
chapter 4 : ESTIMATION
Kholoud Basalim

2024-10-14

Q4.2 page70:

yi:times to death .
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

[1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#xi:log10(inital white blood cell count).
xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

[1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
[16] 4.72 5.00

 Plot 𝒚𝒊 against 𝒙𝒊 . Do the data show any trend?

Plot the times to death yi against log10(inital white blood cell count) xi.
plot(xi,yi,main = "Scatterplot", xlab = "xi:log10(inital white blood cell count)",
ylab = "Yi:times to death")

A possible specification for 𝑬(𝒀) is

𝑬(𝒀𝒊) = 𝒆𝒙𝒑(𝜷𝟏 + 𝜷𝟐𝒙𝒊),

which will ensure that 𝑬(𝒀) is non-negative for all values of the parameters and all values of 𝒙.

Which link function is appropriate in this case?

𝑌𝑖~𝑒𝑥𝑝 (𝜃𝑖)
Mean of 𝒀𝒊:

𝐸(𝑌𝑖) = 𝜇𝑖
Variance of 𝒀𝒊:

𝑉𝑎𝑟(𝑌𝑖) = 𝜎2

𝝁𝒊 = 𝒆𝜷𝟏+𝜷𝟐𝒙𝒊

𝐥𝐨𝐠 𝝁𝒊 = 𝜷𝟏 + 𝜷𝟐𝒙𝒊

 𝐥𝐨𝐠 𝝁𝒊 = 𝜼𝒊

Link Function:
𝑔(𝝁𝒊) = 𝐥𝐨𝐠 𝛍𝐢

#Plot log yi against log(i) to examine this model.
plot(xi,log(yi), main = "Scatterplot", xlab = "xi", ylab = "log yi")

d) Fit a model with the equation for 𝑬(𝒀𝒊) given in (b) and the Exponential distribution using
appropriate statistical software.

We will use the iterative formula which is :

(Mean)^2 =Variance

 𝜂𝑖 = 𝜂𝑖(𝑥𝑖) = 𝛽1 + 𝛽2 𝑥𝑖

]

𝐛𝐦+𝟏 = 𝐛𝐦 + [𝛕(𝐛𝐦)](−𝟏) 𝐔(𝐛𝐦) , 𝐦 = 𝟎, 𝟏, 𝟐 … …

We will start with an initial value 𝑏(0) = [
𝑏1

(0)

𝑏2
(0)

] = [
11
−2

]

Initial values b0:
beta<-c(11,-2)
beta

[1] 11 -2

Design matrix (X) :

#Design matrix (X) :
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)
X

[,1] [,2]
[1,] 1 3.36
[2,] 1 2.88
[3,] 1 3.63
[4,] 1 3.41
[5,] 1 3.78
[6,] 1 4.02
[7,] 1 4.00
[8,] 1 4.23
[9,] 1 3.73
[10,] 1 3.85
[11,] 1 3.97
[12,] 1 4.51
[13,] 1 4.54
[14,] 1 5.00
[15,] 1 5.00
[16,] 1 4.72
[17,] 1 5.00

 Transpose of design matrix (𝑿𝑻) :

#Transpose of design matrix :
Xt<-t(X)
Xt

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1
[2,] 3.36 2.88 3.63 3.41 3.78 4.02 4 4.23 3.73 3.85 3.97 4.51 4.54 5
[,15] [,16] [,17]
[1,] 1 1.00 1
[2,] 5 4.72 5

The matrix of working weights 𝑾 = 𝒅𝒊𝒂𝒈 [
𝟏

𝒗𝒂𝒓(𝒚𝒊)
 (

𝝏 𝝁

𝝏𝜼
)

𝟐

] is :

#The matrix of working weights (W) is :
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17)
W

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 1 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 1 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 1 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 1 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 1 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 1 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 1 0 0 0 0 0
[9,] 0 0 0 0 0 0 0 0 1 0 0 0 0
[10,] 0 0 0 0 0 0 0 0 0 1 0 0 0
[11,] 0 0 0 0 0 0 0 0 0 0 1 0 0
[12,] 0 0 0 0 0 0 0 0 0 0 0 1 0
[13,] 0 0 0 0 0 0 0 0 0 0 0 0 1
[14,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[15,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[16,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[17,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[,14] [,15] [,16] [,17]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0
[5,] 0 0 0 0
[6,] 0 0 0 0
[7,] 0 0 0 0
[8,] 0 0 0 0
[9,] 0 0 0 0
[10,] 0 0 0 0
[11,] 0 0 0 0
[12,] 0 0 0 0
[13,] 0 0 0 0
[14,] 1 0 0 0
[15,] 0 1 0 0
[16,] 0 0 1 0
[17,] 0 0 0 1

The information matrix 𝝉 = 𝑿𝒕 ∗ 𝑾 ∗ 𝑿 is :

##Information matrix, Tau= Xt*W*X (Multiply the matrices):
tau<- Xt%*%W%*%X
tau

[,1] [,2]
[1,] 17.00 69.6300
[2,] 69.63 291.4571

The score statistics are: (U1 and U2):

#The score statistics are: (U1 and U2
U1<-sum(-1+(yi/exp(beta[1]+beta[2]*xi)))
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi)))

The vector of scores 𝑼 = [
𝑼𝟏

𝑼𝟐
]

U<-matrix(c(U1,U2))
U

[,1]
[1,] 43.14648
[2,] 195.23871

We make the following Calculation:

𝐛𝐦+𝟏 = 𝐛𝐦 + [𝛕(𝐛𝐦)]−𝟏 𝐔(𝐛𝐦)

#We make the following Calculation:
b<-beta+solve(tau)%*%U
b

[,1]
[1,] 1.4248231
[2,] 0.9574105

Repeat the steps but change the initial value to the last value of beta you obtained. Stop the
iteration process if you get the same value of beta in two successive steps.

The following table summarizes the results of the iterative procedure:

m 0 1 2 3 4 5 6 7 8 9

𝑏1
𝑚 11 1.4245 8.4775 8.4775

𝑏2
𝑚 -2 0.9575 -1.1093 -1.1093

Since 𝑏(8) = 𝑏(9) = [
8.4775

−1.1093
], the iteration algorithm was terminated at step (8) .

The final approximation of MLE of 𝛽 = [
𝛽1

𝛽2
] 𝑖𝑠 𝑏 = [

𝑏1

𝑏2
] = [

8.4775
−1.1093

]

OR By using Loop

yi:times to death .
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

[1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#xi:log10(inital white blood cell count).
xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

[1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
[16] 4.72 5.00

Initial values
beta <- matrix(c(11, -2))
epsilon <- 1e-6
max_iter <- 100

By use Loop

############### By use Loop ###############

Iterative process
for (iter in 1:max_iter) {
##Design matrix (X)
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)
#Transpose of design matrix :
Xt<-t(X)
#Working weights matrix (W)= Diagonal matrix having 17 rows and 17 columns :
W<-diag(c(rep(1,17)),nrow = 17,ncol = 17)
#Information matrix , Tau= Xt*W*X
Multiply the matrices.
Tau<-Xt %*% W %*% X
to calculate the inverse of Tau:
Tau_inver<-solve(Tau)
#The score statistics are: (U1 and U2)
U1<-sum(-1+(yi/exp(beta[1]+beta[2]*xi)))
U2<-sum(-xi+(yi*xi/exp(beta[1]+beta[2]*xi)))
#The vector of scores (U)
U<-matrix(c(U1,U2))
U
#iterative equation to find an approximate estimate of beta: b1,b2
b<- beta+(Tau_inver %*% U)
b
Check for convergence
if (max(abs(b - beta)) < epsilon) {
 break
}

Update beta for the next iteration

beta <- b

Print iteration results (optional)
cat("Iteration", iter, ": beta =", t(b), "\n")
}

Iteration 1 : beta = 1.424823 0.9574105
Iteration 2 : beta = 4.058176 0.1854641
Iteration 3 : beta = 6.027011 -0.4071352
Iteration 4 : beta = 7.550717 -0.8500827
Iteration 5 : beta = 8.297601 -1.060796
Iteration 6 : beta = 8.461092 -1.105153
Iteration 7 : beta = 8.476365 -1.109021
Iteration 8 : beta = 8.477422 -1.10928
Iteration 9 : beta = 8.477493 -1.109297
Iteration 10 : beta = 8.477497 -1.109298

Fit the model described in (c) using statistical software

model<-glm(yi~xi ,family =Gamma(link = "log"))
summary(model, dispersion =1)

Call:
glm(formula = yi ~ xi, family = Gamma(link = "log"))

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.4775 1.6034 5.287 9.13e-05 ***
xi -1.1093 0.3872 -2.865 0.0118 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gamma family taken to be 0.9388638)

Null deviance: 26.282 on 16 degrees of freedom
Residual deviance: 19.457 on 15 degrees of freedom
AIC: 173.97

Number of Fisher Scoring iterations: 8

• Find the 95% confidence interval for 𝜷𝟏 𝒂𝒏𝒅 𝜷𝟐 is:

𝐛𝟏 ± 𝟏. 𝟗𝟔 𝐬𝐞(𝐛𝟏) >> 𝟖. 𝟒𝟕𝟕𝟓 ± 𝟏. 𝟗𝟔 ∗ 𝟏. 𝟔𝟎𝟑𝟒

𝐛𝟐 ± 𝟏. 𝟗𝟔 𝐬𝐞(𝐛𝟐)>> −𝟏. 𝟏𝟎𝟗𝟑 ± 𝟏. 𝟗𝟔 ∗ 𝟎. 𝟑𝟖𝟕𝟐

CI_of_beta <- confint.default(model,level=0.95)
CI_of_beta

2.5 % 97.5 %
(Intercept) 5.334837 11.6201502
xi -1.868283 -0.3503104

Find approximately the variance-covariance matrix of the MLE 𝒃 ∶

Final approximate of the inverse of the information matrix evaluated at 𝒃 is:

For obtaining the estimated variance-covariance matrix of parameter estimate s in a fitted model:

The variance-covariance matrix of the MLE 𝒃 (𝐜𝐨𝐯(𝐛) = 𝛕−𝟏) is

Tauinver<-vcov(model, dispersion =1)
Tauinver

(Intercept) xi
(Intercept) 2.7383886 -0.6542095
xi -0.6542095 0.1597237

𝝉−𝟏 = 𝒄𝒐𝒗(𝜷̂) = 𝒄𝒐𝒗(𝒃) = [
𝐯𝐚𝐫(𝐛𝟏) 𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐)

𝐜𝐨𝐯(𝐛𝟏, 𝒃𝟐) 𝐯𝐚𝐫(𝐛𝟐)
]

𝒄𝒐𝒗(𝒃) = [
𝟐. 𝟕𝟑𝟖𝟑𝟖𝟖𝟔 −𝟎. 𝟔𝟓𝟒𝟐𝟎𝟗𝟓

−𝟎. 𝟔𝟓𝟒𝟐𝟎𝟗𝟓 𝟎. 𝟏𝟓𝟗𝟕𝟐𝟑𝟕
]

Find approximate of the information matrix evaluated at 𝒃

Tau_at_b<-solve(vcov(model, dispersion =1))
Tau_at_b

(Intercept) xi
(Intercept) 17.00 69.6300
log(i) 69.63 291.4571

𝝉 = 𝒄𝒐𝒗(𝑼) = [
𝐯𝐚𝐫(𝐔𝟏) 𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐)

𝐜𝐨𝐯(𝐔𝟏, 𝑼𝟐) 𝐯𝐚𝐫(𝐔𝟐)
]

𝒄𝒐𝒗(𝑼) = [
𝟏𝟕 𝟔𝟗. 𝟔𝟑

𝟔𝟗. 𝟔𝟑 𝟐𝟗𝟏. 𝟒𝟓𝟕𝟏
]

e) For the model fitted in (d), compare the observed values 𝒚𝒊and fitted values 𝒚𝒊̂ =

𝒆𝜷𝟏̂+𝜷𝟐̂ 𝒙𝒊 and use the standardized residuals 𝒓𝒊 = (𝒚𝒊 − 𝒚𝒊̂) /𝒚𝒊̂ to investigate the adequacy of
the model.

yhat<-exp(8.4775-1.1093*xi) #or yhat=fitted.values(m,dispersion =1)
yhat

[1] 115.61342 196.90394 85.69042 109.37551 72.55508 55.59615 56.84339
[8] 44.04276 76.69304 67.13429 58.76691 32.28352 31.22684 18.74637
[15] 18.74637 25.57471 18.74637

y<-yi
y

[1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

ri<-(y-yhat)/yhat
ri

[1] -0.43778151 -0.20773551 0.16699164 0.22513715 -0.77947788 0.94258047
[7] 1.12865547 -0.90917917 -0.49147930 1.13005890 -0.04708284 -0.19463562
[13] -0.29547788 -0.94665633 -0.94665633 -0.80449437 2.46733841

test_statistc<- sum(ri^2)
test_statistc

[1] 14.08317

chi_table<-qchisq(1-0.05,17-2)
chi_table

[1] 24.99579

1-Hypothesis:

𝑯𝟎: 𝑴𝒐𝒅𝒆𝒍 𝒇𝒊𝒕 𝒅𝒂𝒕𝒂 𝒘𝒆𝒍𝒍 𝒗𝒔 𝑯𝑨: 𝑴𝒐𝒅𝒆𝒍 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒇𝒊𝒕 𝒅𝒂𝒕𝒂 𝒘𝒆𝒍𝒍

2- Test statistics:

𝝌𝟐 = ∑ 𝒓𝒊
𝟐

𝟏𝟕

𝒊=𝟏

= 𝟏𝟒. 𝟎𝟖𝟑𝟐

3- Rejection region of 𝑯𝟎:

𝑵 = # 𝒐𝒇 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝑷 = # 𝒐𝒇 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔

𝝌𝜶,𝑵−𝑷
𝟐 = 𝝌𝟎.𝟎𝟓 ,𝟏𝟕−𝟐

𝟐 = 𝝌𝟎.𝟎𝟓,𝟏𝟓
𝟐 = 𝟐𝟒. 𝟗𝟗𝟓𝟖

4- Since ∑ 𝒓𝒊
𝟐𝟏𝟕

𝒊=𝟏 < 𝝌𝟐 >> (∑ 𝒓𝒊
𝟐𝟏𝟕

𝒊=𝟏 ∈ 𝑨𝒄𝒄𝒆𝒑𝒕 𝑨𝒓𝒆𝒂), we conclude that the model is adequate
for describing the data .

Not:

We may use one of the following iterative equations to find an approximate estimate of

 𝜷 = [
𝜷𝟎

𝜷𝟏
]:

