3.1 Multiple-Choice and Bimodal Questions

1) When the following equation is balanced, the coefficients are _____.

 $NH_{3}(g) + O_{2}(g) \rightarrow NO_{2}(g) + H_{2}O(g)$

A) 1, 1, 1, 1 B) 4, 7, 4, 6 C) 2, 3, 2, 3 D) 1, 3, 1, 2 E) 4, 3, 4, 3

Answer: B Diff: 1 Page Ref: Sec. 3.1

2) When the following equation is balanced, the coefficients are _____.

$$Al(NO_3)_3 + Na_2S \rightarrow Al_2S_3 + NaNO_3$$

A) 2, 3, 1, 6 B) 2, 1, 3, 2 C) 1, 1, 1, 1 D) 4, 6, 3, 2 E) 2, 3, 2, 3

Answer: A Diff: 1 Page Ref: Sec. 3.1

3) When the following equation is balanced, the coefficient of H_2 is _____.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

A) 1 B) 2 C) 3 D) 4 E) 5

Answer: A Diff: 1 Page Ref: Sec. 3.1

4) When the following equation is balanced, the coefficient of Al is _____.

Al (s) + H₂O (l) \rightarrow Al(OH)₃ (s) + H₂ (g)

A) 1 B) 2 C) 3 D) 5

E) 4

Answer: B Diff: 1 Page Ref: Sec. 3.1

5) When the following equation is balanced, the coefficient of H_2O is _____.

$$Ca(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$$

A) 1 B) 2 C) 3 D) 5 E) 4

Answer: B Diff: 1 Page Ref: Sec. 3.1

6) When the following equation is balanced, the coefficient of Al_2O_3 is _____.

$$Al_2O_3$$
 (s)+C (s)+ $Cl_2(g) \rightarrow AlCl_3$ (s)+CO (g)

A) 1 B) 2 C) 3 D) 4

E) 5

Answer: A Diff: 1 Page Ref: Sec. 3.1

7) When the following equation is balanced, the coefficient of H_2S is _____.

 $\operatorname{FeCl}_3(\operatorname{aq}) + \operatorname{H}_2S(\operatorname{g}) \rightarrow \operatorname{Fe}_2S_3(\operatorname{s}) + \operatorname{HCl}(\operatorname{aq})$

A) 1
B) 2
C) 3
D) 5
E) 4

Answer: C Diff: 1 Page Ref: Sec. 3.1

8) When the following equation is balanced, the coefficient of HCl is _____.

 $CaCO_3$ (s)+HCl (aq) \rightarrow CaCl₂ (aq)+CO₂ (g)+H₂O (l)

A) 1 B) 2 C) 3 D) 4 E) 0

Answer: B Diff: 1 Page Ref: Sec. 3.1

9) When the following equation is balanced, the coefficient of HNO₃ is _____.

$$HNO_3$$
 (aq) + CaCO₃ (s) \rightarrow Ca(NO₃)₂ (aq) + CO₂ (g) + H₂O (l)

A) 1 B) 2 C) 3 D) 5 E) 4

Answer: B Diff: 1 Page Ref: Sec. 3.1

10) When the following equation is balanced, the coefficient of H_3PO_4 is _____.

 H_3PO_4 (aq) + NaOH (aq) \rightarrow Na₃PO₄ (aq) + H_2O (l)

A) 1 B) 2 C) 3 D) 4

E) 0

Answer: A Diff: 1 Page Ref: Sec. 3.1

11) When the following equation is balanced, the coefficient of $C_3H_8O_3$ is _____.

$$C_{3}H_{8}O_{3}(g) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$$

A) 1 B) 2 C) 3 D) 7

E) 5

Answer: B Diff: 1 Page Ref: Sec. 3.1

12) When the following equation is balanced, the coefficient of O_2 is _____.

 $C_2H_4O(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

A) 2 B) 3 C) 4 D) 5

E) 1

Answer: D Diff: 1 Page Ref: Sec. 3.1

13) When the following equation is balanced, the coefficient of H_2 is _____.

$$CO(g) + H_2(g) \rightarrow H_2O(g) + CH_4(g)$$

A) 1 B) 2 C) 3 D) 4 E) 0

Answer: C Diff: 1 Page Ref: Sec. 3.1

14) When the following equation is balanced, the coefficient of H_2SO_4 is _____.

 H_2SO_4 (aq) + NaOH (aq) \rightarrow Na₂SO₄ (aq) + H_2O (l)

A) 1 B) 2 C) 3 D) 4 E) 0.5

Answer: A Diff: 1 Page Ref: Sec. 3.1

15) When the following equation is balanced, the coefficient of water is _____.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

A) 1 B) 2 C) 3

D) 4

E) 5

Answer: B Diff: 1 Page Ref: Sec. 3.1

_____•

16) When the following equation is balanced, the coefficient of hydrogen is

 $K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$

A) 1 B) 2

C) 3

Ď) 4

E) 5

Answer: A Diff: 1 Page Ref: Sec. 3.1

17) When the following equation is balanced, the coefficient of oxygen is _____.

$$PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$$

A) 1 B) 3 C) 2 D) 4 E) 5

Answer: B Diff: 1 Page Ref: Sec. 3.1

_____•

18) When the following equation is balanced, the coefficient of sulfur dioxide is

PbS (s)+ O_2 (g) \rightarrow PbO (s)+S O_2 (g)

A) 5 B) 1

C) 3

D) 2

E) 4

Answer: D Diff: 1 Page Ref: Sec. 3.1

19) When the following equation is balanced, the coefficient of dinitrogen pentoxide is

 N_2O_5 (g) + H_2O (l) \rightarrow HNO₃ (aq)

A) 1 B) 2 C) 3 D) 4 E) 5

_____·

Answer: A Diff: 1 Page Ref: Sec. 3.1

20) When the following equation is balanced, the coefficient of water is _____.

 N_2O_5 (g) + H_2O (l) \rightarrow HNO₃ (aq)

A) 5 B) 2 C) 3

D) 4

E) 1

Answer: E Diff: 1 Page Ref: Sec. 3.1

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

21) When the following equation is balanced, the coefficient of nitric acid is

 N_2O_5 (g) + H_2O (l) \rightarrow HNO₃ (aq)

A) 5
B) 2
C) 3
D) 4
E) 1

Answer: B Diff: 1 Page Ref: Sec. 3.1

22) Write the balanced equation for the reaction that occurs when methanol, CH_3OH (l) is burned in air. What is the coefficient of methanol in the balanced equation?

A) 1
B) 2
C) 3
D) 4
E) 3/2

Answer: B Diff: 2 Page Ref: Sec. 3.2

23) Write the balanced equation for the reaction that occurs when methanol, CH_3OH (l) is burned in air. What is the coefficient of oxygen in the balanced equation?

A) 1 B) 2 C) 3 D) 4 E) 3/2

Answer: C Diff: 2 Page Ref: Sec. 3.2

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

24) What is the coefficient of O_2 when the following equation is completed and balanced?

 $C_4H_8O_2 + O_2 \rightarrow$

A) 2 B) 3 C) 5 D) 6 E) 1

Answer: C Diff: 3 Page Ref: Sec. 3.2

25) Predict the product in the combination reaction below.

Al (s) + N₂ (g) \rightarrow _____

A) AlN
B) Al₃N
C) AlN₂
D) Al₃N₂

E) AlN₃

Answer: A Diff: 3 Page Ref: Sec. 3.2

26) The balanced equation for the decomposition of sodium azide is ______.

A) $2NaN_3 (s) \rightarrow 2Na (s) + 3N_2 (g)$ B) $2NaN_3 (s) \rightarrow Na_2 (s) + 3N_2 (g)$ C) $NaN_3 (s) \rightarrow Na (s) + N_2 (g)$ D) $NaN_3 (s) \rightarrow Na (s) + N_2 (g) + N (g)$ E) $2NaN_3 (s) \rightarrow 2Na (s) + 2N_2 (g)$

Answer: A Diff: 2 Page Ref: Sec. 3.2

27) There are _____ mol of carbon atoms in 4 mol of dimethylsulfoxide (C_2H_6SO).

A) 2 B) 6 C) 8

D) 4

E) 3

Answer: C Diff: 1 Page Ref: Sec. 3.4

28) There are ______ sulfur atoms in 25 molecules of $C_4H_4S_2$.

A) 1.5×10^{25} B) 4.8×10^{25} C) 3.0×10^{25} D) 50 E) 6.02×10^{23}

Answer: D Diff: 2 Page Ref: Sec. 3.4

29) There are _____ hydrogen atoms in 25 molecules of $C_4H_4S_2$.

A) 25 B) 3.8×10^{24} C) 6.0×10^{25} D) 100 E) 1.5×10^{25}

Answer: D Diff: 2 Page Ref: Sec. 3.4

30) A sample of C_3H_8O that contains 200 molecules contains _____ carbon atoms.

A) 600 B) 200 C) 3.61×10²⁶ D) 1.20×10²⁶ E) 4.01×10²⁵

Answer: A Diff: 2 Page Ref: Sec. 3.4

31) How many grams of hydrogen are in 46 g of CH_4O ?

A) 5.8
B) 1.5
C) 2.8
D) 0.36
E) 184

Answer: A Diff: 3 Page Ref: Sec. 3.4

32) How many grams of oxygen are in 65 g of $C_2H_2O_2$?

A) 18 B) 29 C) 9.0 D) 36 E) 130

Answer: D Diff: 3 Page Ref: Sec. 3.4

33) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?

A) 0.8452B) 1.183C) 6.022×10^{23} D) 8.648×10^{23} E) 3.134×10^{25}

Answer: B Diff: 2 Page Ref: Sec. 3.4

34) There are _____ molecules of methane in 0.123 mol of methane (CH₄).

A) 5 B) 2.46×10^{-2} C) 2.04×10^{-25} D) 7.40×10^{22} E) 0.615

Answer: D Diff: 2 Page Ref: Sec. 3.4

35) A 2.25-g sample of magnesium nitrate, Mg(NO₃)₂, contains _____ mol of this compound.

A) 38.4 B) 65.8 C) 148.3 D) 0.0261 E) 0.0152

Answer: E Diff: 2 Page Ref: Sec. 3.4

36) A 22.5-g sample of ammonium carbonate contains _____ mol of ammonium ions.

A) 0.468 B) 0.288 C) 0.234 D) 2.14 E) 3.47

Answer: A Diff: 4 Page Ref: Sec. 3.4

37) What is the empirical formula of a compound that contains 27.0% S, 13.4% O, and 59.6% Cl by mass?

A) SOC1 B) SOC1₂ C) S₂OC1 D) SO₂C1 E) ClSO₄

Answer: B Diff: 3 Page Ref: Sec. 3.5

38) What is the empirical formula of a compound that contains 29% Na, 41% S, and 30% O by mass?

A) $Na_2S_2O_3$ B) $NaSO_2$ C) NaSOD) $NaSO_3$ E) $Na_2S_2O_6$

Answer: A Diff: 3 Page Ref: Sec. 3.5

39) What is the empirical formula of a compound that contains 49.4% K, 20.3% S, and 30.3% O by mass?

- A) KSO₂
- B) KSO₃
- C) K₂SO₄
- D) K_2SO_3
- E) KSO₄

Answer: D Diff: 3 Page Ref: Sec. 3.5

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

40) A compound contains 40.0% C, 6.71% H, and 53.29% O by mass. The molecular weight of the compound is 60.05 amu. The molecular formula of this compound is

A) $C_2H_4O_2$

.

- B) CH₂O
- C) $C_2H_3O_4$
- D) C₂H₂O₄ E) CHO₂

Answer: A Diff: 3 Page Ref: Sec. 3.5

41) A compound that is composed of carbon, hydrogen, and oxygen contains 70.6% C, 5.9% H, and 23.5% O by mass. The molecular weight of the compound is 136 amu. What is the molecular formula?

A) $C_8H_8O_2$ B) C_8H_4O C) C_4H_4O D) $C_9H_{12}O$ E) $C_5H_6O_2$

Answer: A Diff: 3 Page Ref: Sec. 3.5

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

42) A compound that is composed of only carbon and hydrogen contains 85.7% C and 14.3% H by mass. What is the empirical formula of the compound?

A) CH_2 B) C_2H_4 C) CH_4 D) C_4H_8

E) C₈₆H₁₄

Answer: A Diff: 3 Page Ref: Sec. 3.5

43) A compound that is composed of only carbon and hydrogen contains 80.0% C and 20.0% H by mass. What is the empirical formula of the compound?

A) $C_{20}H_{60}$ B) C_7H_{20} C) CH_3 D) C_2H_6 E) CH_4

Answer: C Diff: 3 Page Ref: Sec. 3.5

44) A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound?

A) KNO₃

- B) $K_2N_2O_3$
- C) KNO₂
- D) K₂NO₃
- E) $K_4 NO_5$

Answer: A Diff: 3 Page Ref: Sec. 3.5

45) A compound is composed of only C, H, and O. The combustion of a 0.519-g sample of the compound yields 1.24 g of CO_2 and 0.255 g of H_2O . What is the empirical formula of the compound?

A) C_6H_6O B) C_3H_3O C) CH_3O D) $C_2H_6O_5$ E) $C_2H_6O_2$

Answer: B Diff: 4 Page Ref: Sec. 3.5

46) Combustion of a 1.031-g sample of a compound containing only carbon, hydrogen, and oxygen produced 2.265 g of CO_2 and 1.236 g of H_2O . What is the empirical formula of the compound?

A) $C_{3}H_{8}O$ B) $C_{3}H_{5}O$ C) $C_{6}H_{16}O_{2}$ D) $C_{3}H_{9}O_{3}$ E) $C_{3}H_{6}O_{3}$

Answer: A Diff: 4 Page Ref: Sec. 3.5

47) Combustion of a 0.9835-g sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO_2 and 1.070 g of H_2O . What is the empirical formula of the compound?

A) C_2H_5O B) $C_4H_{10}O_2$ C) $C_4H_{11}O_2$ D) $C_4H_{10}O$ E) $C_2H_5O_2$

Answer: C Diff: 4 Page Ref: Sec. 3.5

48) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

 $3 Mg + N_2 \rightarrow Mg_3N_2$

In a particular experiment, a 9.27-g sample of N_2 reacts completely. The mass of Mg consumed is _____ g.

A) 8.04 B) 24.1 C) 16.1 D) 0.92 E) 13.9

Answer: B Diff: 3 Page Ref: Sec. 3.6

49) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

 $4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{ O} (g)$

The combustion of 28.8 g of ammonia consumes _____ g of oxygen.

A) 94.7
B) 54.1
C) 108
D) 15.3
E) 28.8

Answer: A Diff: 3 Page Ref: Sec. 3.6

50) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

 $4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{ O} (g)$

The combustion of 43.9 g of ammonia produces $_$ g of NO₂.

A) 2.58 B) 178 C) 119 D) 0.954 E) 43.9

Answer: C Diff: 3 Page Ref: Sec. 3.6

51) The combustion of propane (C_3H_8) produces CO_2 and H_2O :

$$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$$

The reaction of 2.5 mol of O_2 will produce _____ mol of H_2O .

A) 4.0
B) 3.0
C) 2.5
D) 2.0
E) 1.0

Answer: D Diff: 2 Page Ref: Sec. 3.6

52) The combustion of propane (C_3H_8) in the presence of excess oxygen yields CO_2 and H_2O :

$$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$$

When 2.5 mol of O_2 are consumed in their reaction, _____ mol of CO_2 are produced.

A) 1.5 B) 3.0 C) 5.0 D) 6.0 E) 2.5

Answer: A Diff: 2 Page Ref: Sec. 3.6

53) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

 $\operatorname{CaC}_{2}(s) + 2\operatorname{H}_{2}O(g) \rightarrow \operatorname{Ca(OH)}_{2}(s) + \operatorname{C}_{2}\operatorname{H}_{2}(g)$

Production of 13 g of C_2H_2 requires consumption of _____ g of H_2O .

A) 4.5 B) 9.0 C) 18 D) 4.8×10^{2} E) 4.8×10^{-2}

Answer: C Diff: 3 Page Ref: Sec. 3.6

54) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

A 7.1-g sample of N_2 requires _____ g of H_2 for complete reaction.

A) 0.51 B) 0.76 C) 1.2 D) 1.5 E) 17.2

Answer: D Diff: 3 Page Ref: Sec. 3.6

55) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

 $PbCO_3$ (s) \rightarrow PbO (s) + CO_2 (g)

How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?

A) 0.41 B) 2.50 C) 0.00936 D) 2.09 E) 2.61

Answer: D Diff: 3 Page Ref: Sec. 3.6

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

56) GeF₃H is formed from GeH₄ and GeF₄ in the combination reaction:

 $GeH_4 + 3GeF_4 \rightarrow 4GeF_3H$

If the reaction yield is 92.6%, how many moles of GeF_4 are needed to produce 8.00 mol of GeF_3H ?

A) 3.24
B) 5.56
C) 6.48
D) 2.78
E) 2.16

Answer: C Diff: 4 Page Ref: Sec. 3.7

57) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

Mg (s) + 2 H₂O (l) \rightarrow Mg(OH)₂ (s) + H₂(g)

A) 0.102 B) 0.0162 C) 0.0485 D) 0.219 E) 0.204

Answer: A Diff: 4 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

58) Silver nitrate and aluminum chloride react with each other by exchanging anions:

 $3AgNO_3$ (aq) + AlCl₃ (aq) \rightarrow Al(NO₃)₃ (aq) + 3AgCl (s)

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃?

A) 17.6
B) 4.22
C) 24.9
D) 3.56
E) 11.9

Answer: D Diff: 4 Page Ref: Sec. 3.7

59) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

 $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$

A) 0.114 B) 0.0378 C) 0.429 D) 0.0756 E) 4.57

Answer: A Diff: 4 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

60) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water.

$$Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$$

The yield of MgO is 3.60 g. What is the percent yield in the reaction?

A) 94.5 B) 78.7 C) 46.6 D) 49.4 E) 99.9

Answer: B Diff: 4 Page Ref: Sec. 3.7

61) Pentacarbonyliron (Fe(CO)₅) reacts with phosphorous trifluoride (PF₃) and hydrogen, releasing carbon monoxide:

 $Fe(CO)_5 + PF_3 + H_2 \rightarrow Fe(CO)_2(PF_3)_2(H)_2 + CO (not balanced)$

The reaction of 5.0 mol of $Fe(CO)_5$, 8.0 mol of PF_3 and 6.0 mol of H_2 will release _____ mol of CO.

A) 15
B) 5.0
C) 24
D) 6.0
E) 12

Answer: E Diff: 3 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

62) What is the maximum mass in grams of NH_3 that can be produced by the reaction of 1.0 g of N₂ with 3.0 g of H₂ via the equation below?

 $N_2(g) + H_2(g) \rightarrow NH_3(g)$ (not balanced)

A) 2.0
B) 1.2
C) 0.61
D) 17
E) 4.0

Answer: B Diff: 3 Page Ref: Sec. 3.7

63) What is the maximum amount in grams of SO_3 that can be produced by the reaction of 1.0 g of S with 1.0 g of O_2 via the equation below?

 $S(s)+O_2(g) \rightarrow SO_3(g)$ (not balanced)

A) 0.27 B) 1.7 C) 2.5 D) 3.8 E) 2.0

Answer: B Diff: 3 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

64) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4\text{Al}(s)+3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)$$

The maximum amount of Al_2O_3 that can be produced from 2.5 g of Al and 2.5 g of O_2 is

_____ g.

A) 9.4
B) 7.4
C) 4.7
D) 5.3
E) 5.0

Answer: C Diff: 3 Page Ref: Sec. 3.7

65) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$S(s) + 3F_2(g) \rightarrow SF_6(g)$$

The maximum amount of SF_6 that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is _____ g.

A) 12
B) 3.2
C) 5.8
D) 16
E) 8.0

Answer: C Diff: 3 Page Ref: Sec. 3.7

66) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O_2 produced 3.5 g of Al_2O_3 . The % yield of the reaction is _____.

A) 74
B) 37
C) 47
D) 66
E) 26

Answer: A Diff: 4 Page Ref: Sec. 3.7

67) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:

 $2 S (s) + 3O_2 (g) \rightarrow 2SO_3 (g)$

In a particular experiment, the reaction of 1.0 g S with 1.0 g O_2 produced 0.80 g of SO₃. The % yield in this experiment is _____.

A) 30
B) 29
C) 21
D) 88
E) 48

Answer: E Diff: 4 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

68) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

 $S(s) + 3F_2(g) \rightarrow SF_6(g)$

In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a 7.90-g sample of fluorine yields _____ g of SF_6 .

A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110

Answer: C Diff: 4 Page Ref: Sec. 3.7

3.2 Multiple-Choice Questions

1) When the following equation is balanced, the coefficients are _____.

$$C_8H_{18}+O_2 \rightarrow CO_2+H_2O$$

A) 2, 3, 4, 4 B) 1, 4, 8, 9 C) 2, 12, 8, 9 D) 4, 4, 32, 36 E) 2, 25, 16, 18

Answer: E Diff: 2 Page Ref: Sec. 3.1

2) Of the reactions below, which one is <u>not</u> a combination reaction?

A) $C+O_2 \rightarrow CO_2$ B) $2Mg+O_2 \rightarrow 2MgO$ C) $2N_2+3H_2 \rightarrow 2NH_3$ D) $CaO+H_2O \rightarrow Ca(OH)_2$ E) $2CH_4+4O_2 \rightarrow 2CO_2+4H_2O$

Answer: E Diff: 2 Page Ref: Sec. 3.2

3) When a hydrocarbon burns in air, what component of air reacts?

A) oxygenB) nitrogenC) carbon dioxideD) waterE) argon

Answer: A Diff: 2 Page Ref: Sec. 3.2

- 4) Of the reactions below, which one is a decomposition reaction?
- A) $NH_4Cl \rightarrow NH_3 + HCl$ B) $2Mg + O_2 \rightarrow 2MgO$ C) $2N_2 + 3H_2 \rightarrow 2NH_3$ D) $2CH_4 + 4O_2 \rightarrow 2CO_2 + 4H_2O$ E) $Cd(NO_3)_2 + Na_2S \rightarrow CdS + 2NaNO_3$

Answer: A Diff: 3 Page Ref: Sec. 3.2

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

5) Which one of the following substances is the product of this combination reaction?

Al (s)+ I_2 (s) \rightarrow _____

A) AlI₂
B) AlI
C) AlI₃
D) Al₂I₃

E) Al_3I_2

Answer: C Diff: 2 Page Ref: Sec. 3.2

6) Which one of the following is <u>not</u> true concerning automotive air bags?

A) They are inflated as a result of a decomposition reaction

B) They are loaded with sodium azide initially

C) The gas used for inflating them is oxygen

D) The two products of the decomposition reaction are sodium and nitrogen

E) A gas is produced when the air bag activates.

Answer: C Diff: 2 Page Ref: Sec. 3.2

7) The reaction used to inflate automobile airbags ______.

A) produces sodium gas
B) is a combustion reaction
C) is a combination reaction
D) violates the law of conservation of mass
E) is a decomposition reaction

Answer: E Diff: 2 Page Ref: Sec. 3.2

8) Which of the following are combination reactions?

1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$

- 2) CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s)
- 3) Mg (s) + O_2 (g) \rightarrow MgO (s)
- 4) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$

A) 1, 2, and 3 B) 2 and 3 C) 1, 2, 3, and 4 D) 4 only E) 2, 3, and 4

Answer: B Diff: 3 Page Ref: Sec. 3.2

- 9) Which of the following are combustion reactions?
- 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$
- 2) CaO(s)+CO₂(g) \rightarrow CaCO₃(s)
- 3) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$
- 4) $CH_3OH(l) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$

A) 1 and 4 B) 1, 2, 3, and 4 C) 1, 3, and 4 D) 2, 3, and 4 E) 3 and 4

Answer: A Diff: 2 Page Ref: Sec. 3.2

10) Which of the following are decomposition reactions?

1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$

- 2) CaO(s)+CO₂(g) \rightarrow CaCO₃(s)
- 3) Mg (s) + O_2 (g) \rightarrow MgO (s)
- 4) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$

A) 1, 2, and 3
B) 4 only
C) 1, 2, 3, and 4
D) 2 and 3
E) 2, 3, and 4

Answer: B Diff: 3 Page Ref: Sec. 3.2

11) The formula of nitrobenzene is $C_6H_5NO_2$. The molecular weight of this compound is _____ amu.

A) 107.11 B) 43.03 C) 109.10 D) 123.11 E) 3.06

Answer: D Diff: 2 Page Ref: Sec. 3.3

12) The formula weight of potassium dichromate $(K_2Cr_2O_7)$ is _____ amu.

A) 107.09
B) 255.08
C) 242.18
D) 294.18
E) 333.08

Answer: D Diff: 2 Page Ref: Sec. 3.3.

13) The formula weight of potassium phosphate (K_3PO_4) is _____ amu.

A) 173.17 B) 251.37 C) 212.27 D) 196.27 E) 86.07

Answer: C Diff: 2 Page Ref: Sec. 3.3

14) The formula weight of aluminum sulfate $(Al_2(SO_4)_3)$ is _____ amu.

A) 342.15
B) 123.04
C) 59.04
D) 150.14
E) 273.06

Answer: A Diff: 2 Page Ref: Sec. 3.3

15) The formula weight of silver chromate (Ag_2CrO_4) is _____ amu.

A) 159.87
B) 223.87
C) 331.73
D) 339.86
E) 175.87

Answer: C Diff: 2 Page Ref: Sec. 3.3

16) The formula weight of ammonium sulfate $((NH_4)_2SO_4)$, rounded to the nearest integer, is ______ amu.

A) 100
B) 118
C) 116
D) 132
E) 264

Answer: D Diff: 2 Page Ref: Sec. 3.3

17) The molecular weight of the acetic acid (CH_3CO_2H) , rounded to the nearest integer, is ______ amu.

A) 60 B) 48 C) 44 D) 32

Answer: A Diff: 1 Page Ref: Sec. 3.3

18) The molecular weight of the ethanol (C_2H_5OH), rounded to the nearest integer, is _____ amu.

A) 34
B) 41
C) 30
D) 46
E) 92

Answer: D Diff: 1 Page Ref: Sec. 3.3

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

19) The molecular weight of glucose (C₆H₁₂O₆), rounded to the nearest integer, is amu.

A) 24 B) 96 C) 136 D) 180 E) 224

Answer: D Diff: 1 Page Ref: Sec. 3.3

20) What is the mass % of carbon in dimethyl sulfoxide (C_2H_6SO) rounded to three significant figures?

A) 60.0 B) 20.6 C) 30.7 D) 7.74 E) 79.8

Answer: C Diff: 3 Page Ref: Sec. 3.3

21) The mass % of H in methane (CH_4) is _____.

A) 25.13
B) 4.032
C) 74.87
D) 92.26
E) 7.743

Answer: A Diff: 2 Page Ref: Sec. 3.3

22) The mass % of Al in aluminum sulfate $(Al_2(SO_4)_3)$ is _____.

A) 7.886 B) 15.77 C) 21.93 D) 45.70 E) 35.94

Answer: B Diff: 3 Page Ref: Sec. 3.3

23) The formula weight of a substance is _____.

A) identical to the molar mass

B) the same as the percent by mass weight

C) determined by combustion analysis

D) the sum of the atomic weights of each atom in its chemical formula

E) the weight of a sample of the substance

Answer: D Diff: 1 Page Ref: Sec. 3.3

24) The formula weight of calcium nitrate $(Ca(NO_3)_2)$, rounded to one decimal place, is ______ amu.

A) 102.1 B) 164.0 C) 204.2 D) 150.1 E) 116.1

Answer: B Diff: 2 Page Ref: Sec. 3.3

25) The formula weight of magnesium fluoride (MgF₂), rounded to one decimal place, is

_____amu.

A) 86.6
B) 43.3
C) 62.3
D) 67.6
E) 92.9

Answer: C Diff: 2 Page Ref: Sec. 3.3

26) The formula weight of lead nitrate (Pb(NO₃)₂) is _____ amu.

A) 269.2
B) 285.2
C) 317.2
D) 331.2
E) 538.4

Answer: D Diff: 2 Page Ref: Sec. 3.3

27) The mass % of C in methane (CH_4) is _____.

A) 25.13
B) 133.6
C) 74.87
D) 92.26
E) 7.743

Answer: C Diff: 2 Page Ref: Sec. 3.4

28) The mass % of F in the binary compound KrF_2 is _____.

A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20

Answer: E Diff: 2 Page Ref: Sec. 3.4

29) Calculate the percentage by mass of nitrogen in $PtCl_2(NH_3)_2$.

A) 4.67 B) 9.34 C) 9.90 D) 4.95 E) 12.67

Answer: B Diff: 2 Page Ref: Sec. 3.4

30) Calculate the percentage by mass of lead in Pb(NO₃)₂.

A) 38.6
B) 44.5
C) 62.6
D) 65.3
E) 71.2

Answer: C Diff: 2 Page Ref: Sec. 3.4

31) Calculate the percentage by mass of nitrogen in Pb(NO3)2.

A) 4.2
B) 5.2
C) 8.5
D) 10.4
E) 12.6

Answer: C Diff: 2 Page Ref: Sec. 3.4

32) Calculate the percentage by mass of oxygen in Pb(NO₃)₂.

A) 9.7
B) 14.5
C) 19.3
D) 29.0
E) 33.4

Answer: D Diff: 2 Page Ref: Sec 3.4

33) Calculate the percentage by mass of chlorine in $PtCl_2(NH_3)_2$.

A) 23.63
B) 11.82
C) 25.05
D) 12.53
E) 18.09

Answer: A Diff: 3 Page Ref: Sec. 3.4

34) Calculate the percentage by mass of hydrogen in $PtCl_2(NH_3)_2$.

A) 1.558 B) 1.008 C) 0.672 D) 0.034 E) 2.016

Answer: E Diff: 3 Page Ref: Sec. 3.4

35) One mole of ______ contains the largest number of atoms.

A) S_8 B) $C_{10}H_8$ C) $Al_2(SO_4)_3$ D) Na_3PO_4 E) Cl_2

Answer: B Diff: 2 Page Ref: Sec. 3.4

36) One million argon atoms is _____ mol (rounded to two significant figures) of argon atoms.

A) 3.0 B) 1.7×10^{-18} C) 6.0×10^{23} D) 1.0×10^{-6} E) $1.0 \times 10^{+6}$

Answer: B Diff: 2 Page Ref: Sec. 3.4

37) There are _____ atoms of oxygen are in 300 molecules of CH_3CO_2H .

A) 300 B) 600 C) 3.01×10^{24} D) 3.61×10^{26} E) 1.80×10^{26}

Answer: B Diff: 2 Page Ref: Sec. 3.4

38) How many molecules of CH_4 are in 48.2 g of this compound?

A) 5.00×10^{24} B) 3.00C) 2.90×10^{25} D) 1.81×10^{24} E) 4.00

Answer: D Diff: 3 Page Ref: Sec. 3.4

39) A 30.5 gram sample of glucose (C₆H₁₂O₆) contains _____ mol of glucose.

A) 0.424 B) 0.169 C) 5.90 D) 2.36 E) 0.136

Answer: B Diff: 2 Page Ref: Sec. 3.4

40) A 30.5 gram sample of glucose (C₆H₁₂O₆) contains ______ atoms of carbon.

A) 1.02×10^{23} B) 6.12×10^{23} C) 6.02×10^{23} D) 2.04×10^{23} E) 1.22×10^{24}

Answer: B Diff: 3 Page Ref: Sec 3.4

41) A sample of CH_2F_2 with a mass of 19 g contains _____ atoms of F.

A) 2.2×10^{23} B) 38 C) 3.3×10^{24} D) 4.4×10^{23} E) 9.5

Answer: D Diff: 3 Page Ref: Sec. 3.4

42) A sample of CH_4O with a mass of 32.0 g contains _____ molecules of CH_4O .

A) 5.32×10^{-23} B) 1.00 C) 1.88×10^{22} D) 6.02×10^{23} E) 32.0

Answer: D Diff: 2 Page Ref: Sec. 3.4

43) How many atoms of nitrogen are in 10 g of NH_4NO_3 ?

A) 3.5 B) 1.5×10²³ C) 3.0×10²³ D) 1.8 E) 2

Answer: B Diff: 3 Page Ref: Sec. 3.4

44) Gaseous argon has a density of 1.40 g/L at standard conditions. How many argon atoms are in 1.00 L of argon gas at standard conditions?

A) 4.76×10^{22} B) 3.43×10^{25} C) 2.11×10^{22} D) 1.59×10^{25} E) 6.02×10^{23}

Answer: C Diff: 4 Page Ref: Sec. 3.4

45) What is the mass in grams of 9.76×10^{12} atoms of naturally occurring sodium?

A) 22.99 B) 1.62×10^{-11} C) 3.73×10^{-10} D) 7.05×10^{-13} E) 2.24×10^{14}

Answer: C Diff: 3 Page Ref: Sec. 3.4

46) How many moles of pyridine (C_5H_5N) are contained in 3.13 g of pyridine?

A) 0.0396 B) 25.3 C) 0.319 D) 0.00404 E) 4.04×10³

Answer: A Diff: 3 Page Ref: Sec. 3.4

47) How many oxygen atoms are contained in 2.74 g of $Al_2(SO_4)_3$?

A) 12 B) 6.02×10^{23} C) 7.22×10^{24} D) 5.79×10^{22} E) 8.01×10^{-3}

Answer: D Diff: 3 Page Ref: Sec. 3.4

48) The total number of atoms in 0.111 mol of $Fe(CO)_3(PH_3)_2$ is _____.

A) 15.0 B) 1.00×10^{24} C) 4.46×10^{21} D) 1.67 E) 2.76×10^{-24}

Answer: B Diff: 3 Page Ref: Sec. 3.4

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

49) How many sulfur dioxide molecules are there in 1.80 mol of sulfur dioxide?

A) 1.08×10^{23} B) 6.02×10^{24} C) 1.80×10^{24} D) 1.08×10^{24} E) 6.02×10^{23}

Answer: D Diff: 2 Page Ref: Sec. 3.4

50) How many sulfur dioxide molecules are there in 0.180 mol of sulfur dioxide?

A) 1.80×10^{23} B) 6.02×10^{24} C) 6.02×10^{23} D) 1.08×10^{24} E) 1.08×10^{23}

Answer: E Diff: 2 Page Ref: Sec. 3.4

51) How many carbon atoms are there in 52.06 g of carbon dioxide?

A) 5.206×10^{24} B) 3.134×10^{25} C) 7.122×10^{23} D) 8.648×10^{-23} E) 1.424×10^{24}

Answer: C Diff: 3 Page Ref: Sec. 3.4

52) How many oxygen atoms are there in 52.06 g of carbon dioxide?

A) 1.424×10^{24} B) 6.022×10^{23} C) 1.204×10^{24} D) 5.088×10^{23} E) 1.018×10^{24}

Answer: A Diff: 3 Page Ref: Sec. 3.4

53) How many moles of sodium carbonate contain 1.773×10^{17} carbon atoms?

A) 5.890×10^{-7} B) 2.945×10^{-7} C) 1.473×10^{-7} D) 8.836×10^{-7} E) 9.817×10^{-8}

Answer: B Diff: 2 Page Ref: Sec. 3.4

54) How many grams of sodium carbonate contain 1.773×10^{17} carbon atoms?

A) 3.121×10^{-5} B) 1.011×10^{-5} C) 1.517×10^{-5} D) 9.100×10^{-5} E) 6.066×10^{-5}

Answer: A Diff: 2 Page Ref: Sec. 3.4

55) The compound responsible for the characteristic smell of garlic is allicin, $C_6H_{10}OS_2$. The mass of 1.00 mol of allicin, rounded to the nearest integer, is _____ g.

A) 34
B) 162
C) 86
D) 61
E) 19

Answer: B Diff: 1 Page Ref: Sec. 3.4

56) The molecular formula of aspartame, the generic name of NutraSweet[®], is $C_{14}H_{18}N_2O_5$ The molar mass of aspartame, rounded to the nearest integer, is ______ g.

A) 24
B) 156
C) 294
D) 43
E) 39

Answer: C Diff: 1 Page Ref: Sec. 3.4

57) There are _____ oxygen atoms in 30 molecules of C₂₀H₄₂S₃O₂

A) 6.0×10^{23} B) 1.8×10^{25} C) 3.6×10^{25} D) 1.2×10^{24} E) 60

Answer: E Diff: 2 Page Ref: Sec. 3.4

58) A nitrogen oxide is 63.65% by mass nitrogen. The molecular formula could be

A) NO B) NO₂ C) N₂O D) N₂O₄ E) either NO₂ or N₂O₄

Answer: C Diff: 3 Page Ref: Sec. 3.5

59) A sulfur oxide is 50.0% by mass sulfur. This molecular formula could be

A) SO B) SO₂ C) S₂O D) S₂O₄ E) either SO₂ or S₂O₄

Answer: E Diff: 3 Page Ref: Sec. 3.5

60) Which hydrocarbon pair below have identical mass percentage of C?

A) C_3H_4 and C_3H_6 B) C_2H_4 and C_3H_4 C) C_2H_4 and C_4H_2 D) C_2H_4 and C_3H_6 E) none of the above

Answer: D Diff: 3 Page Ref: Sec. 3.5

61) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of SO₃ are produced by the reaction of 5.0 grams of O₂ with 6.0 grams of S. What is the % yield of SO₃ in this experiment?

 $S(s)+O_2(g) \rightarrow SO_3(g)$ (not balanced)

A) 32
B) 63
C) 75
D) 95
E) 99

Answer: D Diff: 4 Page Ref: Sec. 3.7

62) Propane (C₃H₈) reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the % yield in this reaction?

A) 38.0 B) 57.6 C) 66.0 D) 86.4 E) 94.5

Answer: B Diff: 5 Page Ref: Sec 3.7

3.3 Short Answer Questions

1) Complete and balance the following reaction, given that elemental rubidium reacts with elemental sulfur to form $Rb_2S(s)$.

Na (s) + S (s) \rightarrow _____

Answer: $\rightarrow Na_2S$ (s) *Diff: 3 Page Ref: Sec. 3.2*

2) A compound was found to contain 90.6% lead (Pb) and 9.4% oxygen. The empirical formula for this compound is _____.

Answer: Pb3O4 Diff: 3 Page Ref: Sec. 3.5

3) The combustion of propane (C_3H_8) in the presence of excess oxygen yields CO_2 and H_2O :

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$

When 7.3 g of C_3H_8 burns in the presence of excess O_2 , _____ g of CO_2 is produced.

Answer: 22 Diff: 3 Page Ref: Sec. 3.6

4) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

A 9.3-g sample of hydrogen requires $_____ g$ of N_2 for a complete reaction.

Answer: 43 *Diff: 3 Page Ref: Sec. 3.6*

5) Water can be formed from the stoichiometric reaction of hydrogen with oxygen:

$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

A complete reaction of 5.0 g of O_2 with excess hydrogen produces _____ g of H_2O .

Answer: 5.6 Diff: 3 Page Ref: Sec. 3.6

6) The combustion of carbon disulfide in the presence of excess oxygen yields carbon dioxide and sulfur dioxide:

 $CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$

The combustion of 15 g of CS_2 in the presence of excess oxygen yields _____ g of SO_2 .

Answer: 25 Diff: 3 Page Ref: Sec. 3.6

3.4 True/False Questions

 The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1 mole of that element.
 Answer: True
 Diff: 2 Page Ref: Sec. 3.4

2) The molecular weight is ALWAYS a whole-number multiple of the empirical formula weight.
Answer: True *Diff: 1 Page Ref: Sec. 3.5*

3) Carbon dioxide called a greenhouse gas because bacterial degradation of fertilizers in a greenhouse environment produce large quantities of carbon dioxide.
Answer: False *Diff: 2*

Page Ref: Sec. 3.6

4) A great deal of the carbon dioxide produced by the combustion of fossil fuels is absorbed into the oceans.
Answer: True *Diff: 2 Page Ref: Sec. 3.6*

5) The quantity of product that is calculated to form when all of the limiting reagent reacts is called the actual yield. Answer: False *Diff: 1 Page Ref: Sec. 3.7*

3.5 Algorithmic Questions

1) The molecular weight of urea ((NH₂)₂CO), a compound used as a nitrogen fertilizer, is _____ amu (rounded to one decimal place).

A) 44.0 B) 43.0 C) 60.1 D) 8.0 E) 32.0

Answer: C Diff: 1 Page Ref: Sec. 3.3

2) Determine the mass percent (to the hundredth's place) of H in sodium bicarbonate (NaHCO₃).

Answer: 1.20 Diff: 2 Page Ref: Sec. 3.3 3) What is the empirical formula of a compound that is 62.0% C, 10.4% H, and 27.5% O by mass?

A) $C_{3}HO$ B) $C_{6}HO_{3}$ C) $C_{6}H_{12}O_{2}$ D) $C_{5}H_{10}O_{2}$ E) $C_{3}H_{6}O$

Answer: E Diff: 4 Page Ref: Sec. 3.5

4) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 50.00 gram sample of the alcohol produced 95.50 grams of CO₂ and 58.70 grams of H₂O. What is the empirical formula of the alcohol?

Answer: C₂H₆O *Diff: 4 Page Ref: Sec. 3.5* 5) Lithium and nitrogen react to produce lithium nitride:

6Li (s) + N₂ (g)
$$\rightarrow$$
 2Li₃N (s)

How many moles of N_2 are needed to react with 0.500 mol of lithium?

A) 3.00 B) 0.500 C) 0.167 D) 1.50 E) 0.0833

Answer: E Diff: 2 Page Ref: Sec. 3.6

6) Lithium and nitrogen react to produce lithium nitride:

6Li (s) + N₂ (g) \rightarrow 2Li₃N (s)

How many moles of lithium nitride are produced when 0.450 mol of lithium react in this fashion?

A) 0.150 B) 0.900 C) 0.0750 D) 1.35 E) 0.225

Answer: A Diff: 2 Page Ref: Sec. 3.6

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

7) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$$

How many moles of lithium are needed to produce $0.60 \text{ mol of } \text{Li}_3\text{N}$ when the reaction is carried out in the presence of excess nitrogen?

A) 0.30 B) 1.8 C) 0.20 D) 0.40 E) 3.6

Answer: B Diff: 2 Page Ref: Sec. 3.6

8) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$2\text{NaN}_3$$
 (s) $\rightarrow 2\text{Na}$ (s) $+3\text{N}_2$ (g)

How many moles of N_2 are produced by the decomposition of 2.88 mol of sodium azide?

A) 1.92 B) 8.64 C) 4.32 D) 0.960 E) 1.44

Answer: C Diff: 2 Page Ref: Sec. 3.6

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

9) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$2\text{NaN}_3$$
 (s) $\rightarrow 2\text{Na}$ (s) $+3\text{N}_2$ (g)

How many grams of sodium azide are required to produce 33.0 g of nitrogen?

A) 1.77 B) 0.785 C) 76.6 D) 51.1 E) 114.9

Answer: D Diff: 3 Page Ref: Sec. 3.6

10) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

How many moles of O_2 are consumed when 0.770 mol of magnesium burns?

A) 0.0317 B) 2.60 C) 0.770 D) 1.54 E) 0.385

Answer: E Diff: 2 Page Ref: Sec. 3.6

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

11) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

6Li (s) + N₂ (g) \rightarrow 2Li₃N (s)

In a particular experiment, 3.50-g samples of each reagent are reacted. The theoretical yield of lithium nitride is _____ g.

A) 3.52
B) 2.93
C) 17.6
D) 5.85
E) 8.7

Answer: D Diff: 3 Page Ref: Sec. 3.7

12) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

When 4.00 g of magnesium burns, the theoretical yield of magnesium oxide is ______ g.

A) 4.00 B) 6.63 C) 0.165 D) 3.32 E) 13.3

Answer: B Diff: 3 Page Ref: Sec. 3.7

Chapter 3: Stoichiometry: Calculations with Chemical Formulas and Equations

13) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$$

A 4.50-g sample of CaO is reacted with 4.34 g of H_2O . How many grams of water remains after completion of reaction?

A) 0.00 B) 0.00892 C) 2.90 D) 1.04 E) 0.161

Answer: C Diff: 4 Page Ref: Sec. 3.7

14) If 294 grams of FeS₂ is allowed to react with 176 grams of O₂ according to the following equation, how many grams of Fe₂O₃ are produced?

$$\operatorname{FeS}_2 + \operatorname{O}_2 \rightarrow \operatorname{Fe}_2\operatorname{O}_3 + \operatorname{SO}_2$$

Answer: 160 Diff: 4 Page Ref: Sec. 3.7 15) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

In a particular experiment, a 5.00-g sample of CaO is reacted with excess water and 6.11 g of $Ca(OH)_2$ is recovered. What is the percent yield in this experiment?

A) 122
B) 1.22
C) 7.19
D) 92.5
E) 81.9

Answer: D Diff: 4 Page Ref: Sec. 3.7