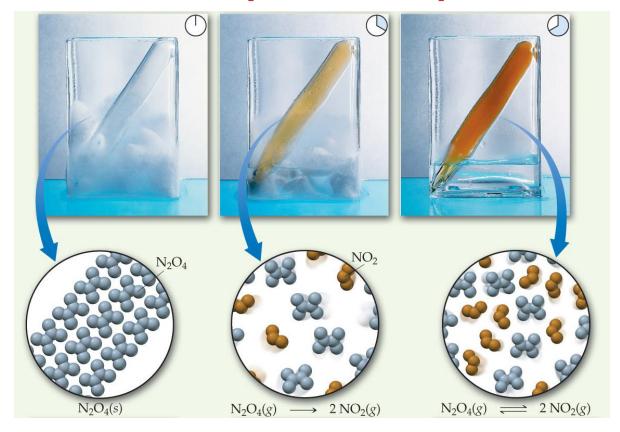
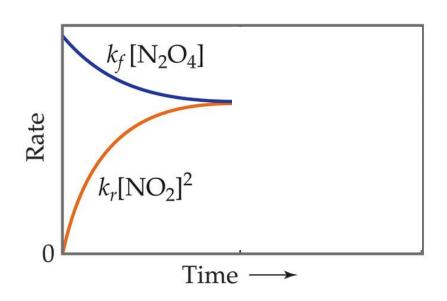
Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten


Chapter 15 Chemical Equilibrium

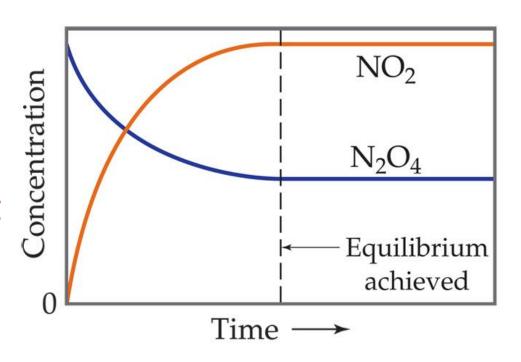
Dr. Ayman Nafady

John D. Bookstaver
St. Charles Community College
Cottleville, MO


The Concept of Equilibrium

Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.

The Concept of Equilibrium



- As a system approaches equilibrium, both the forward and reverse reactions are occurring.
- At equilibrium, the forward and reverse reactions are proceeding at the same rate.

A System at Equilibrium

Once equilibrium is achieved, the amount of each reactant and product remains constant.

Depicting Equilibrium

Since, in a system at equilibrium, both the forward and reverse reactions are being carried out, we write its equation with a double arrow.

$$N_2O_{4(g)}$$
 = 2 $NO_{2(g)}$

Forward reaction:

$$N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$$

Rate Law:

Rate =
$$k_f$$
 [N₂O₄]

Reverse reaction:

$$2 \text{ NO}_{2 \text{ (g)}} \longrightarrow \text{N}_2\text{O}_{4 \text{ (g)}}$$

Rate Law:

Rate =
$$k_r [NO_2]^2$$

Therefore, at equilibrium

Rate_f = Rate_r

$$k_f [N_2O_4] = k_r [NO_2]^2$$

Rewriting this, it becomes

$$\frac{k_f}{k_r} = \frac{[NO_2]^2}{[N_2O_4]}$$

The ratio of the rate constants is a constant at that temperature, and the expression becomes

$$K_{\text{eq}} = \frac{k_f}{k_r} = \frac{[NO_2]^2}{[N_2O_4]}$$

Consider the generalized reaction

$$aA + bB \longrightarrow cC + dD$$

The equilibrium expression for this reaction would be

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

Since pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written

$$K_{\rm p} = \frac{(P_{\rm C}^{\rm c}) (P_{\rm D}^{\rm d})}{(P_{\rm A}^{\rm a}) (P_{\rm B}^{\rm b})}$$

Relationship Between K_c and K_p

From the Ideal Gas Law we know that

$$PV = nRT$$

Rearranging it, we get

$$P = \frac{n}{V} RT$$

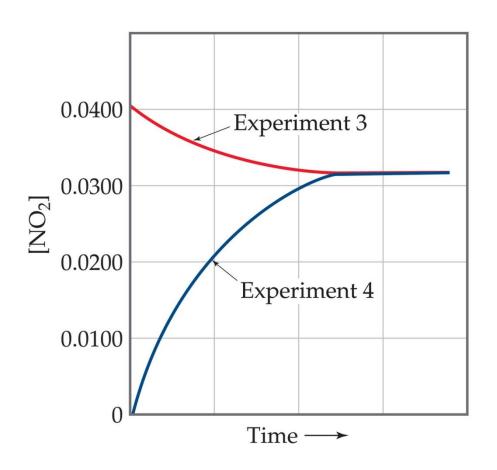
Relationship Between K_c and K_p

Plugging this into the expression for K_p for each substance, the relationship between K_c and K_p becomes

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

where

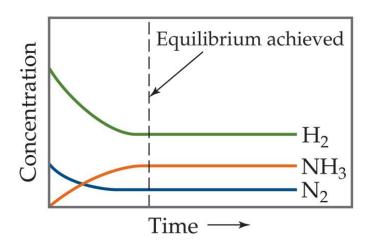
 Δn = (moles of gaseous product) - (moles of gaseous reactant)

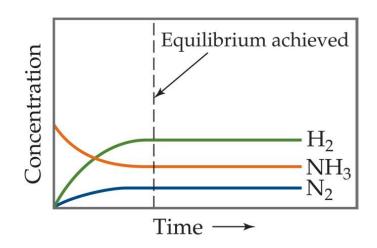


Equilibrium Can Be Reached from Either Direction

Initial and Equilibrium Concentrations of $\mathrm{N_2O_4}$ and $\mathrm{NO_2}$ in the Gas Phase at 100 °C					
Experiment	Initial $[N_2O_4]$ (M)	Initial $[NO_2]$ (M)	Equilibrium $[N_2O_4]$ (M)	Equilibrium [NO ₂] (M)	K_c
1	0.0	0.0200	0.00140	0.0172	0.211
2	0.0	0.0300	0.00280	0.0243	0.211
3	0.0	0.0400	0.00452	0.0310	0.213
4	0.0200	0.0	0.00452	0.0310	0.213

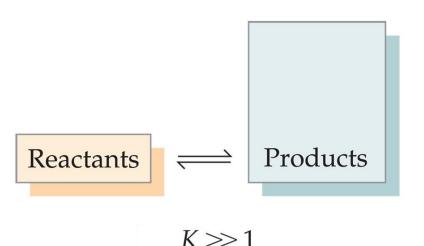
As you can see, the ratio of $[NO_2]^2$ to $[N_2O_4]$ remains constant at this temperature no matter what the initial concentrations of NO_2 and N_2O_4 are.

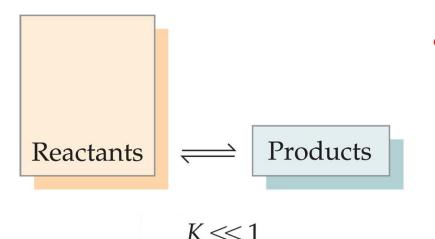

Equilibrium Can Be Reached from Either Direction



This is the data from the last two trials from the table on the previous slide.

Equilibrium Can Be Reached from Either Direction




It doesn't matter whether we start with N_2 and H_2 or whether we start with NH_3 : we will have the same proportions of all three substances at equilibrium.

Equilibrium

What Does the Value of K Mean?

 If K>>1, the reaction is product-favored; product predominates at equilibrium.

 If K<<1, the reaction is reactant-favored; reactant predominates at equilibrium.

Equilibrium

Manipulating Equilibrium Constants

The equilibrium constant of a reaction in the reverse reaction is the reciprocal of the equilibrium constant of the forward reaction.

$$N_2O_4$$
 (g) \longrightarrow 2 NO_2 (g) $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.212$ at 100 °C

2 NO_{2 (g)}
$$\longrightarrow$$
 N₂O_{4 (g)} $K_c = \frac{[N_2O_4]}{[NO_2]^2} = 4.72$ at 100 °C

Manipulating Equilibrium Constants

The equilibrium constant of a reaction that has been multiplied by a number is the equilibrium constant raised to a power that is equal to that number.

$$N_2O_{4(g)}$$
 \longrightarrow 2 $NO_{2(g)}$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.212$ at 100 °C

2
$$N_2O_{4(g)}$$
 \longrightarrow 4 $NO_{2(g)}$ $K_c = \frac{[NO_2]^4}{[N_2O_4]^2} = (0.212)^2$ at 100 °C

Manipulating Equilibrium Constants

The equilibrium constant for a net reaction made up of two or more steps is the product of the equilibrium constants for the individual steps.

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Write the equilibrium expression for K_c for the following reactions:

(a)
$$2 O_3(g) \rightleftharpoons 3 O_2(g)$$

(b)
$$2 \text{ NO}(g) + \text{Cl}_2(g) \Longrightarrow 2 \text{ NOCl}(g)$$

(c)
$$Ag^+(aq) + 2 NH_3(aq) \rightleftharpoons Ag(NH_3)_2^+(aq)$$

Solution

Solve: (a)
$$K_c = \frac{[O_2]^3}{[O_3]^2}$$
, (b) $K_c = \frac{[NOCl]^2}{[NO]^2[Cl_2]}$, (c) $K_c = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}$

Practice Exercise

Write the equilibrium-constant expression K_c , for (a) $H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$, (b) $Cd^{2+}(aq) + 4 Br^{-}(aq) \Longrightarrow CdBr_4^{2-}(aq)$

Answers: (a)
$$K_c = \frac{[HI]^2}{[H_2][I_2]}$$
; (b) $K_c = \frac{[CdBr_4^{2-}]}{[Cd^{2+}][Br^{-}]^4}$

Sample Exercise 15.2 Converting between K_c and K_p

In the synthesis of ammonia from nitrogen and hydrogen,

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

 K_c = 9.60 at 300 ° C. Calculate K_p for this reaction at this temperature.

Solution

Analyze: We are given K_c for a reaction and asked to calculate K_p .

Plan: The relationship between K_c and K_p is given by Equation 15.14. To apply that equation, we must determine Δn by comparing the number of moles of product with the number of moles of reactants (Equation 15.15).

Solve: There are two moles of gaseous products (2 NH₃) and four moles of gaseous reactants (1 N₂ + 3 H₂). Therefore, $\Delta n = 2 - 4 = -2$. (Remember that Δ functions are always based on products minus reactants.) The temperature, T, is 273 + 300 = 573 K. The value for the ideal-gas constant, R, is 0.0821 L-atm/mol-K. Using $K_c = 9.60$, we therefore have

$$K_p = K_c(RT)^{\Delta n} = (9.60)(0.0821 \times 573)^{-2} = \frac{(9.60)}{(0.0821 \times 573)^2} = 4.34 \times 10^{-3}$$

Heterogeneous Equilibrium

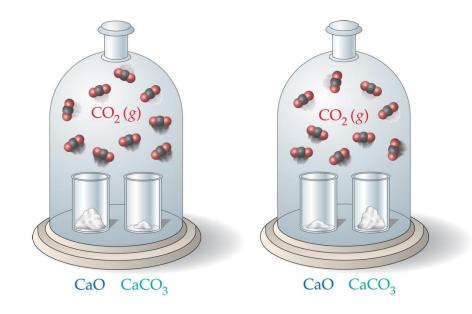
The Concentrations of Solids and Liquids Are Essentially Constant

Both can be obtained by multiplying the density of the substance by its molar mass — and both of these are constants at constant temperature.

The Concentrations of Solids and Liquids Are Essentially Constant

Therefore, the concentrations of solids and liquids do not appear in the equilibrium expression.

PbCl_{2 (s)}
$$\Longrightarrow$$
 Pb²⁺_(aq) + 2 Cl⁻_(aq)


$$K_c = [Pb^{2+}] [Cl^{-}]^2$$

$$CO_{2(g)} + CaO_{(s)}$$

As long as *some* CaCO₃ or CaO remain in the system, the amount of CO₂ above the solid will remain the same.

Equilibrium Calculations

An Equilibrium Problem

A closed system initially containing 1.000 x 10^{-3} M H₂ and 2.000 x 10^{-3} M I₂ at 448 °C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10^{-3} M. Calculate K_c at 448 °C for the reaction taking place, which is

$$H_{2(g)} + I_{2(s)} \longrightarrow 2 HI_{(g)}$$

What Do We Know?

	[H ₂], M	[I ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change			
At equilibrium			1.87 x 10 ⁻³

[HI] Increases by $1.87 \times 10^{-3} M$

	[H ₂], M	[l ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change			+1.87 x 10 ⁻³
At equilibrium			1.87 x 10 ⁻³

Stoichiometry tells us [H₂] and [I₂] decrease by half as much.

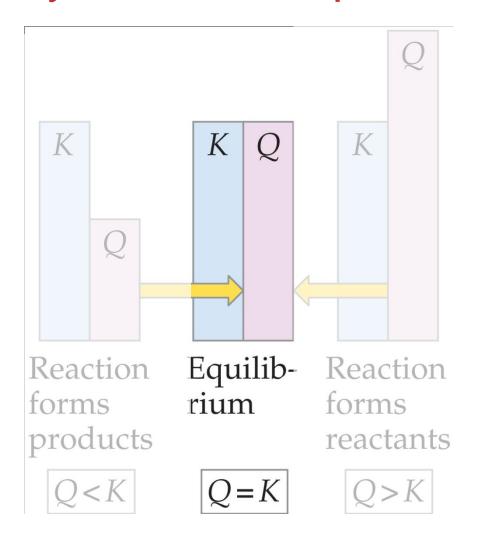
	[H ₂], M	[l ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change	-9.35 x 10 ⁻⁴	-9.35 x 10 ⁻⁴	+1.87 x 10 ⁻³
At equilibrium			1.87 x 10 ⁻³

We can now calculate the equilibrium concentrations of all three compounds...

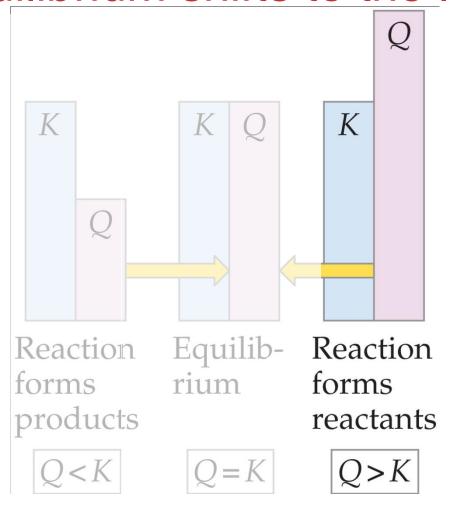
	[H ₂], M	[l ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change	-9.35 x 10 ⁻⁴	-9.35 x 10 ⁻⁴	+1.87 x 10 ⁻³
At equilibrium	6.5 x 10 ⁻⁵	1.065 x 10 ⁻³	1.87 x 10 ⁻³

...and, therefore, the equilibrium constant.

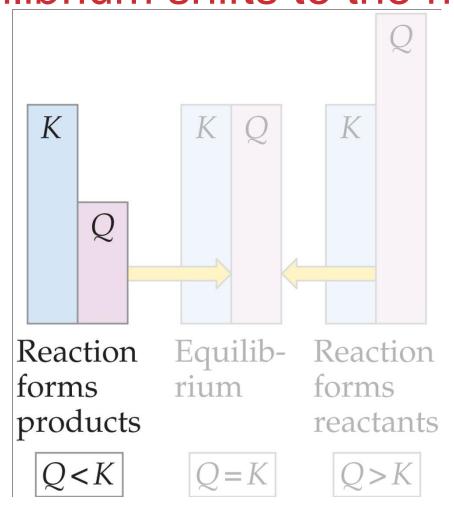
$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$


The Reaction Quotient (Q)

- Q gives the same ratio the equilibrium expression gives, but for a system that is not at equilibrium.
- To calculate Q, one substitutes the initial concentrations on reactants and products into the equilibrium expression.


If Q = K,

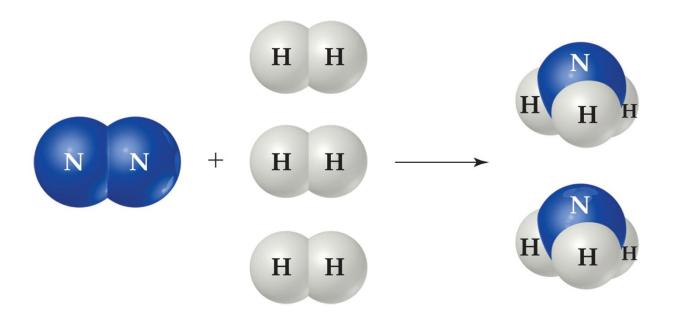
the system is at equilibrium.


If Q > K, there is too much product, and the equilibrium shifts to the left.

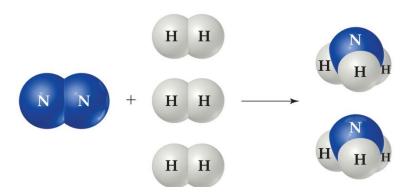
If Q < K,

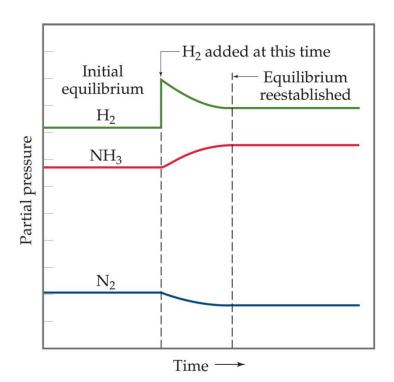
there is too much reactant, and the equilibrium shifts to the right.

Le Châtelier's Principle

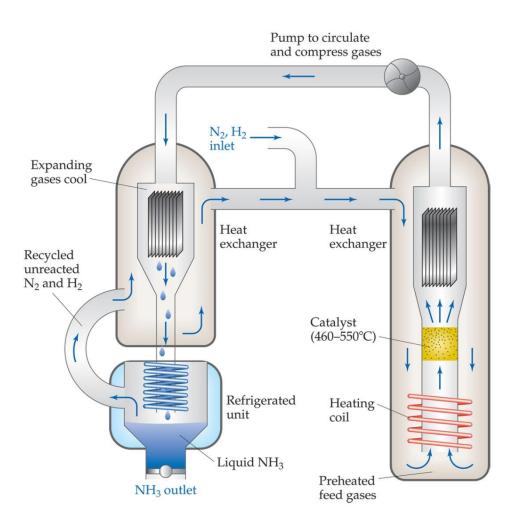

Le Châtelier's Principle

"If a system at equilibrium is disturbed by a change in temperature, pressure, or the concentration of one of the components, the system will shift its equilibrium position so as to counteract the effect of the disturbance."


The Haber Process

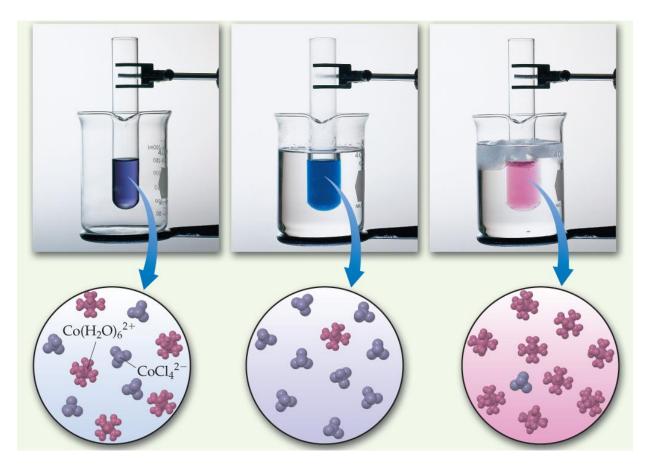

The transformation of nitrogen and hydrogen into ammonia (NH₃) is of tremendous significance in agriculture, where ammonia-based fertilizers are of utmost importance.

The Haber Process



If H₂ is added to the system, N₂ will be consumed and the two reagents will form more NH₃.

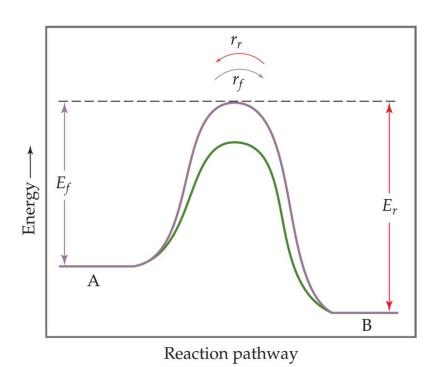
The Haber Process


This apparatus helps push the equilibrium to the right by removing the ammonia (NH₃) from the system as a liquid.

The Effect of Changes in **Temperature**

$$Co(H_2O)_6^{2+}$$
 (aq) + 4 $CI_{(aq)}$ Photo - JPEG decompressor are needed to see this picture.

$$CoCl_{4 (aq)} + 6 H_2O_{(l)}$$



Catalysts

© 2009, Prentice-Hall, Inc.

Catalysts

Catalysts increase the rate of both the forward *and* reverse reactions.

Catalysts

When one uses a catalyst, equilibrium is achieved faster, but the equilibrium composition remains unaltered.

