Numerical Methods

King Saud University



Aims

Chapter 2

Lecture #4

In this lecture, we will . . .

» Introduce the Secant Method
» Introduce the Multiplicity of a Root
» Introduce the Convergence of Iterative Methods

> Introduce the Systems of Nonlinear Equations



Secant Method

Since we known the main obstacle to using the Newton’s method is that it may be
difficult or impossible to differentiate the function f(z). The calculation of f’(zy)
may be avoided by approximating the slope of the tangent at * = x,, by that of
the chord joining the two points (zn—1, f(xn—1)) and (n, f(zn)), see Figure 1.

y=lixh

Figure 1: Graphical Solution of Secant Method.

The slope of the chord (or secant) is

Tn — Tp—1

f'(@n)



The iterative formula of the secant method is given by

(xn - xn—l)f(x’ﬂ) — xn_lf(x”) — ﬁnf(il?n—l)

Tn4+1 = Tn — =

f(@n) = f(@n-1) f(an) = f(@n-1)

)
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The Secant Method

Motivation

1 The Secant Method avoids the need to calculate derivatives, which can be difficult or
impossible for some functions.

Approximation

2 It approximates the slope of the tangent at z = z,, using the chord joining two points
(Tn-1, f(zna-1)) @Nd (@, f(zn)) -

Formula

The iterative formula is:

— (Zn—2n-1)f(2zn)
Totl = Tn = ey ey 2L




Example 0.1
Use the secant method to find the approximate root of the following equation
within the accuracy 10~2 take zo = 1.5 and 21 = 2.0 as starting values

2% =2z + 1.



Example 0.1
Use the secant method to find the approximate root of the following equation
within the accuracy 10~2 take zo = 1.5 and 21 = 2.0 as starting values

22 =2z 4 1.

Solution. Since f(z) = 23 — 2z — 1 and

15,  f(zo) = —0.625,
2.0,  f(z1) = 3.0,

zo
z1

therefore, we see that f(zo) # f(x1). Hence, one can use the iterative formula (2),
to get new approximation:

_ @of(21) — 21f(w0) _ (15)(3.0) — (2.0)(—0.625)

9 = = 1.586207,
f(@1) — f(wo) 3.0 — (-0.625)
and f(xz2) = —0.18434. Similar way, we can find the other possible approximation
of the root. A summary of the calculations is given in Table 1. .

Table 1: Solution of 2® = 2z + 1 by secant method

n Tn_1 Tn Tnil f(@nt1)

01 1.500000 2.000000 1.586207 -0.1814342
02 2.000000 1.586207 1.609805 -0.0478446
03 1.586207 1.609805 1.618257 0.0013040




Example 0.2

Show that the iterative procedure for evaluating the reciprocal of a number N by
using the secant method is:

Tnt+1 =2n + (1 = Nap)an—1, n>1. (3)



Example 0.2

Show that the iterative procedure for evaluating the reciprocal of a number N by
using the secant method is:

Tnt+1 =2n + (1 = Nap)an—1, n>1. (3)

Solution. Let N be a positive number and z = 1/N. If f(z) = 0, then
z = a =1/N is the exact zero of the function

f(z)=1/z — N.
Since the secant formula is

(3371 - Z'nfl)f(xn) n>1
f(xn) — f(zn-1) ’ -

Hence, assuming the initial estimates to the root, say, © = 9,z = z1 and by using
the secant iterative formula, we have

(z1 —x0)(1/z1 — N) o (1 —x0)(1/z1 — N)
(1/x1 — N) — (1/xzo — N) —(z1 — z0) /170

Tn+1l = Tn —

xr2 = X1 —

It gives

xro2 =1 + (1/:171 — N)zlmo =21 +x90 — Nx1x9g = 21 + (1 — le)ro.



In general, this becomes
Tpnt+1 =2n + (1 — Nap)an—1, n=12,....

For example, suppose we want the reciprocal of number N = 5. Assuming the
initial approximations of say o = 0 and z; = 0.1, then by using the above
iterative formula, we get the first three approximations as follows:

o = 0.1, T3 = 0.15, T4 = 0.175,

The estimated value compares rather favorably with exact value of 1/5, (see
Figure 2).

5 05
4 04 = x
y=1/x -5 y
3 03
o
2 02
>t > 01
o
0 0
1 01
» 02 y =x+ (1 - 5x)x
3 -0
01 015 02 025 03 035 04 045 05 01 015 02 025 _03 035 04 045 05
x

Figure 2: Graphical Solution of 1/z =5 and =2+ (1 — 5z)x.



Procedure
(Secant Method)

I

Gv A Qo

. Choose the two initial approximation xg and x;.

. Check, if f(xzo) = f(x1), go to step I otherwise, continue.

. Establish Tolerance (¢ > 0) value for the function.

. Compute new approximation for the root by using the iterative formula (2).

. Check tolerance. If |z, — zn,—1| <€, for n > 1, then end; otherwise, go back

to step 4, and repeat the process.



Multiplicity of a Root
n_ Definition

A root o of order m exists if f(z) can be
expressed as (z — )™ h(z) , where h(a) # 0.

Simple vs Multiple Roots

T

Simple roots are distinct, while multiple
roots have the same order of magnitude.

Graphical Behavior

T

Odd multiplicity roots cross the x-axis,
while even multiplicity roots are tangent to
it.

n_ Identification

Multiple roots satisfy

i) = ifl@) = fi@) ==
Fm=D(a) =0, f(M(a) £ 0



Lemma

Assume that function f(x) and its derivatives f’(z), f"(z),--- , f(™ (z) are
defined and continuous on an interval about x = . Then f(z) = 0 has a root « of
order m if and only if

fl@)=f()=f"(a)=-=fm"a)=0, ™ (a)#0. (5)
For example, consider the equation f(z) = 23 — 22 — 21z + 45 = 0, which has
three roots; a simple root at @« = —5 and a double root at o = 3. This can be

verified by considering the derivatives of the function as follows
f(z) = 32% — 20 — 21, ' (z) = 6z — 2.

At the value « = —5, we have f(5) = 0 and f/(5) = 64 # 0, so by (5), we see that
m = 1. Hence o = —5 is a simple root of the equation. For the value a = 3, we
have

f@=0, f'3=0,  f'(38)=16#0,



so that m = 2 by (5), hence o = 3 is a double root of the equation. Note that this
function f(z) has the factorization and can be written in the form of (4) as (see
Figure 4),

f(@) = (z = 3)*(z +5).
J

Figure 4: Graphical Solution of 2% — % — 21z 4 45 = 0.



Multiple root:

e How to find the order of multiple root:

l

repeat to get the third approximation and so on.....



The order of multiplicity of the multiple root can be easily find out by taking the
higher derivatives of the function at a unless the higher derivative becomes nonzero
at a. Then the order of nonzero higher derivative will be the order of multiplicity of

the multiple root. °

Example 0.3

Find the multiplicity of the root & = 1 of the equation xlnz = Inz.



The order of multiplicity of the multiple root can be easily find out by taking the
higher derivatives of the function at a unless the higher derivative becomes
nonzero at a. Then the order of nonzero higher derivative will be the order of
multiplicity of the multiple root.

Example 0.3

Find the multiplicity of the root a = 1 of the equation zlnz = Inz.
Solution. From the given equation, we have

f(x) = zlnz—Inz and f(1)= O,

fl(x) = Inz+1-— ! and f/(1)= O,
11

fl@) = -+ and f’(1)= 2+#0.
x T

Thus the multiplicity of the root a = 1 of the given equation is 2.



Convergence of Iterative Methods

Usually we don’t know in advance that an equation has multiple roots,
although we might suspect it from sketching the graph. Many problems
which leads to multiple roots, are in fact ill-posed. The methods we
discussed so far cannot be guaranteed to converge efficiently for all
problems. In particular, when a given function has a multiple root
which we require, the methods we have described will either not
converge at all or converge more slowly. For example, the
Newton’s method converges very fast to simple root but converges

more slowly when used for functions involving multiple roots.



Example 0.4
Consider the following two nonlinear equations
(1) ze® =0 (2) z%e® = 0.

(a) Find the Newton’s method for the solutions of the given equations.

(b) Explain why one of the sequences converges much faster than the other to the
root a = 0.



Example 0.4

Consider the following two nonlinear equations
(1) ze® =0 (2) z%e® = 0.

(a) Find the Newton’s method for the solutions of the given equations.

(b) Explain why one of the sequences converges much faster than the other to the
root a = 0.

Solution. (a) For the first equation, we have

f(z) = ze” and fl(z) = (1 +x)e®.
Then the Newton’s method for the solution of the first equation is

2
Tt = g1l = o ;'((z:)) =Gxey "0

which is the first sequence. Similarly, we can find the Newton’s method for the
solution of the second equation as follows:

2 2
x5 e’n Tn + T3,
x = Tn) = Tp — = s n >0,
n4+1 92( n) n (25577, x%)ezn (2 In) =

and it is the second sequence.



(b) From the first sequence, we have

x2 2 + 2z
= d ¢ ==
Do) = T (o) = S
Then 0
i)l =i 0) =|§| =0,

which shows that the first sequence converges to zero. Similarly, from the second
sequence, we have

() x + a2 ,() 22 +4x 42
Tr) = r) = —m
P 2t 72 2+2)?
Thus 5 1

L0) =|5==<1

501 =[5 =3 <1

which shows that the second sequence is also converges to zero. Since the value of
|97 (0)] is smaller than |g5(0)|, therefore, the first sequence converges faster than
the second one. °



Note that in the above Example 0.4, the root a = 0 is the simple root for the first
equation (see Figure 5) because

F0=0  but  f(0)=1%#0,
and for the second equation it is a multiple root because

f(0)=o0 and f'(0)=o0.

Figure 5: Graphical Solution of ze® =0 and 2%e® = 0.

Therefore, the Newton’s method converges very fast for the first equation and
converges very slow for the second equation. However, in some cases simple
modifications can be made to the methods to maintain the rate of convergence.
Two such modified methods are considered here, called the Newton modified
methods.



First Modified Newton’s Method

To determine a root of known multiplicity m for the equation f(z) = 0, we may
use the first Newton’s modified method (also called the Schroeder’s method) which
is given by the form

—
F(@n)’

Bipil | = G5, = n=0,1,2,... (6)
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Example 0.5

1
Show that nonlinear equation oo =% has a root at x = 1. Use the first
(-

modified Newton’s method to find its first three approximations using x¢ = 0.



Example 0.5
1
Show that nonlinear equation s =% has a root at x = 1. Use the first
(-
modified Newton’s method to find its first three approximations using x¢ = 0.
Solution. Since f(z) =1 — ze(1=%), First we show that oo = 1 is the zero of the

given function as
flay=f1)=1-1"=1-1=0.

To check whether it is simple or multiple zero of f(x), we do the following
fl(z) = —e' =% 4 zel =) and flle)=f(1)=-1+1=0,

which means that a = 1 is the multiple zero of the given function. To find its
order of multiplicity, we do

(z) = 20 — ge1—2) and fla)y=f"1)=2-1=1#£0,

hence a = 1 is a zero of multiplicity 2 of the given function. Now we have to find
the first three approximations to the multiple zero a = 1 of the given function by
using the first modified Newton’s method which can be written as

— (171'n>
mf(mn) :xn—mlL, n >0,
f’(zn) (gjn — 1)3(1*111,) -

In+l = Tn —

where m is the order of multiplicity of the zero of the function.



For n =0,1,2 and m = 2, with initial approximation x¢g = 0, we have
x1 = 0.7358, x2 = 0.9782, x3 = 0.9998,

are the required first three approximations to a = 1, (see Figure 6).

Figure 6: Graphical Solution of 1 — zel=%) = 0.



Second Modified Newton’s Method

An alternative approach to this problem that does not require any knowledge of
the multiplicity of the root is to replace the function f(z) in the equation by g(z),

where
f(=)
f'(x)
This iterative formula of the second modified Newton’s method is given by

~ F(@n) ' (n)
[F@n)? — @ @n)]

q(z) =

Bpdeil = B n=20,1,2,... (7)

Example 0.6

Use the second modified Newton’s method to find the first approximation x1 to
the multiple root of the nonlinear equation 1 — cos(z) = 0, using zo = 0.1.
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Second Modified Newton’s Method

An alternative approach to this problem that does not require any knowledge of
the multiplicity of the root is to replace the function f(z) in the equation by g(z),

where
f(=)
f'(x)
This iterative formula of the second modified Newton’s method is given by

- @) f (@n)
[ @n)]2 — @)l @)

q(z) =

Tpt+l = Tn n=20,1,2,... (7

Example 0.6

Use the second modified Newton’s method to find the first approximation x1 to
the multiple root of the nonlinear equation 1 — cos(z) = 0, using zo = 0.1.
Solution. Since f(z) =1 — cosz, we have f/(z) = sinz and f"”(x) = cosz. Now
using the second modified Newton’s formula (7)

f(@n)f" @) o
P @l = (Fanll @) =7

Tn+41 Tn —

we have
(1 — cosan)(sinzy)

Tp41 = n > 0.

" Jsinan]2 — (1 — cos @ )(cos )



For n = 0 and the initial approximation xg = 0.1, we have

(1 — coszo)(sinzo)

Tr1 = x0— =
! 0 [sinzo]2 — (1 — coszg)(cos zp)

1 (1 —cos0.1)(sin0.1) — 0.098
" [sin0.1]2 = (1 — cos0.1)(cos0.1) '

which is the required first approximation to a = 0, (see Figure 7).

y=1- cosx

Figure 7: Graphical Solution of 1 — cosz = 0.



Example 0.7
2

Show that the function f(z) = e® — % — 2 — 1 has zero of multiplicity 3 at o« =0

and then, find the approximate solution of the zero of the function with the help
of the Newton’s method, first and second modified Newton’s methods, by taking
initial approximation o = 1.5 within an accuracy of 10~%.



Example 0.7
2

Show that the function f(z) = e® — % — 2 — 1 has zero of multiplicity 3 at o« =0
and then, find the approximate solution of the zero of the function with the help
of the Newton’s method, first and second modified Newton’s methods, by taking
initial approximation o = 1.5 within an accuracy of 10~%.

Solution. Since oo = 0 is a root of f(z), (see Figure 8), so

f@) = e-Toao1, jo = o
(=) = e —z—1, 7'(0) = 0,
f'(z) = e*—1, 7o) = 0o,
f/l/(x) — eﬂf’ f//l(o) — 1 # 0,

the function has zero of multiplicity 3.



Example 0.7
2

Show that the function f(x) = e® — % — 2 — 1 has zero of multiplicity 3 at a« =0
and then, find the approximate solution of the zero of the function with the help
of the Newton’s method, first and second modified Newton’s methods, by taking
initial approximation o = 1.5 within an accuracy of 10~%.

Solution. Since oo = 0 is a root of f(z), (see Figure 8), so

22
f(x) - 627?717717 f(o) = 07
(=) = e —z—1, 7'(0) = 0,
@) = e —1, ')y = o,
f/l/ (x) — eﬂf’ f//I(O) — 1 # 0,
the function has zero of multiplicity 3. In Table 2 we showed the comparison of
three methods. .

We note that for the multiple root the both modified Newton’s methods converge
very fast as they took 4 iterations to converge while the Newton’s method
converges very slow and took 25 iterations to converge for the same accuracy.



Table 2: Comparison results of three methods for the Example 0.7

Newton’s Method

1st. M.N. Method

2nd. M.N. Method

Tn Tn Tn
00 1.500000 1.500000 1.500000
01 1.067698 0.2030926 -0.297704
02 0.745468 3.482923e-03 -6.757677e-03
03 0.513126 1.010951e-06 -3.798399e-06
25 7.331582e-05

y=ex-xz/2-x-1

Figure 8: Graphical Solution of e — 22/2 — 2z — 1 =0.




Now we define the order of the convergence of functional iteration schemes
discussed in the previous sections. This is a measure of how rapidly a sequence
converges.

Definition 2

(Order of Convergence)

Suppose that the sequence {zn}2 converges to a, and let en = o — xy, define
the error of the nth iterate. If two positive constants 8 # 0 and R > 0 exist, and

T 55 | TN NS | Y ®)

n—oo ‘afzn|R n—oo |en|R

then the sequence is said to converge to a with order of convergence R. The number 3
is called the asymptotic error constant. The cases R = 1, 2 are given special
consideration.

If R = 1, the convergence of the sequence {x,}5, is called linear.

If R = 2, the convergence of the sequence {x,}22 ,is called quadratic.

If R is large, the sequence {x,} converges rapidly to «; that is, (8) implies that for
large values of n we have the approximation |en+1| & Blen|®. For example,
suppose that R = 2 and |e,| &~ 1073; then we could expect that

lent1] = B8 x 1076, L4



Example 0.8

Show that the following sequence

1 N
Tnt1 = sTn (14+ — ], n >0,
2 x

n

will converge quadratically to v N.



Example 0.8

Show that the following sequence

1 N
Tni1=—Tn (1+— ), n >0,
2 2

n

will converge quadratically to v IN.
Solution. Since the sequence is given as

1 N
l‘n+1:§$n 1+x7 )

and a = v N, then we have

1 N 1 N
Tnt1 — VN = —zn (1+—2) —VN=—- (mn—i- — —2\/N)
2 x 2 Tn

2

1 VN 1
= - |vz —(zn — VN)?

2 < " 1/zn> 2wn( " )

Thus
e _ 1 5 2
ntl = —en, or ent1 X €,
2xn

which shows the quadratic convergence.



Convergence of Iterative Methods

Rate of convergence:

1) linear: When g'(a) # 0
2) quadratic: when g'(a) =0 and g"(a) # 0

At least quadratic g'(a) = 0 only.
3) Cubic:when g'(a) =0, g""(a) =0and g"'(a) #0
At least Cubic g'(a) = 0, g"'(a) = 0 only.



Lemma 2.3 (Linear Convergence)

Let g is continuously differentiable on the interval [a,b] and suppose that g(z) € [a,b] for all
x € [a,b]. Suppose that g'(x) is continuous on (a,b) with

/(@) <k<1,  forall ze€(ab).

If g'(a) # 0, then for any xo € [a,b], the sequence Typi1 = g(xn), for n >0, converges only linearly
to the unique fized-point o in [a, b]. .

Example 2.36 Consider an iterative scheme
Tpt1 = 0.4+ 2, — 0.122, n > 0.
Will this scheme converge to the fized-point o = 2 7 If yes, find its rate of convergence.
Solution. Since
g(x) =044z —-012% and ¢(2)=04+2-01(2)°2=2,
which shows that the scheme converges to a = 2. Also
g () =1-02z, gives, ¢'(2)=1-04=0.6%#0.

Therefore, the scheme converges linearly. .



Lemma 2.4 (Quadratic Convergence)

Let a be a solution of the equation x = g(x). Suppose that ¢'(a)) = 0 and g" is continuous on
an open interval (a,b) containing ov. Then there exists a § > 0 such that, for xo € [a — §, a0 + 4],
the sequence {x,}52, defined by the iteration xp,41 = g(x,), for n > 0, converges at least
quadratically to a. .

Example 2.37 The iterative scheme
Tpi1 =2 — (1 +a)z, + az?, n>0,

converges to o =1 for some values of a. Find the value of a for which the convergence is at least
quadratic.



Example 2.37 The iterative scheme
Tnt1=2—(1+a)x, + am,zl n>0,
converges to a = 1 for some values of a. Find the value of a for which the convergence is at least
quadratic.
Solution. Given

g@)=2—-(0+a)z+a? and g(1)=2—(14a)+a=1.

Thus, the given iterative scheme converges to 1. Also
d(z) = —(1+a) + 2ax,

and so0
gd(1)=0=—(1+a)+2a, gives, a=1.

Thus, the convergence of the given iterative scheme is at least quadratic for the value of a=1. e



Note 2.3 The sequence {x,}°2 defined by the iteration
Tn+1 = g(xn), for n>0,
converges only quadratically to o if
gd(@)=0 but ¢"(a)#0.
and cubically (order three) to « if
g(a)=0, ¢"(@)=0 but g"(a)#0.

In the similar manner the higher order of convergence can be achieved.



Systems of Nonlinear Equations

1 Definition
A system of n equations in n unknowns where at least one equation is nonlinear. This
kind of system frequently arises in optimization problems, where we aim to find the
minimum or maximum value of a function subject to constraints, and in numerical
integration, where we approximate the value of a definite integral using numerical
methods.

2 Two-Variable System

Consider a system with two equations, fi(z,y) = 0 and f5(z,y) = 0, involving two
variables, z and y . Our objective is to find values for z and y , denoted as « and 8
respectively, that simultaneously satisfy both equations.

2 Graphical Interpretation
The solutions to this system correspond to the intersection points of the curves
represented by the equations fi(z,y) = 0 and f>(z,y) = 0 in the zy -plane. These

intersection points represent the values of (x, y) that satisfy both equations
simultaneously.



Newton's Method for Systems

af1

ox
o5
ox

Tn+1 Tn
Yn+1 Yn

Yy J1
o2 i

oy

We call the following matrix J a Jacobian matriz

oh oh
ox dy
of o

&x y



Example 0.9

For the following system of two equations

21
-2

3 + 3y2
2 + 2y

Find the Jacobian matrix and its inverse using initial approximation (1, —1), then
find the first approximation by using the Newton’s method.



Example 0.9

For the following system of two equations

3+ 3y2
2 + 2y

21
-2

Find the Jacobian matrix and its inverse using initial approximation (1, —1), then
find the first approximation by using the Newton’s method.
Solution. Given

filzy) = 2343y -21, fi, =322 fi, =6y,
folz,y) = a?+2y+2, fop =23,  f2, =2
At the given initial approximation g = 1 and yo = —1, we have
of1 of1
1,-1) = -17, 2= - 3 Z_ E—
fi( ) e fig By Jiy
of1 Of2
1,-1) = 1 A 9, 212 _ - o
f2(1,-1) ; o 22 S fay

The Jacobian matrix J at the given initial approximation can be calculated as

of o
ox dy 3 -6

J = = and Jfl:i( 3 2)7
of of 2 2 s\ -

ox dy



is the inverse of the Jacobian matrix. Now to find the first approximation we have
to solve the following equation

()-(D-5(3H(-(1)

the required first approximation. .



Example 0.10
Solve the following system of two equations using the Newton’s method with given
accuracy € = 1072,
423 +y = 6
2y = 1

Assume zg = 1.0 and yo = 0.5 as starting values.



Example 0.10

Solve the following system of two equations using the Newton’s method with given
accuracy € = 1072,
473 +y = 6
2y = 1
Assume zg = 1.0 and yo = 0.5 as starting values.
Solution. Obviously this system of nonlinear equations has an exact solution of

x = 1.088282 and y = 0.844340, (see Figure 10). Let us look how the Newton’s
method is used to approximate these roots. The first partial derivatives are as

follows:
filzy) = 4$3+y76’ flx:12w2: f1y=1,
falzy) = 2?y—1, fop =2zy,  f2, =2
At the given initial approximation xg = 1.0 and yo = 0.5, we get
of1 0f1
1.0,05) = —15, L= = 12, 2o = 1.0,
fi( ) o fia oy Jiy
1o} 0
£(10,05) = —o05 i_p = 19, 92_ fo, = 10
ox Oy



The Jacobian matrix J and its inverse J—! at the given initial approximation can
be calculated as follows:

of o
120 1.0
J= or Oy _ and Jflzi( 1.0 _1,0).
of2 8f2 1.0 1.0 1o\ —1.0 120
8x 8y

4x3+y=6 -

Figure 10: Graphical solution of the given nonlinear system.



By using the following formula

Tn+1

Yn+1

we get the first approximation as follows

()=

1.0
0.5

1
11.0

Similarly, the second iteration gives

() -

1.090909
0.909091
1.088264
0.844686

of 9h
Tn ox oy
Yn of2  Of2
ox %}
1.0 -1.0 -1.5
-1.0 120 —-0.5
7#( 1.190082
15.012077 \ —1.983471

—1

)

f2

)=(

14.280989

The first two and the further steps of the method are listed in Table 3.

Table 3: Solution of a system of two nonlinear equations

n X-approx. | y-approx. 1st. func. 2nd. func.
Tn Yn fl(l'nyyn) f2(33n7yn)
00 1.000000 0.500000 -1.50000 -0.500000
01 1.090909 0.909091 0.102178 0.081893
02 1.088264 0.844686 0.000091 0.000377
03 1.088282 0.844340 0.000001 0.000001

1.090909
0.909091

)

(18)

).

0.102178
0.081893

)



Procedure

Newton’s Method for Two Nonlinear Equations

1. Choose the initial guess for the roots of the system, so that the determinant
of the Jacobian matrix is not zero.

2. Establish Tolerance €(> 0).

3. Evaluate the Jacobian at initial approximations and then find inverse of
Jacobian.

4. Compute new approximation to the roots by using iterative formula

x[n+1] — glnl 4 0], (19)

5. Check tolerance limit. If ||(zn,yn) — (@n—1,Yn—1)|| < €, for n > 0, then end;
otherwise, go back to step 3, and repeat the process.



Summary

In this lecture, we ...
» Introduced the Secant Method
» Introduced the Multiplicity of a Root

v

Introduced the Convergence of Iterative Methods

> Introduced the Systems of Nonlinear Equations
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