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Properties of waves

Wavelength (λ) is the distance between identical points on successive waves.

Amplitude is the vertical distance from the midline of a wave to the peak or trough.

Frequency (ν) is the number of waves that pass through a particular point in 1 second 

(Hz = 1 cycle/s).

The speed (u) of the wave = λ × ν

Quantum theory enables us to predict and understand the critical 

role that electrons play in chemistry. 
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Light as a wave

Maxwell (1873), proposed that visible light consists of 

electromagnetic waves.

Electromagnetic radiation is the 

emission and transmission of 

energy in the form of 

electromagnetic waves.

Speed of light (c) in vacuum =
83.00  10  m / s

All electromagnetic radiation

λ × ν = c
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Electromagnetic spectrum

a: (X ray): Ted Kinsman/Science Source
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Mystery #1, “heated solids problem” solved by 

Planck in 1900

When solids are heated, they emit electromagnetic radiation over 

a wide range of wavelengths.

Radiant energy emitted by an object at a certain temperature 

depends on its wavelength.

Planck: Energy (light) is emitted or absorbed in discrete units 

(quantum).

Quantum to the smallest quantity of energy that can be emitted 

(or absorbed) in the form of electromagnetic radiation.

Planck’s constant (h) = 6.63 x 10-34 J.s

𝑬 = 𝒉
𝒄

𝝀
E = h × v
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Mystery #2, “photoelectric effect” solved by 

Einstein in 1905

Light has both:

1) wave nature            

2) particle nature

Photon is a “particle” of light

h v = KE + W

KE = h v − W   

where W is the work function and depends how 

strongly electrons are held in the metal.

The photoelectric effect, a phenomenon in which electrons are 

ejected from the surface of certain metals exposed to light of at 

least a certain minimum frequency, called the threshold frequency 
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Line Emission spectrum of hydrogen atoms

• The four lines, of the hydrogen atom, that appear are all in the visible region, 

because the photographic plate only detects visible light.

• The line at 410 nm appears violet, and the line at 434 nm appears blue. The 

emission line at 486 nm appears blue-green, and the line at 656 nm appears red.
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Emission spectra of some elements

• Every element has a unique 

emission spectrum.

• The characteristic lines in 

atomic spectra can be used in 

chemical analysis to identify 

unknown atoms, much as 

fingerprints are used to identify 

people.

• When the lines of the 

emission spectrum of a known 

element exactly match the lines 

of the emission spectrum of an 

unknown sample, the identity 

of the sample is established.

hydrogen (4 lines) sodium (1 line), barium (20 lines) and calcium (14 lines) etc..
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Bohr’s model of the atom (1913)

2
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n (principle quantum number) = 1,  2,  3, .

( ) 18 Rydberg constant   2.18  10  JHR −= 

The energy of the photon is equal to the energy difference between 

the two n levels in the atom.

1. e– can only have specific (quantized) energy values.

2. light is emitted as e moves from one energy level to a lower 

energy level

3. The radius of each circular orbit depends on n2 

4. e– is allowed to occupy orbits with energies as: 
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Quantized energy

• When an electron undergoes a 

transition, it can only exist in an 

energy level, not between energy 

levels, because energy levels of 

the atom are quantized. 

• A way to think about this is a ball 

on a staircase. The ball can only 

rest on steps, not between steps, 

much like how an electron can only 

exist in an energy level, not 

between energy levels.
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Energy transitions of the hydrogen atom
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ni = initial orbit  and nf = final orbit
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Hydrogen atom emission series
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(Continue..)
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Quantization of electron energy

Why is e– energy quantized?

De Broglie (1924) reasoned 
that e– is both particle and 
wave.

2π   λ       
h

r n λ
mu

= =

u velocity of e−=

m mass of e−=
(a) The circumference of the orbit is equal to an 

integral number of wavelengths. This is an 

allowed orbit. 

(b) The circumference of the orbit is not equal to 

an integral number of wavelengths. As a result, 

the electron wave does not close in on itself. 

This is a nonallowed orbit.

2 𝜋 r = circumference of 

the allowed orbit 
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Schrodinger wave equation

In 1926 Schrodinger wrote an equation that described both 

the particle and wave nature of the e– 

Wave function        describes:( )

1. energy of e– with a with a given

2. probability of finding e– in a volume of space 



Schrodinger’s equation can only be 

solved exactly for the hydrogen atom 

Must approximate its solution for 

multi electron systems.

©Education Development Center, Inc.
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 is a function of four numbers called

quantum numbers
( )l s, l, m , mn

Principal Quantum Number n

             n = 1, 2, 3, 4, .

distance of e– from the nucleus
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quantum numbers : ( )l sn, m , ml, 

Angular Momentum Quantum Number l

for a given value of n, l = 0, 1, 2, 3, … n - 1

n = 1, l = 0

n = 2, l = 0 or 1

n = 3, l = 0, 1, or 2

n = 4, l = 0, 1, 2, or 3

The shape of the “volume” of space that the e- occupies 

l = 0     s orbital

l = 1     p orbital

l = 2     d orbital

l = 3     f  orbital



© McGraw Hill LLC

l = 0 (s orbitals)

l = 1 (p orbitals)

l = 2 (d orbitals)
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quantum numbers : ( )sn, l, , m
l

m 

Magnetic Quantum Number l
m

for a given value of l

,  .,  0, .l l= −   +
l

m

If l = 1 (p orbital), 1, 0, or 1= − +
l

m

If l = 2 (d orbital),

orientation of the orbital in space

ml = -2, -1, 0, +1, +2
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ml = -1, 0, or 1 3 orientations in space
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ml = -2, -1, 0, 1, or 2 5 orientations in space



© McGraw Hill LLC

( )ln, l, m , 
s

m 

Spin Quantum Number S
m

1 1
    

2 2
= + −

s
orm

= + = −
s s

1 1
      

2 2
m  m

An electron that spins counterclockwise is given a spin value of 

−1/2. These electrons, known as "spin down", are indicated by an 

arrow pointing downward.
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Existence (and energy) of electron in atom is described by 

its unique wave function 

Pauli exclusion principle - no two electrons in an atom 

can have the same four quantum numbers.

Quantum numbers: (n, l, ml, ms)

Each seat is uniquely identified (E, R12, S8)

Each seat can hold only one individual at a 

time.
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Shell – electrons with the same value of n

Subshell – electrons with the same values of n and l

Orbital – electrons with the same values of n, l, and ml

How many electrons can an orbital hold?

If n, l, and ml are fixed, then ms = ½ or - ½

 = (n, l, ml, ½) or  = (n, l, ml, -½)

An orbital can hold 2 electrons
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How many 2p orbitals are there in an atom?

2p

n = 2

l = 1

If l = 1, then ml = -1, 0, or +1

3 orbitals

How many electrons can be placed in the 3d subshell?

3d

n = 3

l = 2

If l = 2, then ml = -2, -1, 0, +1, or +2

5 orbitals which can hold a total of 10 e–
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Paramagnetism and Diamagnetism

Paramagnetic

unpaired electrons

Diamagnetic

all electrons paired
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Energy of orbitals in a single electron atom

Energy only depends on principal quantum number n

n = 1

n = 2

n = 3

The energies of orbitals
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n = 1   l = 0

n = 2   l = 0
n = 2   l = 1

n = 3   l = 0
n = 3    l = 1

n = 3  l = 2

Energy of orbitals in a multi-electron atom

Energy depends on n and l
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H 1 e- 1s1

He 2 e- 1s2

Li 3 e- 1s22s1

Be 4 e- 1s22s2

B 5 e- 1s22s22p1

C 6 e-

“Fill up” electrons in lowest energy orbitals (Aufbau principle)

Aufbau principle

? ?
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The most stable arrangement of electrons in subshells is the one 

with the greatest number of parallel spins (Hund’s rule). 

Hund’s rule

? ? ?
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C 6 e-

The most stable arrangement of electrons in subshells is the one 

with the greatest number of parallel spins (Hund’s rule).

1s22s22p2

N 7 e- 1s22s22p3

O 8 e- 1s22s22p4

F 9 e- 1s22s22p5

Ne 10 e- 1s22s22p6
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H 1 e- 1s1

He 2 e- 1s2

Li 3 e- 1s22s1

Be 4 e- 1s22s2

B 5 e- 1s22s22p1

C 6 e-

Aufbau principle + Hund’s rule

1s22s22p2

N 7 e- 1s22s22p3

O 8 e- 1s22s22p4

F 9 e- 1s22s22p5

Ne 10 e- 1s22s22p6
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Order of orbitals (filling) in multi-electron atom

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
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Electron configuration is how the electrons are 

distributed among the various atomic orbitals in an atom.

1s1

principal quantum

number n

angular momentum

quantum number l

number of electrons

in the orbital or subshell

Orbital diagram

H

1s1
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Outermost subshell being filled with electrons
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What is the electron configuration of Mg?

Mg  12 electrons

1s < 2s < 2p < 3s < 3p < 4s 

1s22s22p63s2 2 + 2 + 6 + 2 = 12 electrons

Abbreviated as [Ne]3s2 [Ne] 1s22s22p6

What are the possible quantum numbers for the last 

(outermost) electron in Cl?

Cl  17 electrons 1s < 2s < 2p < 3s < 3p < 4s 

1s22s22p63s23p5 2 + 2 + 6 + 2 + 5 = 17 electrons

Last electron added to 3p orbital

n = 3 l = 1 ml = -1, 0, or +1 ms = ½ or -½
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Example 7.12

An oxygen atom has a total of eight electrons. Write the four quantum 

numbers for each of the eight electrons in the ground state.

Strategy

We start with n = 1 and proceed to fill orbitals in the order 

shown in Figure 7.24. 

For each value of n we determine the possible values of l.

For each value of l, we assign the possible values of ml.

We can place electrons in the orbitals according to the Pauli 

exclusion principle and Hund’s rule.
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Solution

We start with n = 1, so l = 0, a subshell corresponding to the 1s orbital. This orbital 

can accommodate a total of two electrons. 

Next, n = 2, and l may be either 0 or 1. The l  = 0 subshell contains one 2s orbital, 

which can accommodate two electrons. The remaining four electrons are placed 

in the l = 1 subshell, which contains three 2p orbitals. The orbital diagram is

The results are summarized in the following table:

Of course, the placement of the eighth 

electron in the orbital labeled ml = 1

is completely arbitrary. It would be equally 

correct to assign it to ml = 0 or ml = -1.
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Ground state electron configurations

Access the text alternative for 

slide images.

Table 7.3 The Ground-State 

Electron Configurations of 

the Elements*
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Example 7.13
Write the ground-state electron configurations for 

(a) sulfur (S)

(b) palladium (Pd), which is diamagnetic

(a) Strategy 

How many electrons are in the S (Z = 16) atom? We start with n = 1 and 

proceed to fill orbitals in the order shown in Figure. For each value of

l, we assign the possible values of ml. We can place electrons in the orbitals according to 

the Pauli exclusion principle and Hund’s rule and then write the electron configuration. 

The task is simplified if we use the noble-gas core preceding S for the inner electrons.
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1 2 2 .2 2 6s s p

This leaves us 6 electrons to fill the 3s subshell and partially fill the 3p subshell. 

Thus, the electron configuration of S is

 1 2 2 3 3  or Ne 3 3 .2 2 6 2 4 2 4s s p s p s p 

Solution 

Sulfur has 16 electrons. The noble gas core in this case is [Ne]. (Ne is the noble 

gas in the period preceding sulfur.) [Ne] represents

(b) Strategy 

We use the same approach as that in (a). What does it mean to say that Pd is a 

diamagnetic element?

Solution

Palladium has 46 electrons. The noble-gas core in this case is [Kr]. (Kr is the 

noble gas in the period preceding palladium.) [Kr] represents

1 2 2 3 3 4 42 2 6 2 6 2 10 6s s p s p s 3d p

The remaining 10 electrons are distributed among the 4d and 5s orbitals. The 

three choices are
( ) ( ) ( )1  4 , 2  4 5  and 3  4 5 .10 9 1 8 2d d s , d s
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Because palladium is diamagnetic, all the electrons are paired and its 

electron configuration must be

1 2 2 3 3 4 4 42 2 6 2 6 2 10 6 10s s p s p s 3d p d

or simply  Kr 4 .10d The configurations in (2) and (3) both represent

paramagnetic elements.

Check 

To confirm the answer, write the orbital diagrams for (1), (2), and (3).
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