chapter 4 : ESTIMATION

Kholoud Basalim
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Q4.2 page70:

# yi:times to death .
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#x1:Lloglo(inital white blood cell count).
xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

## [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
## [16] 4.72 5.00

Plot y; against x; . Do the data show any trend?

# Plot the times to death yi against Logl@(inital white blood cell count) xi.
plot(xi,yi,main = "Scatterplot", xlab = "xi:logl@(inital white blood cell count)",
ylab = "Yi:times to death")
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xiZlog10(inital white blood cell count)

A possible specification for E(Y ) is

E(Y;) = exp(B1 + B2x)),



which will ensure that E(Y ) is non-negative for all values of the parameters and all values of x.
Which link function is appropriate in this case?

Y;~exp (6;)

Mean ofY;:
EY) =
Variance ofY;: (Mean)”2 =Variance
Var(Y;) = o2
u; = ePrtBaxi

log u; = B1 + B2x;

logpi =m;
o ni =ni(x;) = By + B2 x;

Link Function:

g(u;) =log

#Plot Log yi against log(i) to examine this model.
plot(xi,log(yi), main = "Scatterplot"”, xlab = "xi", ylab = "log yi")
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d) Fit a model with the equation for E(Y;) given in (b) and the Exponential distribution using
appropriate statistical software.

We will use the iterative formula which is :



pm+l = pm 4 [T(bm)](—l) U™ ,m=0,1,2....
(0)

b
We will start with an initial value b(® = [ %0)] — [11]
b, -2

# Initial values bo:
beta<-c(11,-2)
beta

## [1] 11 -2

Design matrix (X):

#Design matrix (X) :
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)

X

##
##
##
##
##
##
##
##
##
##
##
H##
##
##
H##
##
##
##

[1,]
[2,]
[3,]
[4,]
[5,]
[6, ]
[7,]
[8,]
[9,]
[1e,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]

[,1] [,2]
.36
.88
.63
.41
.78
.02
.00
.23
.73
.85
.97
.51
.54
.00
.00
.72
.00
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Transpose of design matrix (X7):

#Transpose of design matrix :

Xt<-t(X)

Xt

##
##
##
##
##
##

. . . . 1 opu 2 .
The matrix of working weights W = diag [— (—) ] is:

var(y;)

1
5

[,1] [,2] [,3] [,4] [,51 [,6] [,7] [,8] [,9] [,1e] [,11] [,12] [,13] [,14]
1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00
3.36 2.88 3.63 3.41 3.78 4.02 4 4.23 3.73 3.85 3.97 4.51 4.54
[,15] [,16] [,17]
1 1.00 1
5 4.72 5



#The matrix of working weights (W) 1is :
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17)
W

## [,1] [,2] [,31 [,41 [,51 [.61 [,71 [,81 [,91 [,1e] [,11] [,12] [,13]
# [1,] 1 © © © © © o o o ) 0 0

# [2,]
## [3,]
#  [4,]
##  [5,]
## [6,]
# [7,]
## [8,]
# [9,]
## [10, ]
## [11,]
## [12,]
## [13,]
## [14, ]
## [15,]
## [16, ]
## [17,]
##

## [1,]
# [2,]
##  [3,]
##  [4,]
#  [5,]
## [6,]
## [7,]
# [8,]
# [9,]
## [10, ]
## [11,]
## [12,]
## [13,]
## [14, ]
## [15,]
## [16, ]
## [17, ]
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The information matrixt = X!« W x X is:

##Information matrix, Tau= Xt*W*X (Multiply the matrices):
tau<- Xt%*%Ws*%X
tau

#it [,1] [,2]
## [1,] 17.00 69.6300
## [2,] 69.63 291.4571

The score statistics are: (U1 and U2):



#The score statistics are: (Ul and U2
Ul<-sum(-1+(yi/exp(beta[1]+beta[2]*xi)))
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi)))

The vector of scores U = [

U<-matrix(c(Ui,uU2))

U

##
## [1,]

We make the following Calculation:

bm+1 = b™ 4+ [T(bm)]_l U(bm)

#We make the following Calculation:

[,1]

43.14648
## [2,] 195.23871

b<-beta+solve(tau)%*%U

b

##

[,1]

## [1,] 1.4248231
## [2,] 0.9574105

U,

Repeat the steps but change the initial value to the last value of beta you obtained. Stop the

iteration process if you get the same value of beta in two successive steps.

The following table summarizes the results of the iterative procedure:

m 0 1 4 5 6 8 9
bi* 11 1.4245 8.4775 8.4775
b7 -2 0.9575 -1.1093 -1.1093

Since b® = p® = [

8.4775

—1.1093

The final approximation of MLE of f = [gl] is b=
2

by
b,

-

8.4775
—1.1093

], the iteration algorithm was terminated at step (8) .




OR By using Loop

# yi:times to death .
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#x1:loglo(inital white blood cell count).
xi<-c¢(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

## [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
## [16] 4.72 5.00

# Initial values
beta <- matrix(c(11, -2))
epsilon <- 1le-6
max_iter <- 100

By use Loop

HAHARBH BRI By use Loop HAHAHBHAHA#AHIAH

# Iterative process
for (iter in 1:max_iter) {
##Design matrix (X)
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)
#Transpose of design matrix :
Xt<-t(X)
#iWorking weights matrix (W)= Diagonal matrix having 17 rows and 17 columns :
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17)
#Information matrix , Tau= Xt*W*X
# Multiply the matrices.
Tau<-Xt %*% W %*% X
# to calculate the inverse of Tau:
Tau_inver<-solve(Tau)
#The score statistics are: (U1 and U2)
Ul<-sum(-1+(yi/exp(beta[1]+beta[2]*xi)))
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi)))
#The vector of scores (U)
U<-matrix(c(U1,uU2))
U
#iterative equation to find an approximate estimate of beta: bl,b2
b<- beta+(Tau_inver %*% U)
b
# Check for convergence
if (max(abs(b - beta)) < epsilon ) {

break

}

# Update beta for the next iteration



beta <- b

# Print iteration results

cat("Iteration", iter,

}

##
#H#
#H#
##
#H#
#H#
##
#H#
##
##

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
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0 :

: beta
: beta =
: beta =
: beta =
: beta =
: beta =
: beta =
: beta =
. beta

",

00 00 00 00 00O N O b B

(optional)

beta ="

.027011
.550717
.297601
.461092
.476365
477422
.477493

» t(b), "\n")

.424823 0.9574105
.058176 0.1854641
-0.4071352
-0.8500827
-1.060796
-1.105153
-1.109021

-1.10928

-1.109297
beta = 8.477497 -1.109298

Fit the model described in (c) using statistical software

model<-glm(yi~xi ,family =Gamma(link = "log"))

summary(model, dispersion =1)

#H#
##
#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
##

* Find the 95% confidence interval for f; and f3; is:

CI_of beta <- confint.default(model,level=0.95)
CI_

(Dispersion parameter for Gamma family taken to be ©.9388638)

Call:
glm(formula =
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 8.4775 1.6034
xi -1.1093 0.3872
Signif. codes: @ '***' 9,001 '**'

Null deviance: 26.282 on 16 degrees of freedom
Residual deviance: 19.457 on 15 degrees of freedom
AIC: 173.97
Number of Fisher Scoring iterations: 8

of beta

yi ~ xi, family = Gamma(link = "log"))

b; £ 1.96 se(by) >>

5.287 9.13e-05 ***

-2.865 0.0118 *

0.01

[V

0.05

0.1

8.4775+1.96 x1.6034

b, + 1.96 se(b,)>> —1.1093 + 1.96 = 0.3872

1



#H# 2.5 % 97.5 %
## (Intercept) 5.334837 11.6201502
## xi -1.868283 -0.3503104

Find approximately the variance-covariance matrix of the MLE b :

Final approximate of the inverse of the information matrix evaluated at b is:

For obtaining the estimated variance-covariance matrix of parameter estimate s in a fitted model:

The variance-covariance matrix of the MLE b (cov(b) =t ! )is

Tauinver<-vcov(model, dispersion =1)

Tauinver

H## (Intercept) xi
## (Intercept) 2.7383886 -0.6542095
## xi -0.6542095 ©0.1597237

var(b,) cov(bq, by)

1= Cov(ﬁ) = CO‘U(b) = [cov(bl,bz) var(b,)

cov(b) = [ 2.7383886 —0.6542095]

—0.6542095 0.1597237

Find approximate of the information matrix evaluated at b

Tau_at_b<-solve(vcov(model, dispersion =1))

Tau_at b

it (Intercept) x1i

## (Intercept) 17.00 69.6300
## log(i) 69.63 291.4571

Var(Ul) COV(Ul, Uz)

T = CO‘U(U) = [COV(Up Uz) VaI‘(Uz)

cov(U) :[ 17 69.63 ]

69.63 291.4571



e) For the model fitted in (d), compare the observed values y;and fitted values y, =

eP1+P2 xi and use the standardized residuals r; = (¥i — ¥, /¥, to investigate the adequacy of
the model.

yhat<-exp(8.4775-1.1093*xi) #or yhat=fitted.values(m,dispersion =1)
yhat

## [1] 115.61342 196.90394 85.69042 109.37551 72.55508 55.59615 56.84339
## [8] 44.04276 76.69304 67.13429 58.76691 32.28352 31.22684 18.74637
## [15] 18.74637 25.57471 18.74637

y<-yi
y

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

ri<-(y-yhat)/yhat
ri

## [1] -0.43778151 -0.20773551 0.16699164 0.22513715 -0.77947788 0.94258047
## [7] 1.12865547 -0.90917917 -0.49147930 1.13005890 -0.04708284 -0.19463562
## [13] -0.29547788 -0.94665633 -0.94665633 -0.80449437 2.46733841

test statistc<- sum(ri~2)
test_statistc

## [1] 14.08317

chi_table<-qchisq(1-90.05,17-2)
chi_table

## [1] 24.99579
1-Hypothesis:
Hy: Model fit datawell vs H,: Model does not fit data well

2- Test statistics:

17

x? = Z r? =14.0832

i=1

3- Rejection region of H:

N = # of observation and P = # of parameters

Xan-p = Xt.0517-2 = X6.0515 = 24.9958



A.R of HO

R.R of HO

2 _ 2
Xan-P = Xo0.05,17-2

= Xoos1s = 24.9958

4-Since Y17, 12 < x> >> (X17,7? € Accept Area), we conclude that the model is adequate
for describing the data.

Not:

We may use one of the following iterative equations to find an approximate estimate of

oI5}

pm+) = p(m) 4 [rim-1 gim
or

pm+D) =[xt wim X]'l ¥t W m) z(m)



