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Aims

In this lecture, we will . . .

I Introduce the Secant Method

I Introduce the Multiplicity of a Root

I Introduce the Convergence of Iterative Methods

I Introduce the Systems of Nonlinear Equations

Chapter 2

Lecture #4



Secant Method
Since we known the main obstacle to using the Newton’s method is that it may be
difficult or impossible to differentiate the function f(x). The calculation of f ′(xn)
may be avoided by approximating the slope of the tangent at x = xn by that of
the chord joining the two points (xn−1, f(xn−1)) and (xn, f(xn)), see Figure 1.
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Figure 1: Graphical Solution of Secant Method.

The slope of the chord (or secant) is

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
. (1)



The iterative formula of the secant method is given by

xn+1 = xn −
(xn − xn−1)f(xn)

f(xn)− f(xn−1)
=
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
, n ≥ 1. (2)
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Example 0.1
Use the secant method to find the approximate root of the following equation 
within the accuracy 10−2 take x0 = 1.5 and x1 = 2.0 as starting values

x3 = 2x + 1.

Solution. Since f(x) = x3 − 2x − 1 and

x0 = 1.5, f(x0) = −0.625,
x1 = 2.0, f(x1) = 3.0,

therefore, we see that f(x0) 6= f(x1). Hence, one can use the iterative formula (2),
to get new approximation:

x2 =
x0f(x1)− x1f(x0)

f(x1)− f(x0)
=

(1.5)(3.0)− (2.0)(−0.625)

3.0− (−0.625)
= 1.586207,

and f(x2) = −0.18434. Similar way, we can find the other possible approximation
of the root. A summary of the calculations is given in Table 1. •

Table 1: Solution of x3 = 2x + 1 by secant method

n xn−1 xn xn+1 f(xn+1)
01 1.500000 2.000000 1.586207 -0.1814342
02 2.000000 1.586207 1.609805 -0.0478446
03 1.586207 1.609805 1.618257 0.0013040
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Example 0.2
Show that the iterative procedure for evaluating the reciprocal of a number N by 
using the secant method is:

xn+1 = xn + (1−Nxn)xn−1, n ≥ 1. (3)

Solution. Let N be a positive number and x = 1/N . If f(x) = 0, then
x = α = 1/N is the exact zero of the function

f(x) = 1/x−N.

Since the secant formula is

xn+1 = xn −
(xn − xn−1)f(xn)

f(xn)− f(xn−1)
, n ≥ 1.

Hence, assuming the initial estimates to the root, say, x = x0, x = x1 and by using
the secant iterative formula, we have

x2 = x1 −
(x1 − x0)(1/x1 −N)

(1/x1 −N)− (1/x0 −N)
= x1 −

(x1 − x0)(1/x1 −N)

−(x1 − x0)/x1x0
.

It gives

x2 = x1 + (1/x1 −N)x1x0 = x1 + x0 −Nx1x0 = x1 + (1−Nx1)x0.
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In general, this becomes

xn+1 = xn + (1−Nxn)xn−1, n = 1, 2, . . . .

For example, suppose we want the reciprocal of number N = 5. Assuming the
initial approximations of say x0 = 0 and x1 = 0.1, then by using the above
iterative formula, we get the first three approximations as follows:

x2 = 0.1, x3 = 0.15, x4 = 0.175,

The estimated value compares rather favorably with exact value of 1/5, (see
Figure 2). •
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Figure 2: Graphical Solution of 1/x = 5 and x = x + (1 − 5x)x.



Procedure
(Secant Method)

1. Choose the two initial approximation x0 and x1.

2. Check, if f(x0) = f(x1), go to step 1 otherwise, continue.

3. Establish Tolerance (ε > 0) value for the function.

4. Compute new approximation for the root by using the iterative formula (2).

5. Check tolerance. If |xn − xn−1| ≤ ε, for n ≥ 1, then end; otherwise, go back
to step 4, and repeat the process.





Lemma

Assume that function f(x) and its derivatives f ′(x), f ′′(x), · · · , f (m)(x) are
defined and continuous on an interval about x = α. Then f(x) = 0 has a root α of
order m if and only if

f(α) = f ′(α) = f ′′(α) = · · · = f (m−1)(α) = 0, f (m)(α) 6= 0. (5)

For example, consider the equation f(x) = x3 − x2 − 21x+ 45 = 0, which has
three roots; a simple root at α = −5 and a double root at α = 3. This can be
verified by considering the derivatives of the function as follows

f ′(x) = 3x2 − 2x− 21, f ′′(x) = 6x− 2.

At the value α = −5, we have f(5) = 0 and f ′(5) = 64 6= 0, so by (5), we see that
m = 1. Hence α = −5 is a simple root of the equation. For the value α = 3, we
have

f(3) = 0, f ′(3) = 0, f ′′(3) = 16 6= 0,



so that m = 2 by (5), hence α = 3 is a double root of the equation. Note that this
function f(x) has the factorization and can be written in the form of (4) as (see
Figure 4),

f(x) = (x− 3)2(x+ 5).
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Figure 4: Graphical Solution of x3 − x2 − 21x + 45 = 0.





The order of multiplicity of the multiple root can be easily find out by taking the 
higher derivatives of the function at α unless the higher derivative becomes nonzero 
at α. Then the order of nonzero higher derivative will be the order of multiplicity of 
the multiple root. •

Example 0.3
Find the multiplicity of the root α = 1 of the equation x lnx = lnx.
Solution. From the given equation, we have

f(x) = x lnx− lnx and f(1) = 0,

f ′(x) = lnx+ 1−
1

x
and f ′(1) = 0,

f ′′(x) =
1

x
+

1

x2
and f ′′(1) = 2 6= 0.

Thus the multiplicity of the root α = 1 of the given equation is 2. •
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Convergence of Iterative Methods

Usually we don’t know in advance that an equation has multiple roots, 
although we might suspect it from sketching the graph. Many problems 
which leads to multiple roots, are in fact ill-posed. The methods we 
discussed so far cannot be guaranteed to converge efficiently for all 
problems. In particular, when a given function has a multiple root 
which we require, the methods we have described will either not 
converge at all or converge more slowly. For example, the 
Newton’s method converges very fast to simple root but converges 
more slowly when used for functions involving multiple roots.



Example 0.4
Consider the following two nonlinear equations

(1) xex = 0 (2) x2ex = 0.

(a) Find the Newton’s method for the solutions of the given equations.
(b) Explain why one of the sequences converges much faster than the other to the
root α = 0.
Solution. (a) For the first equation, we have

f(x) = xex and f ′(x) = (1 + x)ex.

Then the Newton’s method for the solution of the first equation is

xn+1 = g1(xn) = xn −
f(xn)

f ′(xn)
=

x2n
(1 + xn)

, n ≥ 0,

which is the first sequence. Similarly, we can find the Newton’s method for the
solution of the second equation as follows:

xn+1 = g2(xn) = xn −
x2ne

xn

(2xn + x2n)exn
=
xn + x2n
(2 + xn)

, n ≥ 0,

and it is the second sequence.
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(b) From the first sequence, we have

g1(x) =
x2

(1 + x)
and g′1(x) =

x2 + 2x

(1 + x)2
.

Then

|g′1(α)| = |g′1(0)| =
∣∣∣∣01
∣∣∣∣ = 0,

which shows that the first sequence converges to zero. Similarly, from the second
sequence, we have

g2(x) =
x+ x2

(2 + x)
and g′2(x) =

x2 + 4x+ 2

(2 + x)2
.

Thus

|g′2(0)| =
∣∣∣∣24
∣∣∣∣ =

1

2
< 1,

which shows that the second sequence is also converges to zero. Since the value of
|g′1(0)| is smaller than |g′2(0)|, therefore, the first sequence converges faster than
the second one. •



Note that in the above Example 0.4, the root α = 0 is the simple root for the first
equation (see Figure 5) because

f(0) = 0 but f ′(0) = 1 6= 0,

and for the second equation it is a multiple root because

f(0) = 0 and f ′(0) = 0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

4

6

8

10

12

14

16

x

y

α

y = xe
x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

x

y

α

y = x
2
e
x

Figure 5: Graphical Solution of xex = 0 and x2ex = 0.

Therefore, the Newton’s method converges very fast for the first equation and
converges very slow for the second equation. However, in some cases simple
modifications can be made to the methods to maintain the rate of convergence.
Two such modified methods are considered here, called the Newton modified
methods.



First Modified Newton’s Method

To determine a root of known multiplicity m for the equation f(x) = 0, we may
use the first Newton’s modified method (also called the Schroeder’s method) which
is given by the form

xn+1 = xn −m
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . (6)
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Example 0.5

Show that nonlinear equation
1

e(1−x)
= x has a root at x = 1. Use the first

modified Newton’s method to find its first three approximations using x0 = 0.
Solution. Since f(x) = 1− xe(1−x). First we show that α = 1 is the zero of the
given function as

f(α) = f(1) = 1− 1e0 = 1− 1 = 0.

To check whether it is simple or multiple zero of f(x), we do the following

f ′(x) = −e1−x + xe(1−x) and f ′(α) = f ′(1) = −1 + 1 = 0,

which means that α = 1 is the multiple zero of the given function. To find its
order of multiplicity, we do

f ′′(x) = 2e(1−x) − xe(1−x) and f ′′(α) = f ′′(1) = 2− 1 = 1 6= 0,

hence α = 1 is a zero of multiplicity 2 of the given function. Now we have to find
the first three approximations to the multiple zero α = 1 of the given function by
using the first modified Newton’s method which can be written as

xn+1 = xn −m
f(xn)

f ′(xn)
= xn −m

1− xne(1−xn)

(xn − 1)e(1−xn)
, n ≥ 0,

where m is the order of multiplicity of the zero of the function.
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For n = 0, 1, 2 and m = 2, with initial approximation x0 = 0, we have

x1 = 0.7358, x2 = 0.9782, x3 = 0.9998,

are the required first three approximations to α = 1, (see Figure 6). •
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Figure 6: Graphical Solution of 1 − xe(1−x) = 0.



Second Modified Newton’s Method

An alternative approach to this problem that does not require any knowledge of
the multiplicity of the root is to replace the function f(x) in the equation by q(x),
where

q(x) =
f(x)

f ′(x)
.

This iterative formula of the second modified Newton’s method is given by

xn+1 = xn −
f(xn)f ′(xn)

[f ′(xn)]2 − [f(xn)][f ′′(xn)]
, n = 0, 1, 2, . . . (7)

Example 0.6
Use the second modified Newton’s method to find the first approximation x1 to
the multiple root of the nonlinear equation 1− cos(x) = 0, using x0 = 0.1.
Solution. Since f(x) = 1− cosx, we have f ′(x) = sinx and f ′′(x) = cosx. Now
using the second modified Newton’s formula (7)

xn+1 = xn −
f(xn)f ′(xn)

[f ′(xn)]2 − [f(xn)][f ′′(xn)]
, n ≥ 0,

we have

xn+1 = xn −
(1− cosxn)(sinxn)

[sinxn]2 − (1− cosxn)(cosxn)
, n ≥ 0.
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Example 0.6
Use the second modified Newton’s method to find the first approximation x1 to
the multiple root of the nonlinear equation 1− cos(x) = 0, using x0 = 0.1.
Solution. Since f(x) = 1− cosx, we have f ′(x) = sinx and f ′′(x) = cosx. Now
using the second modified Newton’s formula (7)

xn+1 = xn −
f(xn)f ′(xn)

[f ′(xn)]2 − [f(xn)][f ′′(xn)]
, n ≥ 0,

we have

xn+1 = xn −
(1− cosxn)(sinxn)

[sinxn]2 − (1− cosxn)(cosxn)
, n ≥ 0.



For n = 0 and the initial approximation x0 = 0.1, we have

x1 = x0−
(1− cosx0)(sinx0)

[sinx0]2 − (1− cosx0)(cosx0)
= 0.1−

(1− cos 0.1)(sin 0.1)

[sin 0.1]2 − (1− cos 0.1)(cos 0.1)
= 0.098,

which is the required first approximation to α = 0, (see Figure 7). •
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Figure 7: Graphical Solution of 1 − cosx = 0.



Example 0.7

Show that the function f(x) = ex −
x2

2
− x− 1 has zero of multiplicity 3 at α = 0

and then, find the approximate solution of the zero of the function with the help
of the Newton’s method, first and second modified Newton’s methods, by taking
initial approximation x0 = 1.5 within an accuracy of 10−4.
Solution. Since α = 0 is a root of f(x), (see Figure 8), so

f(x) = ex −
x2

2
− x− 1, f(0) = 0,

f ′(x) = ex − x− 1, f ′(0) = 0,
f ′′(x) = ex − 1, f ′′(0) = 0,
f ′′′(x) = ex, f ′′′(0) = 1 6= 0,

the function has zero of multiplicity 3. In Table 2 we showed the comparison of
three methods. •
We note that for the multiple root the both modified Newton’s methods converge
very fast as they took 4 iterations to converge while the Newton’s method
converges very slow and took 25 iterations to converge for the same accuracy.
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Table 2: Comparison results of three methods for the Example 0.7

Newton’s Method 1st. M.N. Method 2nd. M.N. Method
n xn xn xn

00 1.500000 1.500000 1.500000
01 1.067698 0.2030926 -0.297704
02 0.745468 3.482923e-03 -6.757677e-03
03 0.513126 1.010951e-06 -3.798399e-06
.. ........
25 7.331582e-05
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Figure 8: Graphical Solution of ex − x2/2 − x − 1 = 0.



Now we define the order of the convergence of functional iteration schemes
discussed in the previous sections. This is a measure of how rapidly a sequence
converges.

Definition 2
(Order of Convergence)
Suppose that the sequence {xn}∞n=0 converges to α, and let en = α− xn define
the error of the nth iterate. If two positive constants β 6= 0 and R > 0 exist, and

lim
n→∞

|α− xn+1|
|α− xn|R

= lim
n→∞

|en+1|
|en|R

= β, (8)

then the sequence is said to converge to α with order of convergence R. The number β 
is called the asymptotic error constant. The cases R = 1, 2 are given special 
consideration.

If R = 1, the convergence of the sequence {xn}n∞=0 is called linear.
If R = 2, the convergence of the sequence {xn}n∞=0 is called quadratic.
If R is large, the sequence {xn} converges rapidly to α; that is, (8) implies that for 
large values of n we have the approximation |en+1| ≈ β|en|R. For example, 
suppose that R = 2 and |en| ≈ 10−3; then we could expect that
|en+1| ≈ β × 10−6. •



Example 0.8
Show that the following sequence

xn+1 =
1

2
xn

(
1 +

N

x2n

)
, n ≥ 0,

will converge quadratically to
√
N.

Solution. Since the sequence is given as

xn+1 =
1

2
xn

(
1 +

N

x2n

)
,

and α =
√
N , then we have

xn+1 −
√
N =

1

2
xn

(
1 +

N

x2n

)
−
√
N =

1

2

(
xn +

N

xn
− 2
√
N

)

=
1

2

(
√
xn −

√
N
√
xn

)2

=
1

2xn
(xn −

√
N)2.

Thus

en+1 =
1

2xn
e2n or en+1 ∝ e2n,

which shows the quadratic convergence. •
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Show that the following sequence

xn+1 =
1

2
xn

(
1 +

N

x2n

)
, n ≥ 0,

will converge quadratically to
√
N.

Solution. Since the sequence is given as

xn+1 =
1

2
xn

(
1 +

N

x2n

)
,

and α =
√
N , then we have

xn+1 −
√
N =

1

2
xn

(
1 +

N

x2n

)
−
√
N =

1

2

(
xn +

N

xn
− 2
√
N

)

=
1

2

(
√
xn −

√
N
√
xn

)2

=
1

2xn
(xn −

√
N)2.

Thus

en+1 =
1

2xn
e2n or en+1 ∝ e2n,

which shows the quadratic convergence. •

















Example 0.9
For the following system of two equations

x3 + 3y2 = 21
x2 + 2y = −2

Find the Jacobian matrix and its inverse using initial approximation (1,−1), then
find the first approximation by using the Newton’s method.
Solution. Given

f1(x, y) = x3 + 3y2 − 21, f1x = 3x2, f1y = 6y,
f2(x, y) = x2 + 2y + 2, f2x = 2x, f2y = 2.

At the given initial approximation x0 = 1 and y0 = −1, we have

f1(1,−1) = −17,
∂f1

∂x
= f1x = 3,

∂f1

∂y
= f1y = −6,

f2(1,−1) = 1,
∂f1

∂x
= f2x = 2,

∂f2

∂y
= f2y = 2.

The Jacobian matrix J at the given initial approximation can be calculated as

J =


∂f1

∂x

∂f1

∂y

∂f2

∂x

∂f2

∂y

 =

 3 −6

2 2

 and J−1 =
1

18

(
2 6
−2 3

)
,
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is the inverse of the Jacobian matrix. Now to find the first approximation we have
to solve the following equation(

x1
y1

)
=

(
1
−1

)
−

1

18

(
2 6
−2 3

)(
−17

1

)
=

(
2.5556
−3.0556

)
,

the required first approximation. •



Example 0.10
Solve the following system of two equations using the Newton’s method with given
accuracy ε = 10−5.

4x3 + y = 6
x2y = 1

Assume x0 = 1.0 and y0 = 0.5 as starting values.
Solution. Obviously this system of nonlinear equations has an exact solution of
x = 1.088282 and y = 0.844340, (see Figure 10). Let us look how the Newton’s
method is used to approximate these roots. The first partial derivatives are as
follows:

f1(x, y) = 4x3 + y − 6, f1x = 12x2, f1y = 1,
f2(x, y) = x2y − 1, f2x = 2xy, f2y = x2.

At the given initial approximation x0 = 1.0 and y0 = 0.5, we get

f1(1.0, 0.5) = −1.5,
∂f1

∂x
= f1x = 12,

∂f1

∂y
= f1y = 1.0,

f2(1.0, 0.5) = −0.5,
∂f1

∂x
= f2x = 1.0,

∂f2

∂y
= f2y = 1.0.



Example 0.10
Solve the following system of two equations using the Newton’s method with given
accuracy ε = 10−5.

4x3 + y = 6
x2y = 1

Assume x0 = 1.0 and y0 = 0.5 as starting values.
Solution. Obviously this system of nonlinear equations has an exact solution of
x = 1.088282 and y = 0.844340, (see Figure 10). Let us look how the Newton’s
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follows:
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The Jacobian matrix J and its inverse J−1 at the given initial approximation can
be calculated as follows:

J =


∂f1

∂x

∂f1

∂y

∂f2

∂x

∂f2

∂y

 =

 12.0 1.0

1.0 1.0

 and J−1 =
1

11.0

(
1.0 −1.0
−1.0 12.0

)
.
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Figure 10: Graphical solution of the given nonlinear system.



By using the following formula

 xn+1

yn+1

 =

 xn

yn

−


∂f1

∂x

∂f1

∂y

∂f2

∂x

∂f2

∂y


−1 f1

f2

 , (18)

we get the first approximation as follows(
x1
y1

)
=

(
1.0
0.5

)
−

1

11.0

(
1.0 −1.0
−1.0 12.0

)(
−1.5
−0.5

)
=

(
1.090909
0.909091

)
.

Similarly, the second iteration gives(
x2
y2

)
=

(
1.090909
0.909091

)
−

1

15.012077

(
1.190082 −1.0
−1.983471 14.280989

)(
0.102178
0.081893

)
=

(
1.088264
0.844686

)
.

The first two and the further steps of the method are listed in Table 3. •

Table 3: Solution of a system of two nonlinear equations

n x-approx. y-approx. 1st. func. 2nd. func.
xn yn f1(xn, yn) f2(xn, yn)

00 1.000000 0.500000 -1.50000 -0.500000
01 1.090909 0.909091 0.102178 0.081893
02 1.088264 0.844686 0.000091 0.000377
03 1.088282 0.844340 0.000001 0.000001



Procedure
Newton’s Method for Two Nonlinear Equations

1. Choose the initial guess for the roots of the system, so that the determinant
of the Jacobian matrix is not zero.

2. Establish Tolerance ε(> 0).

3. Evaluate the Jacobian at initial approximations and then find inverse of
Jacobian.

4. Compute new approximation to the roots by using iterative formula

x[n+1] = Z[n] + x[n]. (19)

.

5. Check tolerance limit. If ‖(xn, yn)− (xn−1, yn−1)‖ ≤ ε, for n ≥ 0, then end;
otherwise, go back to step 3, and repeat the process.



Summary

In this lecture, we ...

I Introduced the Secant Method

I Introduced the Multiplicity of a Root

I Introduced the Convergence of Iterative Methods

I Introduced the Systems of Nonlinear Equations
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