response (yhat) plotted against (xi). 
plot(x,y,type="l",col="red") 
lines(x,yhat,col="green") 
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OR by code: 

#or  
ggplot(data=df, aes(x = x)) + 
     geom_line(aes(y = y), color="red") + 
     geom_line(aes(y = pi_hat*n), color = "green") + 
     labs(x = "Radiation Dose",y = "Number of Deaths ") 

   


