

Annual Worth Analysis

Systematic Economic Analysis Technique

- **1. Identify the investment alternatives**
- 2. Define the planning horizon
- 3. Specify the discount rate
- 4. Estimate the cash flows
- **5. Compare the alternatives**
- 6. Perform supplementary analyses
- 7. Select the preferred investment

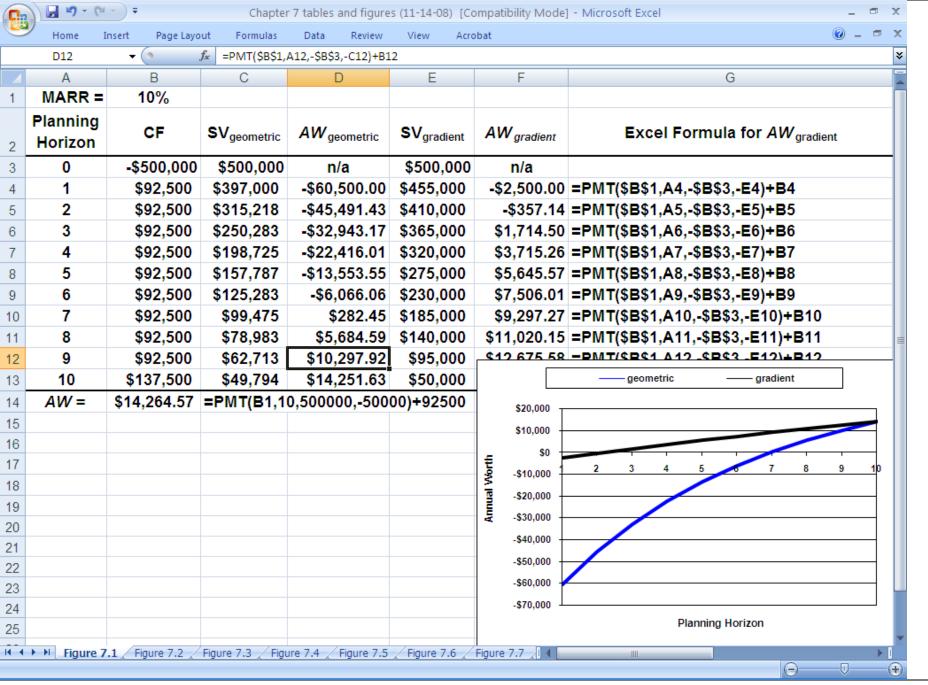
Annual Worth Analysis

Single Alternative

Annual Worth Method

converts all cash flows to a uniform annual series over the planning horizon using i=MARR a popular DCF method

$$AW \quad (i\%) = \begin{bmatrix} n \\ \sum_{t=0}^{n} A_{t} (1+i)^{-t} \end{bmatrix} \begin{bmatrix} i(1+i)^{n} \\ (1+i)^{n} - 1 \end{bmatrix}$$


 $AW~(i\%) = PW~(i\%)~(A \mid P \ i\%, n)$

SMP Investment

A \$500,000 investment in a surface mount placement machine is being considered. Over a 10-year planning horizon, it is estimated the SMP machine will produce net annual savings of \$92,500. At the end of 10 years, it is estimated the SMP machine will have a \$50,000 salvage value. Based on a 10% MARR and annual worth analysis, should the investment be made?

SMP Investment

How does annual worth change over the life of the investment? How does annual worth change when the salvage value decreases geometrically and as a gradient series?

Principles of Engineering Economic Analysis, 5th edition

Let's use **SOLVER** to determine the *DPBP* using *AW* analysis.

X _ 🗆 X 2

\smile	Home Insert	Fage Layout 1011	ulas Data Neviev	view Actobat			×				
	B17 -	(<i>f</i> _x =PMT(\$B\$1,B16,500000,-5000	00*(1-0.206)^B16)+9250)		*				
	A	В	С	D	E	F	G				
1	MARR =	10%									
	Planning	6F	C)/	A 147	C)/	A14/					
2	Horizon	CF	SV _{geometric}	AW _{geometric}	SV _{gradient}	AW gradient					
3	0	-\$500,000	\$500,000	n/a	\$500,000	n/a					
4	1	\$92,500	\$397,000	-\$60,500.00	\$455,000	-\$2,500.00	_				
5	2	\$92,500	\$315,218	-\$45,491.43	\$410,000	-\$357.14	=				
6	3	\$92,500	\$250,283	-\$32,943.17	\$365,000	\$1,714.50					
7	4	\$92,500	\$198,725	-\$22,416.01	\$320,000	\$3,715.26					
8	5	\$92,500	\$157,787	-\$13,553.55	\$275,000	\$5,645.57					
9	6	\$92,500	\$125,283	-\$6,066.06	\$230,000	\$7,506.01					
10	7	\$92,500	\$99,475	\$282.45	\$185,000	\$9,297.27					
11	8	\$92,500	\$78,983	\$5,684.59	\$140,000	\$11,020.15					
12	9	\$92,500	\$62,713	\$10,297.92	\$95,000	\$12,675.58					
13	10	\$137,500	\$49,794	\$14,251.63	\$50,000	\$14,264.57					
14	AW =	\$14,264.57	=PMT(B1,10	0,500000,-500	00)+92500						
15		geometric	gradient								
16	n =	10	10								
17	<i>AW</i> =	\$14,251.63	\$14,264.57	=PMT(\$B\$1,0	<mark></mark>	500000+4500	00*C17)+92500				
18			=PMT(\$B\$1	,B17,500000,-	500000*(1-0	.206)^B17)+9	2500				
i i i i	Image: H ← Figure 7.1 Figure 7.2 Figure 7.4 Figure 7.5 Figure 7.7 Image: H ← H ← H ← H ← H ← H ← H ← H ← H ← H										

Principles of Engineering Economic Analysis, 5th edition

P

19

Home

(24 -

Ince

Ca) 🛃 H) = (H =) =	C	hapter 7 tables and fig	ures (11-14-08) [Compati	bility Mode] - Microso	ft Excel	_ = X
<u> </u>	Home Insert	Page Layout Form	ulas Data Revie	w View Acrobat			
	B17 -	(● <i>f</i> _x =PMT(\$B\$1,B16,500000,-5000	000*(1-0.206)^B16)+9250	0		*
	A	В	С	D	E	F	G
1	MARR =	10%					
	Planning	r					
2	Horizon	Solver Par	ameters				
3	0	- Set Targe	t Cell: \$8\$	\$17 💽		So	olve
4	1	Equal To:	Max	 ⊙ Min ⊙ Valu	e of: 0		
5	2		ging Cells:				ose
6	3	\$8\$16			📧 🖸	ess	
7	4						
8	5	Subject t	o the Constraints				tions
9	6				^ <u>A</u>	dd	
10	7				Cha	ange	
11	8						et All
12	9				- <u>D</u> e	lete H	elp
13	10	\$					
14	AW =	\$14,204.07	-гицы, ц	0,00000,-000	00)+92000		
15		geometric	gradient				
16	n =	10	10				
17	<i>AW</i> =	\$14,251.63	\$14,264.57	=PMT(\$B\$1,0	C17,500000,	-500000+4500	00*C17)+92500
18			=PMT(\$B\$1	,B17,500000,-	-500000*(1-0	.206)^B17)+9	2500
₩ + +	▶ Figure 7.1 Fi	igure 7.2 Figure 7.3	/ Figure 7.4 / Figure 7	7.5 / Figure 7.6 / Figure	7.7 🔏 🛛		

Principles of Engineering Economic Analysis, 5th edition

8	Chapter 7 tables and figures (11-14-08) [Compatibility Mode] - Microsoft Excel									
9	Home Insert	Page Layout Form								
				000*(1-0.206)^B16)+92500		_	*			
	A	В	С	D	E	F	G			
1	MARR =	10%								
	Planning	CF	ev/	A 14/	SV/	A 147				
2	Horizon	CF	SV _{geometric}	AW geometric	SV _{gradient}	AW gradient				
3	0	-\$500,000	\$500,000	n/a	\$500,000	n/a				
4	1	\$92,500	\$397,000	-\$60,500.00	\$455,000	-\$2,500.00				
5	2	\$92,500	\$315,218	-\$45,491.43	\$410,000	-\$357.14				
6	3	\$92,500	\$250,283	-\$32,943.17	\$365,000	\$1,714.50				
7	4	\$92,500	\$198,725	-\$22,416.01	\$320,000	\$3,715.26				
8	5	\$92,500	\$157,787	-\$13,553.55	\$275,000	\$5,645.57				
9	6	\$92,500	\$125,283	-\$6,066.06	\$230,000	\$7,506.01				
10	7	\$92,500	\$99,475	\$282.45	\$185,000	\$9,297.27				
11	8	\$92,500	\$78,983	\$5,684.59	\$140,000	\$11,020.15				
12	9	\$92,500	\$62,713	\$10,297.92	\$95,000	\$12,675.58				
13	10	\$137,500	\$49,794	\$14,251.63	\$50,000	\$14,264.57				
14	AW =	\$14,264.57	=PMT(B1,10	0,500000,-5000	00)+92500					
15		geometric	gradient							
16	n =	6.9518752	10							
17	AW =	\$0.00	\$14,264.57	=PMT(\$B\$1,C	:17,500000,-	500000+4500	0*C17)+92500			
18			=PMT(\$B\$1	,B17,500000,-	500000*(1-0	.206)^B17)+9	2500			
ii ↔	• ▶ Figure 7.1] Fi	igure 7.2 Figure 7.3	/ Figure 7.4 / Figure 7	.5 / Figure 7.6 / Figure 7	7.7 🔏 🖣		×			

8) 🛃 H) = (H =) =	Cł	napter 7 tables and figu	ures (11-14-08) [Compatil	bility Mode] - Microso	ft Excel	_ = ×				
9	Home Insert	Page Layout Form	ulas Data Revie	w View Acrobat			@ _ = X				
	B17 -	f_x =PMT(\$B\$1,B16,500000,-5000	000*(1-0.206)^B16)+9250	0		*				
	А	В	С	D	E	F	G				
1	MARR =	10%									
2	Solver Param	eters				gradient					
	Set Target C	ell: \$C\$17	i		Solve						
3	Equal To:	© <u>M</u> ax ⊚ I	Min 💿 <u>V</u> alue d	of: 0		n/a					
4	By Changing				Close	.,500.00					
5					_	\$357.14					
6	\$C\$16			Guess		,714.50					
7	Subject to t	ne Constraints:			Options						
8											
				^ <u>A</u> dd		,645.57					
9				Change		,506.01					
10					<u>R</u> eset A	,297.27					
11				- <u>D</u> elete	Help	,020.15					
12						.675.58					
13	10				\$30,000	v14,264.57					
		\$137,300 \$14.004.57	943,134	\$14,231.03		ψ1 4 ,204.07					
14	AW =		• •	0,500000,-500	00)+92500						
15		geometric	gradient								
16	n =	6.9518752	10								
17	AW =	\$0.00	\$14,264.57	=PMT(\$B\$1.0	C17,500000,-	-500000+4500	00*C17)+92500				
18		i		,B17,500000,-			· · · · · · · · · · · · · · · · · · ·				
4.0						,,.					
H 4 F	Figure 7.1 Fi	gure 7.2 / Figure 7.3	/ Figure 7.4 / Figure 7	.5 / Figure 7.6 / Figure	7.7	1111					

Principles of Engineering Economic Analysis, 5th edition

9	Chapter 7 tables and figures (11-14-08) [Compatibility Mode] - Microsoft Excel										
	Home Insert	Page Layout Form					@ _ = X				
			\$B\$1,C16,500000,-5000	100+45000*C16)+92500			*				
	A	В	С	D	E	F	G				
1	MARR =	10%									
	Planning	CF	SV/	A 14/	SV/	A 14/					
2	Horizon	CF	SV _{geometric}	AW geometric	SV _{gradient}	AW gradient					
3	0	-\$500,000	\$500,000	n/a	\$500,000	n/a					
4	1	\$92,500	\$397,000	-\$60,500.00	\$455,000	-\$2,500.00					
5	2	\$92,500	\$315,218	-\$45,491.43	\$410,000	-\$357.14					
6	3	\$92,500	\$250,283	-\$32,943.17	\$365,000	\$1,714.50					
7	4	\$92,500	\$198,725	-\$22,416.01	\$320,000	\$3,715.26					
8	5	\$92,500	\$157,787	-\$13,553.55	\$275,000	\$5,645.57					
9	6	\$92,500	\$125,283	-\$6,066.06	\$230,000	\$7,506.01					
10	7	\$92,500	\$99,475	\$282.45	\$185,000	\$9,297.27					
11	8	\$92,500	\$78,983	\$5,684.59	\$140,000	\$11,020.15					
12	9	\$92,500	\$62,713	\$10,297.92	\$95,000	\$12,675.58					
13	10	\$137,500	\$49,794	\$14,251.63	\$50,000	\$14,264.57					
14	AW =	\$14,264.57	=PMT(B1,10),500000,-500	00)+92500						
15		geometric	gradient								
16	n =	6.9518752	2.1699745								
17	<i>AW</i> =	\$0.00	\$0.00	=PMT(\$B\$1,0	:17,500000,-	500000+4500	0*C17)+92500				
18			=PMT(\$B\$1	,B17,500000,-	500000*(1-0	.206)^B17)+9	2500				
ii € →	Figure 7.1 Fi	igure 7.2 Figure 7.3	/ Figure 7.4 / Figure 7	.5 / Figure 7.6 / Figure 3	7.7						

Ca	0 - 6	↓ → ↓	Chapter	7 tables	and figur	es (11-14-0	8) [Compa	atibility M	lode] - Mic	rosoft Excel			_ 0	х
	Home	Insert Page Layou	t Formulas	Data	Review	View	Acrobat						0 - 🗖	×
	C24		=PMT(C23,10	,500000,	-50000)+9	92500								≈
	А	В			С				D	E	F	G	Н	
1	MARR	AW								۸.		l a rth		7
2	0%	\$47,500.00	•	· ·						A	nnual W	orth		_
3	1%	\$44,488.07	•	· ·				\$60,0	000.00					_
4	2%	\$41,403.06	•					\$40 (000.00					_
5	3%	\$38,246.27	•					ψ40,	000.00					_
6	4%	\$35,019.08	•					\$20,0	00.00					_
7	5%	\$31,722.94	•	· ·	· · · · · · · · · · · · · · · · · · ·				* • ••					_
8	6%	\$28,359.42	•			•			\$0.00					_
9	7%	\$24,930.12	•					-\$20.	000.00	5 %	* * * *	% % 7		ר ב
10	8%	\$21,436.73	•										4	1
11	9%	\$17,880.96	•					-\$40,	000.00					=
12	10%	\$14,264.57	•				•				MA	RR		
13	11%	\$10,589.36	•				•							
14	12%	\$6,857.13	•	· ·										
15	13%	\$3,069.70	•				•							
16	14%	-\$771.09	=PMT(A1				-							
17	15%	-\$4,663.43	•	· ·		<i>,</i>								
18	16%	-\$8,605.49	=PMT(A1	8,10,5	00000	,-50000	0)+9250	00						
19	17%	-\$12,595.47	•				•							
20	18%	-\$16,631.59	•			-	•							
21	19%	-\$20,712.09	=PMT(A2	1,10,5	00000	,-50000	0)+9250	00						
22	20%	-\$24,835.24	=PMT(A2	2,10,5	00000	,-50000	0)+9250	00						
23		MARR =	10.000%											
24		AW =	\$14,264.5	7										-
14 4	🕨 🕅 🛛 Figure 🕽	7.1 / Figure 7.2 Fi	gure 7.3 Figu	re 7.4 🖌	Figure 7.5	5 📈 Figure 🕽	7.6 🖌 Figur	re 7.7 🗐	∢				•	
												Θ		•

8	. 9 - 0	± → ±	Chapter 7 tab	les and figure	s (11-14-08) [Cor	npatibility	Mode] - Micr	osoft Excel			- 🖻 X
	Home	Insert Page Layout	: Formulas Dat	a Review	View Acrob	at					🙆 – 🗖 🗙
	C24		=PMT(C23,10,5000	00,-50000)+92	2500						*
	Α	В		С			D	E	F	G	H
1	MARR	AW						^	nnual W	orth	_
2	0%		=PMT(A2,10,		•			A	muarv	ortin	_
3	1%		=PMT(A3,10,		•	- ·	,000.00	1			
4	2%		=PMT(A4,10,		•		,000.00				
5	3%		=PMT(A5,10,			U U	,000.00				_
6	4%		=PMT(A6,10,				,000.00				
7	5%	\$31,722.94	=PMT(A7,10,	500000,-	50000)+925	0					_
8	Solver	Parameters						×			
9			10101 (3)						8 %	<u>e n 4</u>	
10	Set Ta	arget Cell:	\$C\$24 💽				<u>S</u> olve				
11	Equal	To: 💿 <u>M</u> ax	Min @) <u>V</u> alue of:	0		Close			_	=
12	By Ch	nanging Cells:							MAR	ĸĸ	
13	\$C\$	23		E	Gues	s					
14											
15	Subje	ect to the Constra	ints:				Option	s			
16				-	Add						
17											
18					Chang	e	Reset A				
19					Delet	2	<u>r</u> eset A				
20							Help				
21											
22		MARR =	10.000%								
23 24			\$14,264.57								
Z4	Figure		7 14,204.37 gure 7.3 Figure 7.4	Eigure 7.5		iguro 7 7					
	r (Figure	7.1 / Figure 7.2 / H	gure 7.3 / Figure 7.4	/ Figure 7.5	∑ Figure 7.0 ∑ F	gare 7.7 🔬				0	

Principles of Engineering Economic Analysis, 5th edition

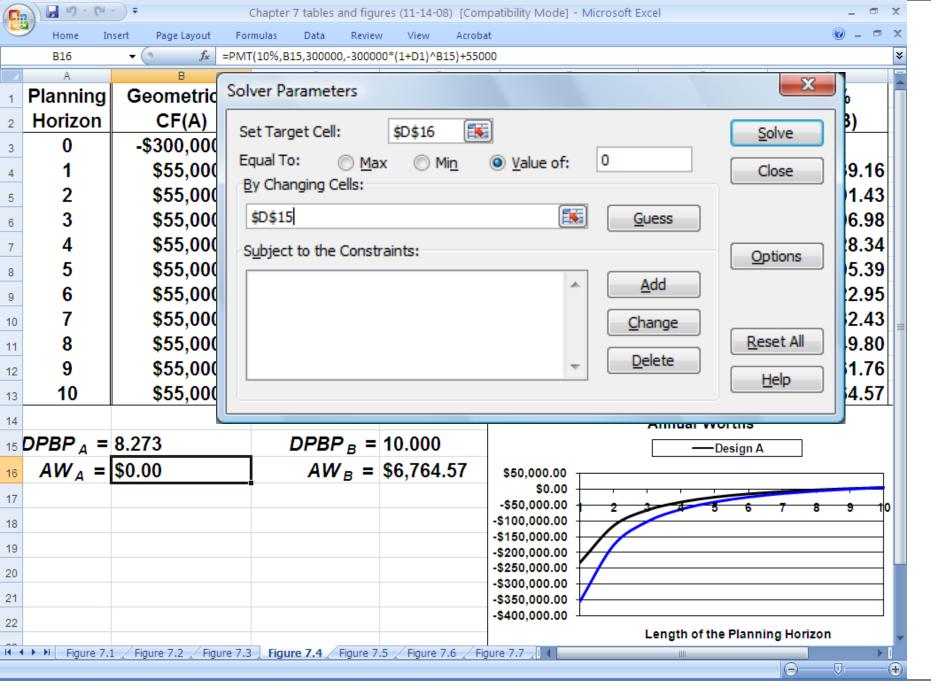
9	0-0-0	(°I →) ∓	Chapter	7 tables	and figure	s (11-14-08) [Compa	tibility	/ Mode] - Mic	rosoft Excel				x
	Home	Insert Page Layou	t Formulas	Data	Review	View	Acrobat						@ – 1	■ ×
	C24	→ (*) f _s	=PMT(C23,10	0,500000,	-50000)+9	2500								≈
	А	В			С				D	E	F	G	Н	
1	MARR	AW								Δ.				
2	0%	\$47,500.00	-			-				A	nnual W	orth		_
3	1%	\$44,488.07	•	· ·	· · · · ·			\$6	0,000.00	Τ				1
4	2%	\$41,403.06	•			•		¢л	0,000.00					
5	3%	\$38,246.27	•			•		φ4	0,000.00					
6	4%	\$35,019.08	•		-			\$2	0,000.00	+				-
7	5%	\$31,722.94	•			•								
8	6%	\$28,359.42	•						\$0.00	+				
9	7%	\$24,930.12	-			-		-\$2	0,000.00	% %	* % %	* * *		\$ ∎
10	8%	\$21,436.73	•				·		0,000.00		-	- $ -$	1	N
11	9%	\$17,880.96	•					-\$4	0,000.00					┛║≣
12	10%	\$14,264.57	=PMT(A1	2,10,5	00000,	,-50000)+925				MA	RR		
13	11%	\$10,589.36	=PMT(A1	3,10,5	00000,	,-50000)+9250)0						
14	12%	\$6,857.13	=PMT(A1	4,10,5	00000,	,-50000)+9250)0						
15	13%	\$3,069.70	=PMT(A1	5,10,5	00000,	,-50000)+925(00						
16	14%	-\$771.09	=PMT(A1	6,10,5	00000,	,-50000)+925(00						
17	15%	-\$4,663.43	=PMT(A1	7,10,5	00000,	,-50000)+9250	00						
18	16%	-\$8,605.49	=PMT(A1	8,10,5	00000,	,-50000)+925(00						
19	17%	-\$12,595.47	=PMT(A1	9,10,5	00000,	,-50000)+9250	00						
20	18%	-\$16,631.59	=PMT(A2	0,10,5	00000,	,-50000)+9250	00						
21	19%	-\$20,712.09	=PMT(A2	1,10,5	00000,	,-50000)+9250	00						
22	20%	-\$24,835.24	=PMT(A2	2,10,5	00000,	,-50000)+9250	00						
23		MARR =	13.800%											
24		AW =	\$0.00											-
I	Figure	7.1 / Figure 7.2 Fi	igure 7.3 / Figu	ure 7.4 📈	Figure 7.5	/ Figure 7.	.6 📈 Figur	e 7.7						
												0		-+

Annual Worth Analysis

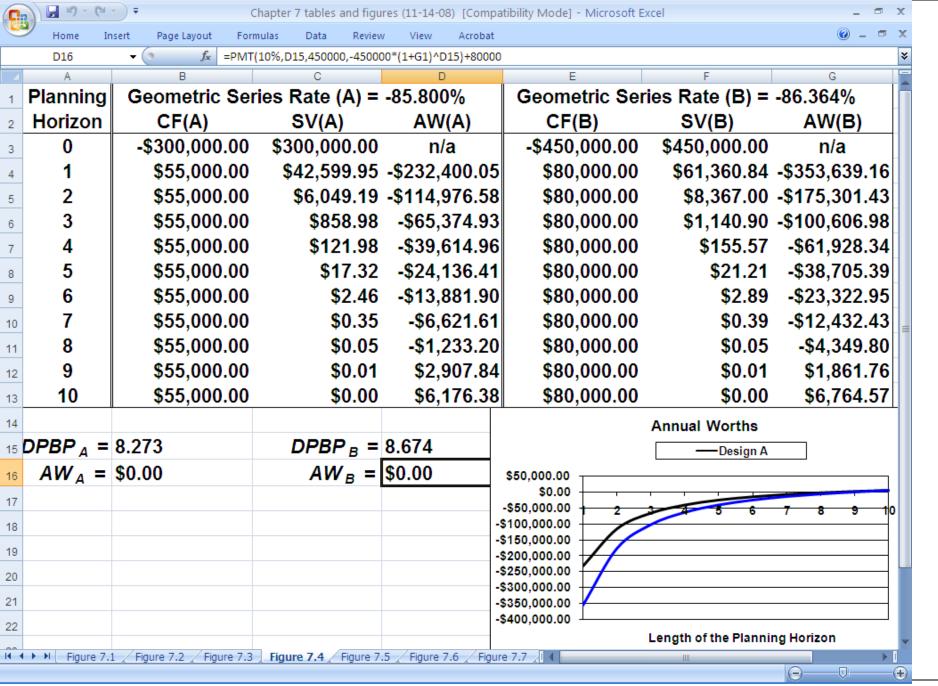
Multiple Alternatives

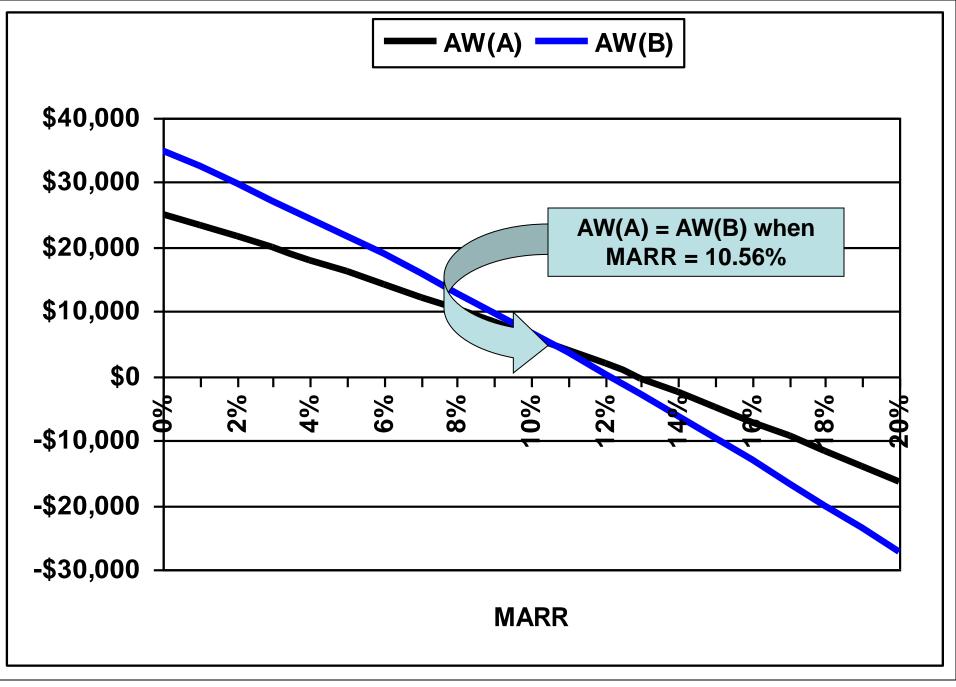
Example 7.4

Recall the example involving two alternative designs for a new ride at a theme park: Alt. A costs \$300,000, has net annual after-tax revenue of \$55,000, and has a negligible salvage value at the end of the 10-year planning horizon; Alt. B costs \$450,000, has revenue of \$80,000/yr., and has a negligible salvage value. Based on an AW analysis and a 10% MARR, which is preferred?


 $AW_{A}(10\%) = -\$300,000(A/P 10\%,10) + \$55,000$ = -\\$300,000(0.16275) + \\$55,000 = \\$6175.00 =PMT(10\%,10,30000)+55000 = \\$6176.38 AW_{B}(10\%) = -\\$450,000(A/P 10\%,10) + \\$80,000 = -\\$450,000(0.16275) + \\$80,000 = \\$6762.50 =PMT(10\%,10,45000)+80000 = \\$6764.57

Analyze the impact on AW based on salvage values decreasing geometrically to 1¢ after 10 years.


.	_) ₹ C	hapter 7 tables and figu	res (11-14-08) [Comp	atibility Mode] - Microsoft E	xcel	_ = >
		nulas Data Reviev	v View Acrobat			0 - 🗖 🤉
B16		(10%,B15,300000,-30000				:
A Blanning	B Coomotrio Sor	c ioc Poto (A) =	05 0000/	E Coomotrio Sor	F F	G
Planning	Geometric Ser			Geometric Ser		H
Horizon	CF(A)	SV(A)	AW(A)	CF(B)	SV(B)	AW(B)
0	-\$300,000.00	\$300,000.00	n/a	-\$450,000.00	\$450,000.00	n/a
1	\$55,000.00		-\$232,400.05	,		-\$353,639.16
5 2	\$55,000.00		-\$114,976.58			-\$175,301.43
3	\$55,000.00	\$858.98	-\$65,374.93			-\$100,606.98
<mark>, 4</mark>	\$55,000.00	\$121.98	-\$39,614.96	· · ·	\$155.57	-\$61,928.34
5	\$55,000.00	\$17.32	-\$24,136.41	\$80,000.00	\$21.21	-\$38,705.39
6	\$55,000.00	\$2.46	-\$13,881.90	\$80,000.00	\$2.89	-\$23,322.95
• 7	\$55,000.00	\$0.35	-\$6,621.61	\$80,000.00	\$0.39	-\$12,432.43
1 8	\$55,000.00	\$0.05	-\$1,233.20	\$80,000.00	\$0.05	-\$4,349.80
2 9	\$55,000.00	\$0.01	\$2,907.84	\$80,000.00	\$0.01	\$1,861.76
з 10	\$55,000.00	\$0.00	\$6,176.38	\$80,000.00	\$0.00	\$6,764.57
4				u	Annual Worths	
	10.000	DPBP _B =	10.000		Design A	
	\$6,176.38	$AW_B =$	\$6,764.57	\$50,000.00		
7		2		\$0.00		
8				-\$50,000.00 2 -\$100,000.00	3 4 5 6	7 8 9 10
9				\$150,000.00		
0				-\$200,000.00		
1				-\$300,000.00		
2				-\$350,000.00		
2					Length of the Planni	ng Horizon
↓ ► ► Figure 7.1	Figure 7.2 / Figure 7.3	Figure 7.4 Figure 7	.5 / Figure 7.6 / Figu	ire 7.7		


8) 🖬 🔊 - (°		Chapter 7 tables a	and figures (11-14-08) [Compatibility Mode]	- Microsoft Excel		- 🖻 X
-	Home I	nsert Page Layout	Formulas Data	Review View A	crobat			@ _ = ×
	B16	- (⁰ f _x	=PMT(10%,B15,300000	0,-300000*(1+D1)^B15)+	-55000			≈
-	A	В	С	D	E		F	G
1	Planning		Solver Parameters	s			×	4%
2	Horizon	CF(A)						(B)
3	0	-\$300,00	Set Target Cell:	\$8\$16	E		Solve	/a
4	1	\$55,00	Equal To: 🔘	Max 🔘 Min	Value of:	0		639.16
5	2	\$55,00	By Changing Cell		<u>•</u>		Close	301.43
6	3	\$55,00						606.98
7	4	\$55,00	\$B\$15		1	Guess		928.34
8	5	\$55,00	Subject to the Co	onstraints:			Options	705.39
9	6	\$55,00			*	Add		322.95
10	7	\$55,00						432.43
11	8	\$55,00				<u>C</u> hange		349.80
12	9	\$55,00				Delete	<u>R</u> eset All	861.76
13	10	\$55,00			Ŧ		Help	764.57
14		· · · · · · · · · · · · · · · · · · ·						<u>· · · · · · · · · · · · · · · · · · · </u>
	$DPBP_A =$	10.000	DPBP	P _B = 10.000			Design A	
		\$6,176.38		$r_{B} = $6,764.57$			Design A	
16		φ 0 , 170.30		B - \$0,704.57	\$50,000.00	—		
17					-\$50,000.00		5 6 7 8	3 9 1 0
18					-\$100,000.00 -\$150,000.00			
19					-\$200,000.00			
20					-\$250,000.00 -\$300,000.00	/		
21					-\$350,000.00	<u></u>		
22					-3400,000.00	Length	of the Planning Horiz	on
ii i	► N Figure 7.	.1 🖌 Figure 7.2 🖌 Fi	gure 7.3 Figure 7.4	Figure 7.5 / Figure 7.6 /	/ Figure 7.7 🔏 💶	Ű		▶ 0
							9	

9	1 3 - 6		hapter 7 tables and figu	res (11-14-08) [Comp	atibility Mode] - Microsoft E	xcel	_ = >
<u> </u>	Home In		nulas Data Reviev	v View Acrobat			<u> </u>
_	B16		(10%,B15,300000,-30000				-
	A	B Geometric Ser	د ios Pato (۸) =	0 -95 900%	E Geometric Ser	ios Pato (B) =	G
	Horizon	CF(A)	SV(A)		CF(B)	SV(B)	AW(B)
2	0			AW(A) n/a			n/a
3	4	-\$300,000.00	\$300,000.00		-\$450,000.00	\$450,000.00	
4	1	\$55,000.00	· · · · · · · · · · · · · · · · · · ·	-\$232,400.05	· · · · ·		-\$353,639.16
5	2	\$55,000.00		-\$114,976.58			-\$175,301.43
6	3	\$55,000.00	\$858.98	· · · · ·			-\$100,606.98
7	4	\$55,000.00	\$121.98	· · · · ·	· · ·	\$155.57	· / H
3	5	\$55,000.00	\$17.32		· · · ·	\$21.21	· ' H
9	6	\$55,000.00	\$2.46		· · ·	\$2.89	· ' H
0	7	\$55,000.00	\$0.35	-\$6,621.61	\$80,000.00	\$0.39	-\$12,432.43
1	8	\$55,000.00	\$0.05	-\$1,233.20	\$80,000.00	\$0.05	-\$4,349.80
2	9	\$55,000.00	\$0.01	\$2,907.84	\$80,000.00	\$0.01	\$1,861.76
3	10	\$55,000.00	\$0.00	\$6,176.38	\$80,000.00	\$0.00	\$6,764.57
4						Annual Worths	
15	$OPBP_A =$	8.273	DPBP _B =	10.000		Design A	
16	$AW_A =$	\$0.00	$AW_B =$	\$6,764.57	\$50,000.00		
7					\$0.00		
18					-\$100,000.00	5 6	<u>/ 8 9 10</u>
19					-\$150,000.00		
20					-\$250,000.00		
21					-\$300,000.00		
22					-\$400,000.00		
						Length of the Planni	ng Horizon
•	► N Figure 7.1	1 / Figure 7.2 / Figure 7.3	Figure 7.4 Figure 7	.5 / Figure 7.6 / Figu	ire 7.7		

Principles of Engineering Economic Analysis, 5th edition

Principles of Engineering Economic Analysis, 5th edition

Example 7.5

For The Scream Machine alternatives (A costing \$300,000, saving \$55,000, and having a negligible salvage value at the end of the 10-year planning horizon; B costing \$450,000, saving \$80,000, and having a negligible salvage value), using an incremental AW analysis and a 10% MARR, which is preferred?

Example 7.6

If an investor's MARR is 12%, which mutually exclusive investment alternative maximizes the investor's future worth, given the parameters shown below?

EOY	CF(1)	CF(2)	CF(3)
0	-\$10,000	-\$15,000	-\$20,000
1	\$5,000	\$5,000	\$0
2	\$5,000	\$5,000	\$3,000
3	\$10,000	\$5,000	\$6,000
4		\$5,000	\$9,000
5		\$5,000	\$12,000
6		\$7,500	\$15,000

Consider 3 scenarios: individual life cycles; least common multiple of lives; and "one-shot" investments

Example 7.6 (Continued)

Scenario 1: individual life cycles

 $AW_1(12\%) = -\$10,000(A|P 12\%,3) + \$5000 + \$5000(A|F 12\%,3)$ = \$2318.25 **=PMT(12%,3,10000,-5000)+5000 = \$2318.26** $AW_{2}(12\%) = -\$15,000(A|P 12\%,6) + \$5000 + \$2500(A|F 5\%,6)$ = \$1659.63 **=PMT(12%,6,15000,-2500)+5000 = \$1659.68** $AW_3(12\%) = -\$20,000(A|P 12\%,6) + \$3000(A|G 12\%,6)$ = \$1651.55 =PMT(12%,6,-1000*NPV(12%,0,3,6,9,12,15)+20000) = \$1651.63

Example 7.6 (Continued)

Scenario 2: least common multiple of lives

EOY	CF(1')	CF(2)	CF(3)
0	-\$10,000	-\$15,000	-\$20,000
1	\$5,000	\$5,000	\$0
2	\$5,000	\$5,000	\$3,000
3	\$0	\$5,000	\$6,000
4	\$5,000	\$5,000	\$9,000
5	\$5,000	\$5,000	\$12,000
6	\$10,000	\$7,500	\$15,000

 $AW_{1}(12\%) = -\$10,000(A|P 12\%,6) + \$5000 + \$5000(A|F 12\%,6) \\ - \$5000(A|P 12\%,3)(A|P 12\%,6) \\ = \$2318.22 \\ = PMT(12\%,6,10000,-5000)+5000 \\ + PMT(12\%,6,PV(12\%,3,,-5000)) = \$2318.26 \\ AW_{2}(12\%) = \$1473.17 = \$1473.23 \\ AW_{3}(12\%) = \$1651.55 = \$1651.63 \\ Identical results! \\ \end{tabular}$

Example 7.6 (Continued)

Scenario 3: "one-shot" investments

EOY	CF(1)	CF(2)	CF(3)
0	-\$10,000	-\$14,500	-\$20,000
1	\$5,000	\$5,000	\$0
2	\$5,000	\$5,000	\$3,000
3	\$10,000	\$5,000	\$6,000
4	\$0	\$5,000	\$9,000
5	\$0	\$5,000	\$12,000
6	\$0	\$5,000	\$15,000

 $AW_{1}(12\%) = \{-\$10,000 + [\$5000(P|A 12\%,3) \\ + \$5000(P/F 12\%,3)]\}(A/P 12\%,6) = \$1354.32 \\ = PMT(12\%,6,10000-PV(12\%,3,-5000,-5000)) \\ = \$1354.29 \\ AW_{2}(12\%) = \$1473.17 = \$1473.23 \\ AW_{3}(12\%) = \$1651.55 = \$1651.63$

Considering scenarios 1 and 2, is it reasonable to assume an investment alternative equivalent to Alt. 1 will be available in 3 years? If so, why was the MARR set equal to 12%?

Example 7.7

Three industrial mowers (Small, Medium, and Large) are being evaluated by a company that provides lawn care service. Determine the economic choice, based on the following cost and performance parameters:

	Small	Medium	Large
First Cost:	\$1,500	\$2,000	\$5,000
Operating Cost/Hr	\$35	\$50	\$76
Revenue/Hr	\$55	\$75	\$100
Hrs/Yr	1,000	1,100	1,200
Useful Life (Yrs)	2	3	5

Use AW analysis to determine the preferred mower, based on a MARR of 12%.

Example 7.7 (Continued)

 $AW_{small} = -\$1500(A/P 12\%,2) + \$20(1000) = \$19,112.45$ = PMT(12%,2,1500) + 20*1000 = \$19,112.45

 $AW_{med} = -\$2000(A/P 12\%,3) + \$25(1100) = \$26,667.30$ = PMT(12%,3,2000) + 25*1100 = \$26,667.30

 $AW_{large} = -\$5000(A/P12\%,5) + \$24(1200) = \$27,412.95$ = PMT(12%,5,5000) + 24*1200 = \$27,412.95

What did we assume when solving the example?

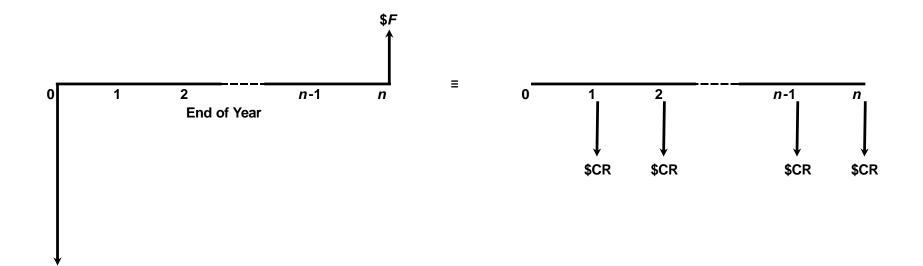
Example 7.8

If a 5-year planning horizon were used, what salvage values are required to have the same AW as before? The small mower will be replaced at the end of year 4; the medium mower will be replaced at the end of year 3. One year of service of the small mower will have the following cash flows:

 $SV_{small} = \$19,112.45(F/A \ 12\%,1) - \$20,000(F/A \ 12\%,1) \\ + \$1500(F/P \ 12\%,1) = \$792.45 \\ = FV(12\%,1,-19112.45)-FV(12\%,1,-20000,1500) \\ = \$792.45 \\ SV_{med} = \$26,667.30(F/A \ 12\%,2) - \$27,500(F/A \ 12\%,2) \\ + \$2000(F|P \ 12\%,2) = \$743.48 \\ = FV(12\%,2,-26667.3)-FV(12\%,2,-27500,2000) \\ = \743.48

SV_{large}

= \$0


Principle #8

Compare investment alternatives over a common period of time

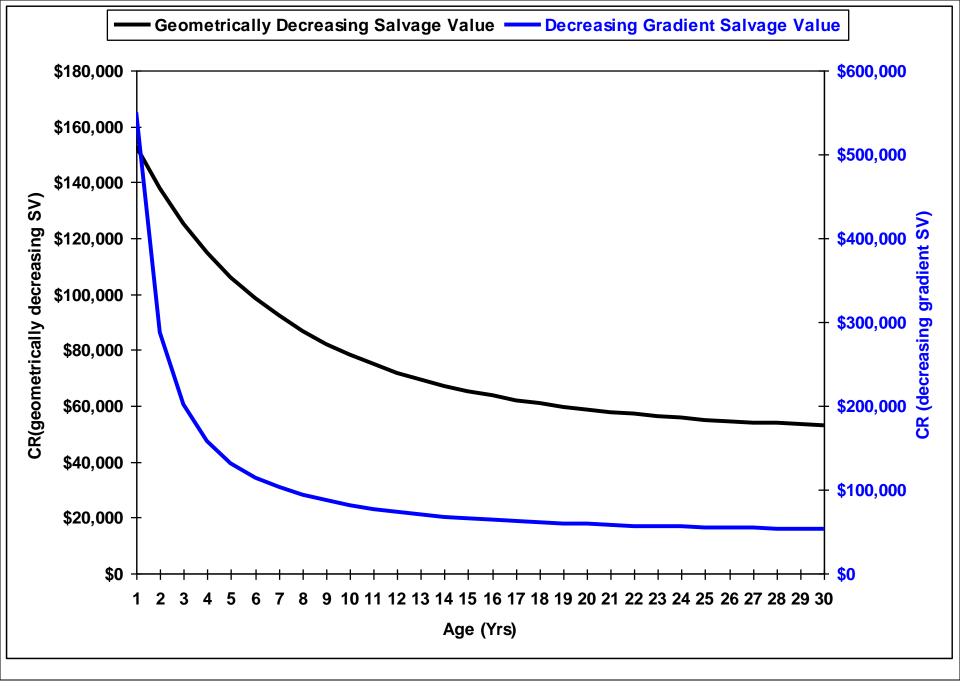
Fundamentals of Engineering Examination

Even though you might not encounter a situation in your professional practice that requires the least common multiple of lives assumption to be used, it is very likely you will have problems of this type on the FE Exam. Therefore, you need to be familiar with how to solve such problems. Specifically, on the FE Exam, *unless instructions* are given to do otherwise, calculate the annual worth for a life cycle of each alternative and recommend the one that has the greatest annual worth.

Capital Recovery Cost

CFD for Capital Recovery Cost (CR).

Principles of Engineering Economic Analysis, 5th edition


\$P

Capital Recovery Cost Formulas

- CR = P(A|P i,n) F(A|F i, n)
- CR = (P-F)(A|F i, n) + Pi
- CR = (P-F)(A|P i,n) + Fi
- CR =**PMT**(*i*,*n*,-*P*,*F*)

Example

- P = \$500,000 F = \$50,000 i = 10% n = 10 yrs
- CR = \$500,000(0.16275) \$50,000(0.06275) = \$78,237.50
- CR = \$450,000(0.06275) + \$500,000(0.10) = \$78,237.50
- CR = \$450,000(0.16275) + \$50,000(0.10) = \$78,237.50
- CR =PMT(10%,10,-500000,50000) = \$78,235.43

Pit Stop #7—No Time to Coast

- 1. True or False: Annual worth analysis is the most popular *DCF* measure of economic worth.
- 2. True or False: Unless non-monetary considerations dictate otherwise, choose the mutually exclusive investment alternative that has the greatest annual worth over the planning horizon.
- 3. True or False: The capital recovery cost is the uniform annual cost of the investment less the uniform annual worth of the salvage value.
- 4. True or False: If AW > 0, then PW > 0, and FW > 0.
- 5. True or False: If AW(A) > AW(B), then PW(A) > PW(B).
- 6. True or False: If AW(A) < AW(B), then AW(B-A) > 0.
- 7. True or False: If AW(A) > AW(B), then CW(A) > CW(B) and DPBP(A) < DPBP(B).
- 8. True or False: *AW* can be applied as either a ranking method or as an incremental method.
- 9. True or False: To compute capital recovery cost using Excel, enter =PMT(i%,n,-P,F) in any cell in a spreadsheet.
- 10. True or False: When using annual worth analysis with mutually exclusive alternatives having unequal lives, always use a planning horizon equal to the least common multiple of lives.

Pit Stop #7—No Time to Coast

- 1. True or False: Annual worth analysis is the most popular *DCF* measure of economic worth. FALSE
- 2. True or False: Unless non-monetary considerations dictate otherwise, choose the mutually exclusive investment alternative that has the greatest annual worth over the planning horizon. TRUE
- 3. True or False: The capital recovery cost is the uniform annual cost of the investment less the uniform annual worth of the salvage value. TRUE
- 4. True or False: If AW > 0, then PW > 0, and FW > 0. TRUE
- 5. True or False: If AW(A) > AW(B), then PW(A) > PW(B). TRUE
- 6. True or False: If AW(A) < AW(B), then AW(B-A) > 0. TRUE
- True or False: If AW(A) > AW(B), then CW(A) > CW(B) and DPBP(A) < DPBP(B). FALSE
- 8. True or False: *AW* can be applied as either a ranking method or as an incremental method. **TRUE**
- 9. True or False: To compute capital recovery cost using Excel, enter =PMT(i%,n,-P,F) in any cell in a spreadsheet. TRUE
- 10. True or False: When using annual worth analysis with mutually exclusive alternatives having unequal lives, always use a planning horizon equal to the least common multiple of lives. FALSE