chapter 4 : ESTIMATION

Kholoud Basalim
2024-10-08

Q4.1 page70:

The data in Table 4.5 show the numbers of cases of AIDS in Australia by date of diagnosis for
successive 3-months periods from 1984 to 1988.

(Data from National Centre for HIV Epidemiology and Clinical Research 1994.)
In this early phase of the epidemic, the numbers of cases seemed to be increasing exponentially.

a) Plot the number of cases y; against time period i (i = 1,...,20).

7]

2

b) A possible model is the Poisson distribution with parameter 4; = i
or equivalently
log4; =0logi
Plot log y; against logi to examine this model.

c) Fita generalized linear model to these data using the Poisson distribution, the log-link function
and the equation

g(4;) =loga; = By + Bax;,
where x; = log i . Firstly, do this from first principles, working out expressions for the
weight matrix W and other terms needed for the iterative equation
XTWXb™ = XTWz
and using software which can perform matrix operations to carry out the calculations.

d) Fit the model described in (c) using statistical software which can perform Poisson regression.
Compare the results with those obtained in (c).

Table 4.5 Numbers of cases of AIDS in Australia for successive quarter from 198/
to 1988.

Quarter
Year 1 2 3 4

1984 1 6 16 23
1985 27 39 31 30
1986 43 51 63 70
1987 8 97 91 104
1988 110 113 149 159
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# y=numbers of cases of AIDS 1in Australia .
y<-c(1,6,16,23,27,39,31,30,43,51,63,70,88,97,91,104,110,113,149,159)
y

## [1] 1 6 16 23 27 39 31 30 43 51 63 70 88 97 91 104 110 113 149
## [20] 159

#time period 1 (1 =1, . . . , 20).

i<-c(1:20)

i

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a) Plot the number of cases y; against time period i (i = 1,...,20).

# Plot the number of cases yi against time period 1 ( 1 = 1,...,20).

plot(i,y,main = "Scatterplot", xlab = "time i", ylab = "Y number of cases")
Scatterplot
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b) A possible model is the Poisson distribution with parameter A; = i%,
or equivalently
log4; = 0logi

Plot log y; against logi to examine this model.
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Y;~Poisson (4;)
Mean ofY;:
EY)=p=4

Variance ofY;: Mean =Variance
Var(Y;) = 0% = 4;

A; =% > loga; = 0log(i)

log4; = 0 x; Where[ x; = log(i) ]

l l n=ni(x) =0x

Link Function:

g(4;) =log4;

#PLot Log yi against Llog(i) to examine this model.
plot(log(i),y, main = "Scatterplot", xlab = "log i", ylab = "Y number of cases")

Scatterplot
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plot(log(i),log(y), main = "Scatterplot"”, xlab = "log i", ylab = "log y")
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e) Fit a generalized linear model to these data using the Poisson distribution, the log-link
function and the equation

g(A;) =loga; = By + Bax;
logd; = By + Bax; > A =ePrtBXi 5 ) = eNi
where x; =log(i) :
A = ePr¥Baxi 5 ). = eB1+B2108 (D)
/’ll' = eﬁl i eﬁZ lOg (1)
2, = eP1_ elos®P?
Ai = eﬁl . lBZ

We will use the iterative formula which is :

pm+l — pm 4 [‘[(bm)](_l) Uu™) m=0,12....

b(O)
We will start with an initial value b(® = [ tO)] = [1]
b, 1

# Initial values bo:

beta<-c(1,1) ()

beta bl_ [1
b[ﬂ] 1
2

## [1] 1 1
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Design matrix (X):

#Design matrix (X) :
X=matrix(c(rep(1,20),log(i)),nrow=20,ncol = 2,byrow =
X

## [,1] [,2]
# [1,] 1 ©.0000000
# [2,] 1 0.6931472
## [3,] 1 1.0986123
# [4,] 1 1.3862944
##  [5,] 1 1.6094379
##  [6,] 1 1.7917595
## [7,] 1 1.9459101
## [8,] 1 2.0794415
## [9,] 1 2.1972246
## [10, ] 1 2.3025851
## [11,] 1 2.3978953
## [12,] 1 2.4849066
## [13,] 1 2.5649494
## [14, ] 1 2.6390573
## [15, ] 1 2.7080502
## [16, ] 1 2.7725887
## [17, ] 1 2.8332133
## [18, ] 1 2.8903718
## [19,] 1 2.9444390
## [20,] 1 2.9957323

Transpose of design matrix (X7):
#Transpose of design matrix :

Xt<-t(X)
Xt

# [,1] [,2] [,3] [,4] [,5]

# [,9] [,10] [,11] [,12] [,13]

F)

X

1 In(i)

1 In &N]

Xt =

1
In (1)

1
In (N)

[,6]

[,14]

[,7] [,8]
## [1,] 1 1.0000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
## [2,] 0 0.6931472 1.098612 1.386294 1.609438 1.791759 1.94591 2.079442

[

»15] [,16]

## [1,] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
## [2,] 2.197225 2.302585 2.397895 2.484907 2.564949 2.639057 2.70805 2.772589

i [,17] [,18] [,19] [,20]
## [1,] 1.000000 1.000000 1.000000 1.000000
## [2,] 2.833213 2.890372 2.944439 2.995732

. . i . 1 a_u)z .
The matrix of working weights W = diag [—var(yi) ( an ] is:
#The matrix of working weights (W) 1is :
W<-exp(beta[1])*diag(c(i”beta[2]),nrow = 20,ncol = 20)
W

W = diag|ef ifz|

NxN
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#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
#H#
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H##
##
##
H##
##
##
H##
##
##
H##
##
##
H##
##
##
H##
##
##
H##
##
##
H##

[1,]
[2,]
[3,]
[4,]
[5,]
[6, ]
[7,]
[8,]
[9,]
[1e,]
[11,]
[12,]
[13,]
[14, ]
[15,]
[16,]
[17, ]
[18,]
[19,]
[20, ]

[1,]
[2,]
[3,]
[4,]
[5,]
[6, ]
[7,]
[8,]
[9,]
[1e,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[2e,]

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]

OO OO OOPDNOOPODTIOOPODOIEOOO®OOON

POOOOOOOO

N

OO OO OOOOO

OO0

(W]

[,1]

.718282
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000

[,9]
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.46454
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
.00000

[,17]
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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OO OO ODODOOIOODOODTOOIOOLOOUI

[,2]

.000000
.436564
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
. 000000

OO0 OTOOTONODODOOIOOOOOOOO

OO OO0

[,10]
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.18282
.00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
.00000
.00000

[,18]
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

OO OO OOPDOOIODTDIOOPDTIOTOO®NE

[,3]

.000000
. 000000
.154845
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
. 000000

OO OO OPOONONUVEIOIOOOOIOEOOOO

OO0

[,11]
.0000
. 0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.9011
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000
[,19]
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

OO OO OONOOOOOIOOOOOOOO

OO0 ODPODOOIODTIODTOOIOOOOOOO

[,4]
.00000
. 00000
.00000
.87313
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
[,12]

.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.61938
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
.00000

OO O0OOODOOO

[,20]
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

OO OO OOUIOOODIODOPODOOIOOOOOOOO

OO0 OO0 OIOIOOTWOOOO

[,5]
.00000
. 00000
.00000
.00000
.59141
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
[,13]

.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.33766
. 00000
.00000
.00000
. 00000
.00000
.00000
.00000

O OO0 OPDPNOOIONPIOIOOOIOOOOOO

OO OO OOOOO

[,6]
. 00000
. 00000
. 00000
. 00000
. 00000
.30969
.00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
[,14]

.00000
. 00000
.00000
. 00000
. 00000
.00000
. 00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
.05595
.00000
.00000
. 00000
. 00000
.00000
.00000

OO OO OOPODTOOOOOOOO®

4

(O]

OO0

OO OO OOPDTOOIODTOIOPTOTULVLOOOOOOOO

[,7]
.00000
. 00000
.00000
.00000
. 00000
.00000
.02797
. 00000
. 00000
.00000
. 00000
.00000
.00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
[,15]

.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.77423
.00000
. 00000
.00000
.00000
.00000

OO0 O WOOOOOODDLOLOLOOEOEOEOOOO

OO OO ODTOOOTOOOFRPROOOOOOOOO

[,8]
.00000
.00000
.00000
.00000
. 00000
.00000
.00000
.74625
.00000
.00000
. 00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
[,16]

.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000
.49251
. 00000
.00000
.00000
.00000
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## [9,] ©0.00000 0.00000 ©.00000 ©.00000
## [10,] ©.00000 0.00000 ©.00000 ©.00000
## [11,] ©.00000 ©0.00000 0.00000 ©.00000
## [12,] ©.00000 0.00000 ©.00000 ©.00000
## [13,] ©.00000 0.00000 ©.00000 ©.00000
## [14,] ©.00000 ©0.00000 0.00000 ©.00000
## [15,] ©.00000 0.00000 ©.00000 ©.00000
## [16,] ©0.00000 0.00000 ©.00000 ©.00000
## [17,] 46.21079 0.00000 ©.00000 ©0.00000
## [18,] ©.00000 48.92907 ©.00000 ©.00000
## [19,] ©.00000 0.00000 51.64735 ©.00000
## [20,] ©0.00000 ©0.00000 0.00000 54.36564

The information matrixt = X!« W x X is:

##Information matrix, Tau= Xt*W*X (Multiply the matrices):
tau<- Xt%*%We*%X
tavu T=X'WX

## [,1] [,2]
## [1,] 570.8392 1439.608
## [2,] 1439.6080 3768.835

The score statistics are: (U1 and U2):

#The score statistics are: (Ul and U2
Ul<-sum(y-exp(beta[1l]+beta[2]*1log(i)))
U2<-sum(y*log(i)-log(i)*exp(beta[1l]+beta[2]*1log(i)))

The vector of scores U = [gl]
2

U<-matrix(c(U1,U2))
U

U1y _ Ty — efrrhainll)y
#H [,1] U= 42l = [E(y,-]n(i) — In(i) ef1+F21n(D)
## [1,] 740.1608

## [2,] 1956.7710

We make the following Calculation:

bm+1::bm_+[T(bm)T4 U(bm)

#We make the following Calculation:
b<-beta+solve (tau)%*%U bl =b® + [« Y
b

## [,1]
## [1,] ©.652354
## [2,] 1.651991
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Repeat the steps but change the value of initial value to the last value of beta you get it, and stop
the iteration process if you get the same value of Beta (in two successive steps)

The following table summarizes the results of the iterative procedure:

m 0 1 2 3 4 5 6
bi* 1 0.652354 | 0.841856 | 0.98454 | 0.995952 | 0.995998 | 0.995998
bJ! 1 1.651991 | 1.429568 | 1.33373 | 1.326639 | 1.32661 1.32661

0.995998

Since b® = p©) = [1 32661

], the iteration algorithm was terminated at step (5) .
0.995998

The final approximation of MLE of = ﬁl] is b= bl] = [1 32661

B> b,

OR By using Loop

# y=numbers of cases of AIDS in Australia .
y<-c¢(1,6,16,23,27,39,31,30,43,51,63,70,88,97,91,104,110,113,149,159)
y

## [1] 1 6 16 23 27 39 31 30 43 51 63 70 88 97 91 104 110 113 149
## [20] 159

#time period 1 (1 =1, . . . , 20).
i<-c(1:20)
i

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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# Initial values
beta <- matrix(c(1, 1))
epsilon <- 1le-6
max_iter <- 100

HAHARHAH AT By use Loop HAHAHBAHAHHHHAH

# Iterative process
for (iter in 1:max_iter) {
##Design matrix (X)
X=matrix(c(rep(1,20),log(i)),nrow=20,ncol = 2,byrow = F)
#Transpose of design matrix :
Xt<-t(X)
#Working weights matrix (W)= Diagonal matrix having 20 rows and 20 columns :
W<- exp(beta[1])*diag((i)~(beta[2]), nrow=20, ncol=20)
#Information matrix , Tau= Xt*W*X
# Multiply the matrices.
Tau<-Xt %*% W %*% X
# to calculate the inverse of Tau:
Tau_inver<-solve(Tau)
#The score statistics are: (U1 and U2)
Ul=sum(y-exp(beta[1l]+beta[2]*1log(i)))
U2=sum(y*log(i)-log(i)*exp(beta[1l]+beta[2]*1log(i)))
#The vector of scores (U)
U<-matrix(c(U1,U2))
u
#iterative equation to find an approximate estimate of beta: bl,b2
b<- beta+(Tau_inver %*% U)
b
# Check for convergence
if (max(abs(b - beta)) < epsilon ) {
break

}

# Update beta for the next iteration
beta <- b

# Print iteration results (optional)
cat("Iteration", iter, ": beta =", t(b), "\n")
}

## Iteration 1 : beta = 0.652354 1.651991
## Iteration 2 : beta = 0.8418567 1.429548
## Iteration 3 : beta = 0.9845403 1.33373
## Iteration 4 : beta = ©0.9959522 1.326639
## Iteration 5 : beta = 0.995998 1.32661
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d) Fit the model described in (c) using statistical software

model<-glm(y~log(i) ,family =poisson(link = "log"))

summary (model)

##

## Call:

## glm(formula = y ~ log(i), family = poisson(link = "log"))

##

## Coefficients:

H#it Estimate _ z value Pr(>|z|) var(b;) = 0.16971% = 0.02880148
## (Intercept) ©0.99600 0.16971 5.869 4.39e-09 *** var(b,) = 0.06463% = 0.00417703
## log(i) 1.32661 0.06463 20.525 < 2e-16 ***

## ---

## Signif. codes: © '***' @9.001 '**' 0.01 '*' ©0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

H## Null deviance: 677.264 on 19 degrees of freedom

## Residual deviance: 21.755 on 18 degrees of freedom
## AIC: 138.05

##

## Number of Fisher Scoring iterations: 4

* Find the 95% confidence interval for f; and B, is:
b; +1.96 se(b;) >> 0.996 + 1.96 * 0.1697
b, + 1.96 se(by)>> 1.32661 + 1.96 * 0.06463

CI_of beta <- confint.default(model,level=0.95)

CI_of_beta

## 2.5 % 97.5 %
## (Intercept) 0.6633773 1.328619
## log(i) 1.1999299 1.453289
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Find approximately the variance-covariance matrix of the MLE b :

Final approximate of the inverse of the information matrix evaluated at b is:

For obtaining the estimated variance-covariance matrix of parameter estimate s in a fitted model:
The variance-covariance matrix of the MLE b (cov(b) =t ! )is

Tauinver<-vcov(model)

Tauinver

it (Intercept) log(i)
## (Intercept) ©.02880067 -0.010822607
## log(i) -0.01082261 0.004177519

var(b,) cov(bq, by)

1= Cov(ﬁ) = cov(b) = [cov(bl,bz) var(b,)

0.02880067 —O0. 010822607]

cov(b) = [—0.01082261 0.004177519

Find approximate of the information matrix evaluated at b

Tau_at_b<-solve(vcov(model))

Tau_at_b

## (Intercept) log(i)
## (Intercept) 1311.000 3396.379
## log(i) 3396.379 9038.301

var(U,) cov(Uq,U,)

T = COU(U) = [COV(UP UZ) var(Uz)

1311.000 3396. 379]

cov(U) =
( ) 3396.379 9038.301

Kholoud Basalim Stat 335: Chapter 4: Estimation



Not:

We may use one of the following iterative equations to find an approximate estimate of

-l

pmH1) = pm) 4 [im)-1 ylm)
or

pm+D) = [xt wim x|~ xt wim zm
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