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# yi:times to death . 
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65) 
yi 

##  [1]  65 156 100 134  16 108 121   4  39 143  56  26  22   1   1   5  65 

#xi:log10(inital white blood cell count). 
xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5) 
xi 

##  [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00  
## [16] 4.72 5.00 

 Plot 𝒚𝒊 against 𝒙𝒊 . Do the data show any trend? 

#   Plot the times to death yi against log10(inital white blood cell count) xi.  
plot(xi,yi,main = "Scatterplot", xlab = "xi:log10(inital white blood cell count)", 
ylab = "Yi:times to death") 

 

A possible specification for 𝑬(𝒀 ) is  

𝑬(𝒀𝒊)  =  𝒆𝒙𝒑(𝜷𝟏  +  𝜷𝟐𝒙𝒊), 



which will ensure that 𝑬(𝒀 ) is non-negative for all values of the parameters and all values of 𝒙. 

Which link function is appropriate in this case? 

𝑌𝑖~𝑒𝑥𝑝 (𝜃𝑖) 
Mean of 𝒀𝒊: 

𝐸(𝑌𝑖) =  𝜇𝑖 
Variance of 𝒀𝒊: 

𝑉𝑎𝑟(𝑌𝑖) = 𝜎2 
 

𝝁𝒊 = 𝒆𝜷𝟏+𝜷𝟐𝒙𝒊 

𝐥𝐨𝐠  𝝁𝒊 = 𝜷𝟏 + 𝜷𝟐𝒙𝒊 

   𝐥𝐨𝐠 𝝁𝒊 = 𝜼𝒊 

Link Function: 
𝑔(𝝁𝒊 ) = 𝐥𝐨𝐠 𝛍𝐢 

 

#Plot  log yi against log(i)  to examine this model. 
plot(xi,log(yi), main = "Scatterplot", xlab = "xi", ylab = "log yi") 

 

d) Fit a model with the equation for 𝑬(𝒀𝒊) given in (b) and the Exponential distribution using 
appropriate statistical software. 

We will use the iterative formula which is : 

(Mean)^2 =Variance 

  𝜂𝑖 = 𝜂𝑖(𝑥𝑖) = 𝛽1 + 𝛽2 𝑥𝑖 

 ] 



𝐛𝐦+𝟏 = 𝐛𝐦 + [ 𝛕(𝐛𝐦)](−𝟏)  𝐔(𝐛𝐦)   , 𝐦 = 𝟎, 𝟏, 𝟐 … …   

We will start with an initial value 𝑏(0) =  [
𝑏1

(0)

𝑏2
(0)

] = [
11
−2

]  

# Initial values b0: 
beta<-c(11,-2) 
beta 

## [1] 11 -2 

Design matrix  (X) : 

#Design matrix (X) : 
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F) 
X 

##       [,1] [,2] 
##  [1,]    1 3.36 
##  [2,]    1 2.88 
##  [3,]    1 3.63 
##  [4,]    1 3.41 
##  [5,]    1 3.78 
##  [6,]    1 4.02 
##  [7,]    1 4.00 
##  [8,]    1 4.23 
##  [9,]    1 3.73 
## [10,]    1 3.85 
## [11,]    1 3.97 
## [12,]    1 4.51 
## [13,]    1 4.54 
## [14,]    1 5.00 
## [15,]    1 5.00 
## [16,]    1 4.72 
## [17,]    1 5.00 

 Transpose of design matrix  (𝑿𝑻) : 

#Transpose of design matrix : 
Xt<-t(X) 
Xt 

##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]  
## [1,] 1.00 1.00 1.00 1.00 1.00 1.00    1 1.00 1.00  1.00  1.00  1.00  1.00     1  
## [2,] 3.36 2.88 3.63 3.41 3.78 4.02    4 4.23 3.73  3.85  3.97  4.51  4.54     5  
##      [,15] [,16] [,17] 
## [1,]     1  1.00     1 
## [2,]     5  4.72     5 

The matrix of working weights  𝑾 = 𝒅𝒊𝒂𝒈 [
𝟏

𝒗𝒂𝒓(𝒚𝒊)
 ( 

𝝏 𝝁

𝝏𝜼
)

𝟐

 ] is : 



#The matrix of working weights (W) is : 
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17) 
W 

##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] 
##  [1,]    1    0    0    0    0    0    0    0    0     0     0     0     0 
##  [2,]    0    1    0    0    0    0    0    0    0     0     0     0     0 
##  [3,]    0    0    1    0    0    0    0    0    0     0     0     0     0 
##  [4,]    0    0    0    1    0    0    0    0    0     0     0     0     0 
##  [5,]    0    0    0    0    1    0    0    0    0     0     0     0     0 
##  [6,]    0    0    0    0    0    1    0    0    0     0     0     0     0 
##  [7,]    0    0    0    0    0    0    1    0    0     0     0     0     0 
##  [8,]    0    0    0    0    0    0    0    1    0     0     0     0     0 
##  [9,]    0    0    0    0    0    0    0    0    1     0     0     0     0 
## [10,]    0    0    0    0    0    0    0    0    0     1     0     0     0 
## [11,]    0    0    0    0    0    0    0    0    0     0     1     0     0 
## [12,]    0    0    0    0    0    0    0    0    0     0     0     1     0 
## [13,]    0    0    0    0    0    0    0    0    0     0     0     0     1 
## [14,]    0    0    0    0    0    0    0    0    0     0     0     0     0 
## [15,]    0    0    0    0    0    0    0    0    0     0     0     0     0 
## [16,]    0    0    0    0    0    0    0    0    0     0     0     0     0 
## [17,]    0    0    0    0    0    0    0    0    0     0     0     0     0 
##       [,14] [,15] [,16] [,17] 
##  [1,]     0     0     0     0 
##  [2,]     0     0     0     0 
##  [3,]     0     0     0     0 
##  [4,]     0     0     0     0 
##  [5,]     0     0     0     0 
##  [6,]     0     0     0     0 
##  [7,]     0     0     0     0 
##  [8,]     0     0     0     0 
##  [9,]     0     0     0     0 
## [10,]     0     0     0     0 
## [11,]     0     0     0     0 
## [12,]     0     0     0     0 
## [13,]     0     0     0     0 
## [14,]     1     0     0     0 
## [15,]     0     1     0     0 
## [16,]     0     0     1     0 
## [17,]     0     0     0     1 

The information matrix 𝝉 = 𝑿𝒕 ∗ 𝑾 ∗ 𝑿  is : 

##Information matrix, Tau= Xt*W*X (Multiply the matrices): 
tau<- Xt%*%W%*%X 
tau 

##       [,1]     [,2] 
## [1,] 17.00  69.6300 
## [2,] 69.63 291.4571 

The score statistics are: (U1 and U2 ): 



#The score statistics are: (U1 and U2 
U1<-sum(-1+(yi/exp(beta[1]+beta[2]*xi))) 
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi))) 

The vector of scores 𝑼 = [
𝑼𝟏

𝑼𝟐
] 

U<-matrix(c(U1,U2)) 
U 

##           [,1] 
## [1,]  43.14648 
## [2,] 195.23871 

We make the following Calculation: 

𝐛𝐦+𝟏 = 𝐛𝐦 + [ 𝛕(𝐛𝐦)]−𝟏  𝐔(𝐛𝐦) 

#We make the following Calculation: 
b<-beta+solve(tau)%*%U 
b 

##           [,1] 
## [1,] 1.4248231 
## [2,] 0.9574105 

Repeat the steps but change the initial value to the last value of beta you obtained. Stop the 
iteration process if you get the same value of beta in two successive steps. 

The following table summarizes the results of the iterative procedure: 

m 0 1 2 3 4 5 6 7 8 9 

𝑏1
𝑚 11 1.4245       8.4775 8.4775 

𝑏2
𝑚 -2 0.9575       -1.1093 -1.1093 

   

Since 𝑏(8) = 𝑏(9) = [
8.4775

−1.1093 
 ], the iteration algorithm was terminated at step (8 ) .  

The final approximation of MLE of  𝛽 = [
𝛽1

𝛽2
]  𝑖𝑠  𝑏 = [

𝑏1

𝑏2
] =  [

8.4775
−1.1093 

 ] 

 

 

 



OR By using Loop 

# yi:times to death . 
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65) 
yi 

##  [1]  65 156 100 134  16 108 121   4  39 143  56  26  22   1   1   5  65 

#xi:log10(inital white blood cell count). 
xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5) 
xi 

##  [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00  
## [16] 4.72 5.00 

# Initial values 
beta <- matrix(c(11, -2)) 
epsilon <- 1e-6 
max_iter <- 100 

By use Loop 

############### By use Loop ############### 
 
# Iterative process 
for (iter in 1:max_iter) { 
##Design matrix (X)  
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F) 
#Transpose of design matrix : 
Xt<-t(X) 
#Working weights matrix (W)= Diagonal matrix having 17 rows and 17 columns : 
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17) 
#Information matrix , Tau= Xt*W*X 
# Multiply the matrices. 
Tau<-Xt %*% W %*% X 
# to calculate the inverse of Tau: 
Tau_inver<-solve(Tau) 
#The score statistics are: (U1 and U2)  
U1<-sum(-1+(yi/exp(beta[1]+beta[2]*xi))) 
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi))) 
#The vector of scores (U)  
U<-matrix(c(U1,U2)) 
U 
#iterative equation to find an approximate estimate of beta: b1,b2 
b<- beta+(Tau_inver %*% U) 
b 
# Check for convergence 
if (max(abs(b - beta)) < epsilon ) { 
  break 
} 
 
# Update beta for the next iteration 



beta <- b 
 
# Print iteration results (optional) 
cat("Iteration", iter, ": beta =", t(b), "\n") 
} 

## Iteration 1 : beta = 1.424823 0.9574105  
## Iteration 2 : beta = 4.058176 0.1854641  
## Iteration 3 : beta = 6.027011 -0.4071352  
## Iteration 4 : beta = 7.550717 -0.8500827  
## Iteration 5 : beta = 8.297601 -1.060796  
## Iteration 6 : beta = 8.461092 -1.105153  
## Iteration 7 : beta = 8.476365 -1.109021  
## Iteration 8 : beta = 8.477422 -1.10928  
## Iteration 9 : beta = 8.477493 -1.109297  
## Iteration 10 : beta = 8.477497 -1.109298 

Fit the model described in (c) using statistical software 

model<-glm(yi~xi ,family =Gamma(link = "log")) 
summary(model, dispersion =1) 

##  
## Call: 
## glm(formula = yi ~ xi, family = Gamma(link = "log")) 
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   8.4775     1.6034   5.287 9.13e-05 *** 
## xi           -1.1093     0.3872  -2.865   0.0118 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for Gamma family taken to be 0.9388638) 
##  
##     Null deviance: 26.282  on 16  degrees of freedom 
## Residual deviance: 19.457  on 15  degrees of freedom 
## AIC: 173.97 
##  
## Number of Fisher Scoring iterations: 8 

• Find the 95% confidence interval for 𝜷𝟏 𝒂𝒏𝒅 𝜷𝟐 is: 

𝐛𝟏 ± 𝟏. 𝟗𝟔  𝐬𝐞(𝐛𝟏)  >>        𝟖. 𝟒𝟕𝟕𝟓 ± 𝟏. 𝟗𝟔 ∗ 𝟏. 𝟔𝟎𝟑𝟒 

𝐛𝟐 ± 𝟏. 𝟗𝟔  𝐬𝐞(𝐛𝟐)>>  −𝟏. 𝟏𝟎𝟗𝟑 ± 𝟏. 𝟗𝟔 ∗ 𝟎. 𝟑𝟖𝟕𝟐 

 

CI_of_beta <- confint.default(model,level=0.95) 
CI_of_beta  



##                 2.5 %     97.5 % 
## (Intercept)  5.334837 11.6201502 
## xi          -1.868283 -0.3503104 

Find approximately the variance-covariance matrix of the MLE  𝒃 ∶  

Final approximate of the inverse of the information matrix evaluated at 𝒃 is: 

For obtaining the estimated variance-covariance matrix of parameter estimate s in a fitted model: 

The variance-covariance matrix of the MLE  𝒃   ( 𝐜𝐨𝐯(𝐛) = 𝛕−𝟏  ) is 

Tauinver<-vcov(model, dispersion =1) 
Tauinver 

##             (Intercept)         xi 
## (Intercept)   2.7383886 -0.6542095 
## xi           -0.6542095  0.1597237 

  

𝝉−𝟏 = 𝒄𝒐𝒗(𝜷̂) = 𝒄𝒐𝒗(𝒃) = [
𝐯𝐚𝐫(𝐛𝟏) 𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐)

𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐) 𝐯𝐚𝐫(𝐛𝟐)
] 

 

𝒄𝒐𝒗(𝒃) = [
𝟐. 𝟕𝟑𝟖𝟑𝟖𝟖𝟔 −𝟎. 𝟔𝟓𝟒𝟐𝟎𝟗𝟓

−𝟎. 𝟔𝟓𝟒𝟐𝟎𝟗𝟓 𝟎. 𝟏𝟓𝟗𝟕𝟐𝟑𝟕
] 

 

Find approximate of the information matrix evaluated at  𝒃    

Tau_at_b<-solve(vcov(model, dispersion =1)) 
Tau_at_b 

##             (Intercept)      xi 
## (Intercept)  17.00         69.6300 
## log(i)       69.63         291.4571 

 

𝝉 = 𝒄𝒐𝒗(𝑼) = [
𝐯𝐚𝐫(𝐔𝟏) 𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐)

𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐) 𝐯𝐚𝐫(𝐔𝟐)
] 

 

𝒄𝒐𝒗(𝑼) = [
𝟏𝟕 𝟔𝟗. 𝟔𝟑

𝟔𝟗. 𝟔𝟑 𝟐𝟗𝟏. 𝟒𝟓𝟕𝟏
] 

 

 

 



 

e) For the model fitted in (d), compare the observed values 𝒚𝒊and fitted values 𝒚𝒊̂ =

𝒆𝜷𝟏̂+𝜷𝟐̂ 𝒙𝒊 and use the standardized residuals 𝒓𝒊  =  (𝒚𝒊 − 𝒚𝒊̂) /𝒚𝒊̂ to investigate the adequacy of 
the model. 

yhat<-exp(8.4775-1.1093*xi)  #or yhat=fitted.values(m,dispersion =1) 
yhat 

##  [1] 115.61342 196.90394  85.69042 109.37551  72.55508  55.59615  56.84339 
##  [8]  44.04276  76.69304  67.13429  58.76691  32.28352  31.22684  18.74637 
## [15]  18.74637  25.57471  18.74637 

y<-yi 
y 

##  [1]  65 156 100 134  16 108 121   4  39 143  56  26  22   1   1   5  65 

ri<-(y-yhat)/yhat 
ri 

##  [1] -0.43778151 -0.20773551  0.16699164  0.22513715 -0.77947788  0.94258047 
##  [7]  1.12865547 -0.90917917 -0.49147930  1.13005890 -0.04708284 -0.19463562 
## [13] -0.29547788 -0.94665633 -0.94665633 -0.80449437  2.46733841 

test_statistc<- sum(ri^2) 
test_statistc 

## [1] 14.08317 

chi_table<-qchisq(1-0.05,17-2) 
chi_table 

## [1] 24.99579 

1-Hypothesis: 

𝑯𝟎: 𝑴𝒐𝒅𝒆𝒍 𝒇𝒊𝒕 𝒅𝒂𝒕𝒂 𝒘𝒆𝒍𝒍     𝒗𝒔  𝑯𝑨: 𝑴𝒐𝒅𝒆𝒍 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒇𝒊𝒕 𝒅𝒂𝒕𝒂 𝒘𝒆𝒍𝒍 

2- Test statistics: 

𝝌𝟐 =  ∑ 𝒓𝒊
𝟐

𝟏𝟕

𝒊=𝟏

= 𝟏𝟒. 𝟎𝟖𝟑𝟐 

3- Rejection region of 𝑯𝟎:   

𝑵 = # 𝒐𝒇 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏      𝒂𝒏𝒅      𝑷 = # 𝒐𝒇 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  

𝝌𝜶,𝑵−𝑷
𝟐 = 𝝌𝟎.𝟎𝟓 ,𝟏𝟕−𝟐

𝟐 = 𝝌𝟎.𝟎𝟓,𝟏𝟓
𝟐 = 𝟐𝟒. 𝟗𝟗𝟓𝟖  



 

 

4- Since ∑ 𝒓𝒊
𝟐𝟏𝟕

𝒊=𝟏 < 𝝌𝟐    >>   ( ∑ 𝒓𝒊
𝟐𝟏𝟕

𝒊=𝟏  ∈ 𝑨𝒄𝒄𝒆𝒑𝒕 𝑨𝒓𝒆𝒂 ), we conclude that the model is adequate 
for describing the data . 

 

Not: 

We may use one of the following iterative equations to find an approximate estimate of 

 𝜷 = [
𝜷𝟎

𝜷𝟏
]: 

 

 


