

Chapter 4

Reactions in Aqueous Solutions

Solutions

A **solution** is a homogenous mixture of 2 or more substances. The **solute** is (are) the substance(s) present in the smaller amount(s). The **solvent** is the substance present in the larger amount.

<u>Solution</u>	<u>Solvent</u>	<u>Solute</u>
Soft drink (1)	H ₂ O	Sugar, CO ₂
Air (<i>g</i>)	N_2	O ₂ , Ar, CH ₄
Soft solder (s)	Pb	Sn

aqueous solutions of KMnO₄

Electrolytes

An *electrolyte* is a substance that, when dissolved in water, results in a solution that can conduct electricity.

A *nonelectrolyte* is a substance that, when dissolved, results in a solution that does not conduct electricity.

nonelectrolyte

weak electrolyte

strong electrolyte

Conduct electricity in solution? Cations (+) and Anions (-)

Strong Electrolyte – 100% dissociation

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

Weak Electrolyte – not completely dissociated

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$$

lonization of acetic acid

$$CH_3COOH(aq)$$
 $CH_3COO^-(aq) + H^+(aq)$

A *reversible* reaction. The reaction can occur in both directions.

Acetic acid is a *weak electrolyte* because its ionization in water is incomplete.

Hydration

Hydration is the process in which an ion is surrounded by water molecules arranged in a specific manner.

Electrolytes

Nonelectrolyte does not conduct electricity No cations (+) and anions (-) in solution

$$C_6H_{12}O_6(s) \xrightarrow{H_2O} C_6H_{12}O_6(aq)$$

Table 4.1 Classification of Solutes in Aqueous Solution

Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
HCI	CH₃COOH	(NH ₂) ₂ CO (urea)
HNO ₃	HF	CH ₃ OH (methanol)
HCIO ₄	HNO ₂	C ₂ H ₅ OH (ethanol)
H ₂ SO ₄ *	NH_3	C ₆ H ₁₂ O ₆ (glucose)
NaOH	H ₂ O [†]	$C_{12}H_{22}O_{11}$ (sucrose)
Ba(OH) ₂		
Ionic compounds		

^{*}H₂SO₄ has two ionizable H⁺ ions, but only one of the H⁺ ions is totally ionized.

†Pure water is an extremely weak electrolyte.

Precipitation Reactions

Precipitation reaction, which results in the formation of an insoluble product, known as a precipitate.

Precipitate: insoluble solid that separates from solution.

molecular equation:

$$Pb(NO_3)_2(aq) + 2NaI(aq) \rightarrow PbI_2(s) + 2NaNO_3(aq)$$

ionic equation:

$$Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + 2I^{-}(aq) \rightarrow PbI_2(s) + 2Na^{+}(aq) + 2NO_3^{-}(aq)$$

net ionic equation:

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$

Na⁺ and NO₃ are **spectator** ions

 Pbl_2

Precipitation of Lead Iodide

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$

 Pbl_2

Solubility

Solubility is the maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.

Soluble Compounds	Insoluble Exceptions
Compounds containing alkali metal	
ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺)	
and the ammonium ion (NH_4^+)	
Nitrates NO ₃ , acetates (CH ₃ COO ⁻),	Halides of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
bicarbonates HCO ₃ , chlorates (ClO ₃),	Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
and perchlorates (ClO ₄ ⁻)	
Halides (Cl ⁻ , Br ⁻ , I ⁻)	
Sulfates (SO ₄ ²⁻)	
Insoluble Compounds	Soluble Exceptions
Carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) ,	Compounds containing alkali metal ions and the ammonium ion
chromates (CrO ₄ ²⁻), sulfides (S ²⁻)	
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba2+ ion

Examples of Insoluble Compounds

CdS Pbs $Ni(OH)_2$ $Al(OH)_3$

Writing Net Ionic Equations

- 1. Write the balanced molecular equation.
- 2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. Cancel the spectator ions on both sides of the ionic equation.
- 4. Check that charges and number of atoms are balanced in the net ionic **equation**.

EXAMPLE 4.1

Classify the following ionic compounds as soluble or insoluble: (a) silver sulfate (Ag₂SO₄), (b) calcium carbonate (CaCO₃), (c) sodium phosphate (Na₃PO₄).

Solution (a) According to Table 4.2, Ag₂SO₄ is insoluble.

- (b) This is a carbonate and Ca is a Group 2A metal. Therefore, CaCO₃ is insoluble.
- (c) Sodium is an alkali metal (Group 1A) so Na₃PO₄ is soluble.

EXAMPLE 4.2

Predict what happens when a potassium phosphate (K_3PO_4) solution is mixed with a calcium nitrate $[Ca(NO_3)_2]$ solution. Write a net ionic equation for the reaction.

Solution In solution, K_3PO_4 dissociates into K^+ and PO_4^{3-} ions and $Ca(NO_3)_2$ dissociates into Ca^{2+} and NO_3^- ions. According to Table 4.2, calcium ions (Ca^{2+}) and phosphate ions (PO_4^{3-}) will form an insoluble compound, calcium phosphate $[Ca_3(PO_4)_2]$, while the other product, KNO_3 , is soluble and remains in solution. Therefore, this is a precipitation reaction. We follow the stepwise procedure just outlined.

Step 1: The balanced molecular equation for this reaction is

$$2K_3PO_4(aq) + 3Ca(NO_3)_2(aq) \longrightarrow Ca_3(PO_4)_2(s) + 6KNO_3(aq)$$

Step 2: To write the ionic equation, the soluble compounds are shown as dissociated ions:

$$6K^{+}(aq) + 2PO_{4}^{3-}(aq) + 3Ca^{2+}(aq) + 6NO_{3}^{-}(aq) \longrightarrow 6K^{+}(aq) + 6NO_{3}^{-}(aq) + Ca_{3}(PO_{4})_{2}(s)$$

Step 3: Canceling the spectator ions (K⁺ and NO₃) on each side of the equation, we obtain the net ionic equation:

$$3\operatorname{Ca}^{2+}(aq) + 2\operatorname{PO}_4^{3-}(aq) \longrightarrow \operatorname{Ca}_3(\operatorname{PO}_4)_2(s)$$

Step 4: Note that because we balanced the molecular equation first, the net ionic equation is balanced as to the number of atoms on each side and the number of positive (+6) and negative (-6) charges on the left-hand side is the same.

Properties of Acids

- 1. Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.
- 2. Cause color changes in plant dyes.
- 3. React with certain metals to produce hydrogen gas.

$$2HCI(aq) + Mg(s) \rightarrow MgCI_2(aq) + H_2(g)$$

- React with carbonates and bicarbonates to produce carbon dioxide gas.
 2HCl(aq) + CaCO₃(s) → CaCl₂(aq) + CO₂(g) + H₂O(l)
- 5. Aqueous acid solutions conduct electricity.

Properties of Bases

- 1. Have a bitter taste.
- 2. Feel slippery. Many soaps contain bases.
- 3. Cause colour changes in plant dyes.
- 4. Aqueous base solutions conduct electricity.

Arrhenius Acids and Bases

Arrhenius acid is a substance that produces $H^+(H_3O^+)$ in water.

Arrhenius base is a substance that produces OH- in water

Hydronium ion, hydrated proton, H₃O⁺

- The resulting species, H₃O+, is known as the hydronium ion.
- The hydronium ion has a trigonal pyramidal molecular shape.
- The hydronium ion has: partially negative end (the O atom). partially positive end (the H atoms).

Brønsted Acids and Bases

A *Brønsted acid* is a proton donor A *Brønsted base* is a proton acceptor

A Brønsted acid must contain at least one ionizable proton!

Types of Acids

Monoprotic acids

$$HCl(aq) \longrightarrow H^+(aq) + Cl^-(aq)$$

$$HNO_3(aq) \longrightarrow H^+(aq) + NO_3^-(aq)$$

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$$

Strong electrolyte, strong acid

Strong electrolyte, strong acid

Weak electrolyte, weak acid

Diprotic acids

$$H_2SO_4(aq) \longrightarrow H^+(aq) + HSO_4^-(aq)$$

$$HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{2-}(aq)$$

Strong electrolyte, strong acid Weak electrolyte, weak acid

Triprotic acids

$$H_3PO_4(aq) \Longrightarrow H^+(aq) + H_2PO_4^-(aq)$$

$$H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq)$$

$$HPO_4^{2-}(aq) \Longrightarrow H^+(aq) + PO_4^{3-}(aq)$$

Weak electrolyte, weak acid

Weak electrolyte, weak acid

Weak electrolyte, weak acid

Common Acids

Table 4.3 Some Common Strong and Weak Acids

Strong Acids	Formula					
Hydrochloric acid	HCI					
Hydrobromic acid	HBr					
Hydroiodic acid	HI					
Nitric acid	HNO ₃					
Sulfuric acid	H ₂ SO ₄					
Perchloric	HCIO ₄					
Weak Acids	Formula					
Hydrofluoric acid	HF					
Nitrous acid	HNO ₂					
Phosphoric acid	H ₃ PO ₄					
Acetic acid	CH₃COOH					

EXAMPLE 4.3

Classify each of the following species in aqueous solution as a Brønsted acid or base: (a) HBr, (b) NO_2^- , (c) HCO_3^- .

Strategy What are the characteristics of a Brønsted acid? Does it contain at least an H atom? With the exception of ammonia, most Brønsted bases that you will encounter at this stage are anions.

Solution (a) We know that HCl is an acid. Because Br and Cl are both halogens (Group 7A), we expect HBr, like HCl, to ionize in water as follows:

$$HBr(aq) \longrightarrow H^{+}(aq) + Br^{-}(aq)$$

Therefore HBr is a Brønsted acid.

(b) In solution the nitrite ion can accept a proton from water to form nitrous acid:

$$NO_2^-(aq) + H^+(aq) \longrightarrow HNO_2(aq)$$

This property makes NO₂ a Brønsted base.

(c) The bicarbonate ion is a Brønsted acid because it ionizes in solution as follows:

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$$

It is also a Brønsted base because it can accept a proton to form carbonic acid:

$$HCO_3^-(aq) + H^+(aq) \Longrightarrow H_2CO_3(aq)$$

Neutralization Reaction

- A neutralization reaction is a reaction between an acid and a base.
- Salt is an ionic compound made up of a cation from the base and an anion from the acid.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

$$H^{+}(aq) + \mathcal{L}I^{-}(aq) + \mathcal{M}a^{+}(aq) + OH^{-}(aq) \rightarrow \mathcal{M}a^{+}(aq) + \mathcal{L}I^{-}(aq) + H_{2}O(l)$$

$$\mathrm{H}^+(aq) + \mathrm{OH}^-(aq) \rightarrow \mathrm{H}_2\mathrm{O}(l)$$

Na⁺ Cl⁻ are the *spectator* ions

Neutralization Reaction Involving a Weak Electrolyte

weak acid + base → salt + water

$$HCN(aq) + NaOH(aq) \rightarrow NaCN(aq) + H_2O(l)$$

$$\text{HCN}(aq) + \text{Na}^+(aq) + \text{OH}^-(aq) \rightarrow \text{Na}^+(aq) + \text{CN}^-(aq) + \text{H}_2\text{O}(l)$$

$$HCN(aq) + OH^{-}(aq) \rightarrow CN^{-}(aq) + H_2O(l)$$

Na* is the **spectator** ion

Example

Write molecular, ionic, and net ionic equations for each of the following acid-base reactions:

- a) hydrobromic acid (aq) + barium hydroxide $(aq) \rightarrow$
- b) sulfuric acid (aq) + potassium hydroxide $(aq) \rightarrow$

Example

Solution

a)

Molecular equation:

$$2HBr(aq) + Ba(OH)_2(aq) \rightarrow BaBr_2(aq) + 2H_2O(l)$$

Ionic equation:

$$2H^{+}(aq)+2Br^{-}(aq)+Ba^{2+}(aq)+2OH^{-}(aq) \rightarrow Ba^{2+}(aq)+2Br^{-}(aq)+2H_{2}O(l)$$

Net ionic equation:

$$2H^+(aq)+2OH^-(aq) \rightarrow 2H_2O(l)$$

or

$$H^+(aq)+OH^-(aq) \rightarrow H_2O(l)$$

Both Ba²⁺ and Br⁻ are spectator ions.

Example

b)

Molecular equation:

$$H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

Ionic equation:

$$H^{+}(aq) + HSO_{4}^{-}(aq) + 2K^{+}(aq) + 2OH^{-}(aq) \rightarrow 2K^{+}(aq) + SO_{4}^{2-}(aq) + 2H_{2}O(l)$$

Net ionic equation:

$$H^{+}(aq) + HSO_{4}^{-}(aq) + 2OH^{-}(aq) \rightarrow SO_{4}^{2-}(aq) + 2H_{2}O(l)$$

Note that because HSO₄

is a weak acid and does not ionize appreciably in water, the only spectator ion is $K^{\scriptscriptstyle +}$.

Neutralization Reaction Producing a Gas

Certain salts like carbonates (containing the CO_3^{2-} ion), bicarbonates (containing the HCO_3^{-} ion), sulfites (containing the SO_3^{2-} ion), and sulfides (containing the S^{2-} ion) react with acids to form gaseous products.

$$2HCI(aq) + Na_2CO_3(aq) \rightarrow 2NaCI(aq) + H_2O(l) + CO_2(g)$$

$$2H^{+}(aq) + 2Cl^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow 2Na^{+}(aq) + 2Cl^{-}(aq) + H_{2}O(l) + CO_{2}(g)$$

$$2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow H_{2}O(l) + CO_{2}(g)$$

Oxidation-Reduction Reactions

(electron transfer reactions)

- Mg is the reducing agent because it donates electrons to oxygen and causes oxygen to be reduced
- O is the oxidizing agent, because it accepts electrons from magnesium, causing magnesium to be oxidized

$$2Mg + O_2 \rightarrow 2MgO$$

 $2Mg + O_2 + 4e^- \rightarrow 2Mg^{2+} + 2O^{2-} + 4e^-$

$$2Mg \rightarrow 2Mg^{2+} + 4e^{-}$$

 $O_2 + 4e^{-} \rightarrow 2O^{2-}$

Oxidation half-reaction (lose e⁻)

Reduction half-reaction (gain e⁻)

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$

 $Cu(s) + 2AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2Ag(s)$

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

Zn is oxidized

Zn is the *reducing agent*

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

Cu²⁺ is reduced

Cu²⁺ is the oxidizing agent

Oxidation Number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Rules:

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

$$Li^+, Li = +1; Fe^{3+}, Fe = +3; O^{2-}, O = -2$$

3. The oxidation number of oxygen is **usually –2** In H_2O_2 and O_2^{2-} it is **–1**.

- 4. The oxidation number of hydrogen is +1 *except* when it is bonded to metals in binary compounds. In these cases, its oxidation number is −1. (e.g.; NaH)
- 5. Group IA metals are +1, IIA metals are +2, and fluorine is always -1. Other halogens (Cl, Br, and l) have negative oxidation numbers when they occur as halide ions in their compounds. When combined with oxygen-for example in oxoacids and oxoanions they have positive oxidation numbers, HClO₃ (+5)
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion. (NH₄+)
- 7. Oxidation numbers do not have to be integers. The oxidation number of oxygen in the superoxide ion, O_2^- is -1/2

EXAMPLE 4.4

Assign oxidation numbers to all the elements in the following compounds and ion:

- (a) Li_2O , (b) HNO_3 , (c) $\text{Cr}_2\text{O}_7^{2-}$.
- **Solution** (a) By rule 2 we see that lithium has an oxidation number of +1 (Li⁺) and oxygen's oxidation number is -2 (O²⁻).
- (b) This is the formula for nitric acid, which yields a H⁺ ion and a NO₃ ion in solution. From rule 4 we see that H has an oxidation number of +1. Thus the other group (the nitrate ion) must have a net oxidation number of −1. Oxygen has an

oxidation number of -2, and if we use x to represent the oxidation number of nitrogen, then the nitrate ion can be written as

$$[N^{(x)}O_3^{(2-)}]^-$$

so that

$$x + 3(-2) = -1$$

or

$$x = +5$$

(c) From rule 6 we see that the sum of the oxidation numbers in the dichromate ion $Cr_2O_7^{2-}$ must be -2. We know that the oxidation number of O is -2, so all that remains is to determine the oxidation number of Cr, which we call y. The dichromate ion can be written as

$$[Cr_2^{(y)}O_7^{(2-)}]^{2-}$$

so that

$$2(y) + 7(-2) = -2$$

or

$$y = +6$$

The Oxidation Numbers of Elements in their Compounds

1 H +1 -1																	18 2 He
	2	ro.										13	14	15	16	17	
3 Li +1	4 Be +2											5 B +3	6 C +4 +2 -4	7 N +5 +4 +3 +2 +1 -3	8 +2 -1 -2 -1 -2	9 F -1	10 Ne
11 Na +1	12 Mg +2	3	4	5	6	7	8	9	10	11	12	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 CI +76 +55 +43 +1	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

Types of Oxidation-Reduction Reactions

1) Combination Reaction: two or more substances combine to form a single product

$$\begin{array}{c} A+B \rightarrow C \\ 0 & 0 \\ 2Al+3Br_2 \rightarrow 2AlBr_3 \end{array}$$

2) Decomposition Reaction: breakdown of a compound into two or more components

$$C \rightarrow A + B$$

 $2 \overset{+1}{K} \overset{+5}{Cl} \overset{-2}{O_3} \rightarrow 2 \overset{+1}{K} \overset{-1}{Cl} + 3 \overset{0}{O_2}$

3) Combustion Reaction: in which a substance reacts with oxygen, usually with the release of heat and light to produce a flame.

$$A + O_2 \rightarrow B$$

$$\stackrel{0}{S} + O_2 \rightarrow \stackrel{+4}{S} O_2$$

$$\stackrel{0}{O} \stackrel{0}{O} \rightarrow \stackrel{+2}{S} O_2$$

$$2 \stackrel{0}{Mg} + O_2 \rightarrow 2 \stackrel{+2}{Mg} O$$

4) Displacement Reaction: an ion (or atom) in a compound is replaced by an ion (or atom) of another element

$$A + BC \rightarrow AC + B$$

$$\overset{0}{\operatorname{Sr}} + \overset{+1}{\operatorname{2}}\overset{+1}{\operatorname{H}_2} O \to \overset{+2}{\operatorname{Sr}}(OH)_2 + \overset{0}{\operatorname{H}_2}$$

Hydrogen Displacement

$$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$$
 Metal Displacement

$$\overset{\scriptscriptstyle{0}}{\text{Cl}}_{2} + 2K\overset{\scriptscriptstyle{-1}}{\text{Br}} \to 2K\overset{\scriptscriptstyle{-1}}{\text{Cl}} + \overset{\scriptscriptstyle{0}}{\text{Br}}_{2}$$

Halogen Displacement

The Activity Series for Metals

Hydrogen Displacement Reaction

```
Li \longrightarrow Li^+ + e^-
K \longrightarrow K^+ + e^-
                                     React with cold
Ba \longrightarrow Ba^{2+} + 2e^{-}
                                     water to produce H<sub>2</sub>
Ca \longrightarrow Ca^{2+} + 2e^{-}
Na \longrightarrow Na^+ + e^-
Mg \longrightarrow Mg^{2+} + 2e^{-}
A1 \longrightarrow A1^{3+} + 3e^{-}
Zn \longrightarrow Zn^{2+} + 2e^{-}
                                     React with steam
Cr \longrightarrow Cr^{3+} + 3e^{-}
                                     to produce H<sub>2</sub>
Fe \longrightarrow Fe^{2+} + 2e^{-}
Cd \longrightarrow Cd^{2+} + 2e^{-}
Co \longrightarrow Co^{2+} + 2e^{-}
Ni \longrightarrow Ni^{2+} + 2e^{-}
                                     React with acids
Sn \longrightarrow Sn^{2+} + 2e^{-}
                                     to produce H<sub>2</sub>
Pb \longrightarrow Pb^{2+} + 2e^{-}
H_2 \longrightarrow 2H^+ + 2e^-
Cu \longrightarrow Cu^{2+} + 2e^{-}
Ag \longrightarrow Ag^+ + e^-
                                     Do not react with water
Hg \longrightarrow Hg^{2+} + 2e^{-}
                                     or acids to produce H<sub>2</sub>
Pt \longrightarrow Pt^{2+} + 2e^{-}
Au \longrightarrow Au^{3+} + 3e^{-}
```

M + BC → MC + B

M is metal
BC is acid or
$$H_2O$$
B is H_2

Ca + $2H_2O$ → $Ca(OH)_2 + H_2$

Pb + $2H_2O$ → $Pb(OH)_2 + H_2$

The Activity Series for Halogens

$$F_2 > CI_2 > Br_2 > I_2$$

Halogen Displacement Reaction

$$\stackrel{0}{\text{Cl}_2}$$
 + 2K $\stackrel{-1}{\text{Br}}$ \rightarrow 2K $\stackrel{-1}{\text{Cl}}$ + $\stackrel{0}{\text{Br}}_2$

$$I_2 + 2KBr \rightarrow 2KI + Br_2$$

Types of Oxidation-Reduction Reactions

5) Disproportionation Reaction: the same element is simultaneously oxidized and reduced.

Classify the following redox reactions and indicate changes in the oxidation numbers of the elements:

- (a) $2N_2O(g) \longrightarrow 2N_2(g) + O_2(g)$
- (b) $6\text{Li}(s) + \text{N}_2(g) \longrightarrow 2\text{Li}_3\text{N}(s)$
- (c) $Ni(s) + Pb(NO_3)_2(aq) \longrightarrow Pb(s) + Ni(NO_3)_2(aq)$
- (d) $2NO_2(g) + H_2O(l) \longrightarrow HNO_2(aq) + HNO_3(aq)$

Strategy Review the definitions of combination reactions, decomposition reactions, displacement reactions, and disproportionation reactions.

- **Solution** (a) This is a decomposition reaction because one reactant is converted to two different products. The oxidation number of N changes from +1 to 0, while that of O changes from −2 to 0.
- (b) This is a combination reaction (two reactants form a single product). The oxidation number of Li changes from 0 to +1 while that of N changes from 0 to -3.
- (c) This is a metal displacement reaction. The Ni metal replaces (reduces) the Pb²⁺ ion. The oxidation number of Ni increases from 0 to +2 while that of Pb decreases from +2 to 0.
- (d) The oxidation number of N is +4 in NO₂ and it is +3 in HNO₂ and +5 in HNO₃. Because the oxidation number of the *same* element both increases and decreases, this is a disproportionation reaction.

Solution Stoichiometry

The *concentration* of a solution is the amount of solute present in a given quantity of solvent or solution.

Molarity (M), or molar concentration, which is the number of moles of solute per liter of solution

$$M = \text{molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}$$

Preparing a Solution of Known Concentration

How many grams of potassium dichromate ($K_2Cr_2O_7$) are required to prepare a 250-mL solution whose concentration is 2.16 M?

Strategy How many moles of K₂Cr₂O₇ does a 1-L (or 1000 mL) 2.16 *M* K₂Cr₂O₇ solution contain? A 250-mL solution? How would you convert moles to grams?

Solution The first step is to determine the number of moles of $K_2Cr_2O_7$ in 250 mL or 0.250 L of a 2.16 M solution. Rearranging Equation (4.1) gives

moles of solute = molarity
$$\times$$
 L soln

Thus,

moles of
$$K_2Cr_2O_7 = \frac{2.16 \text{ mol } K_2Cr_2O_7}{1 \text{ L-soln}} \times 0.250 \text{ L-soln}$$

= 0.540 mol $K_2Cr_2O_7$

The molar mass of K₂Cr₂O₇ is 294.2 g, so we write

grams of
$$K_2Cr_2O_7$$
 needed = 0.540 mol $K_2Cr_2O_7 \times \frac{294.2 \text{ g } K_2Cr_2O_7}{1 \text{ mol } K_2Cr_2O_7}$
= 159 g $K_2Cr_2O_7$

In a biochemical assay, a chemist needs to add 3.81 g of glucose to a reaction mixture. Calculate the volume in milliliters of a 2.53 M glucose solution she should use for the addition.

Strategy We must first determine the number of moles contained in 3.81 g of glucose and then use Equation (4.2) to calculate the volume.

Solution From the molar mass of glucose, we write

$$3.81 \text{ g C}_6\text{H}_{12}\text{O}_6 \times \frac{1 \text{ mol C}_6\text{H}_{12}\text{O}_6}{180.2 \text{ g C}_6\text{H}_{12}\text{O}_6} = 2.114 \times 10^{-2} \text{ mol C}_6\text{H}_{12}\text{O}_6$$

Next, we calculate the volume of the solution that contains 2.114×10^{-2} mole of the solute. Rearranging Equation (4.2) gives

$$V = \frac{n}{M}$$
= $\frac{2.114 \times 10^{-2} \text{ mol C}_6 \text{H}_{12} \text{O}_6}{2.53 \text{ mol C}_6 \text{H}_{12} \text{O}_6 / \text{L soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}$
= 8.36 mL soln

Dilution

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

Moles of solute before dilution (i) = Moles of solute after dilution (f)

$$\mathbf{M}_{\mathrm{i}}\mathbf{V}_{\mathrm{i}} = \mathbf{M}_{\mathrm{f}}\mathbf{V}_{\mathrm{f}}$$

Describe how you would prepare 5.00×10^2 mL of a 1.75 M H₂SO₄ solution, starting with an 8.61 M stock solution of H₂SO₄.

Strategy Because the concentration of the final solution is less than that of the original one, this is a dilution process. Keep in mind that in dilution, the concentration of the solution decreases but the number of moles of the solute remains the same.

Solution We prepare for the calculation by tabulating our data:

$$M_{\rm i} = 8.61 \, M$$
 $M_{\rm f} = 1.75 \, M$
 $V_{\rm i} = ?$ $V_{\rm f} = 5.00 \times 10^2 \, \rm mL$

Substituting in Equation (4.3),

$$(8.61 M)(V_{\rm i}) = (1.75 M)(5.00 \times 10^{2} \text{ mL})$$

$$V_{\rm i} = \frac{(1.75 M)(5.00 \times 10^{2} \text{ mL})}{8.61 M}$$

$$= 102 \text{ mL}$$

Thus, we must dilute 102 mL of the 8.61 M H₂SO₄ solution with sufficient water to give a final volume of 5.00×10^2 mL in a 500-mL volumetric flask to obtain the desired concentration.

Gravimetric Analysis

Analytical technique based on the measurement of mass

- Dissolve unknown substance in water
- 2. React unknown with known substance to form a precipitate
- 3. Filter and dry precipitate
- 4. Weigh precipitate
- Use chemical formula and mass of precipitate to determine amount of unknown ion

A 0.5662-g sample of an ionic compound containing chloride ions and an unknown metal is dissolved in water and treated with an excess of AgNO₃. If 1.0882 g of AgCl precipitate forms, what is the percent by mass of Cl in the original compound?

Solution The molar masses of Cl and AgCl are 35.45 g and 143.4 g, respectively. Therefore, the percent by mass of Cl in AgCl is given by

$$\% \text{Cl} = \frac{35.45 \text{ g Cl}}{143.4 \text{ g AgCl}} \times 100\%$$
$$= 24.72\%$$

Next, we calculate the mass of Cl in 1.0882 g of AgCl. To do so we convert 24.72 percent to 0.2472 and write

mass of Cl =
$$0.2472 \times 1.0882$$
 g
= 0.2690 g

Because the original compound also contained this amount of Cl⁻ ions, the percent by mass of Cl in the compound is

$$\% \text{Cl} = \frac{0.2690 \text{ g}}{0.5662 \text{ g}} \times 100\%$$
$$= 47.51\%$$

Titrations

- In a titration, a solution of accurately known concentration (standard solution) is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.
- Equivalence point: the point at which the reaction is complete.
- Indicator: substance that changes colour at the equivalence point.

Slowly add base to unknown acid UNTIL the indicator changes colour

Titrations can be used in the analysis of:

1) Acid-base reactions

$$H_2SO_4 + 2NaOH \rightarrow 2H_2O + Na_2SO_4$$

2) Redox reactions

$$5\text{Fe}^{2+} + \text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O}$$

In a titration experiment, a student finds that 23.48 mL of a NaOH solution are needed to neutralize 0.5468 g of KHP. What is the concentration (in molarity) of the NaOH solution?

Solution First we calculate the number of moles of KHP consumed in the titration:

moles of KHP =
$$0.5468 \text{ g KHP} \times \frac{1 \text{ mol KHP}}{204.2 \text{ g KHP}}$$

= $2.678 \times 10^{-3} \text{ mol KHP}$

Because 1 mol KHP $\stackrel{\sim}{=}$ 1 mol NaOH, there must be 2.678 \times 10⁻³ mole of NaOH in 23.48 mL of NaOH solution. Finally, we calculate the number of moles of NaOH in 1 L of the solution or the molarity as follows:

molarity of NaOH soln =
$$\frac{2.678 \times 10^{-3} \text{ mol NaOH}}{23.48 \text{ mL soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}$$
$$= 0.1141 \text{ mol NaOH/1 L soln} = 0.1141 \text{ M}$$

KHP= Potassium hydrogen phthalate ($C_8H_5KO_4$)

How many milliliters (mL) of a 0.610 M NaOH solution are needed to neutralize 20.0 mL of a 0.245 M H₂SO₄ solution?

Solution First we calculate the number of moles of H₂SO₄ in a 20.0 mL solution:

$$\begin{aligned} \text{moles } H_2 SO_4 &= \frac{0.245 \text{ mol } H_2 SO_4}{1000 \text{ mL soln}} \times 20.0 \text{ mL soln} \\ &= 4.90 \times 10^{-3} \text{ mol } H_2 SO_4 \end{aligned}$$

From the stoichiometry we see that 1 mol $H_2SO_4 = 2$ mol NaOH. Therefore, the number of moles of NaOH reacted must be $2 \times 4.90 \times 10^{-3}$ mole, or 9.80×10^{-3} mole. From the definition of molarity [see Equation (4.1)], we have

$$liters of soln = \frac{moles of solute}{molarity}$$

or

volume of NaOH =
$$\frac{9.80 \times 10^{-3} \text{ mol NaOH}}{0.610 \text{ mol/L soln}}$$
$$= 0.0161 \text{ L or } 16.1 \text{ mL}$$

A 16.42-mL volume of 0.1327 M KMnO₄ solution is needed to oxidize 25.00 mL of a FeSO₄ solution in an acidic medium. What is the concentration of the FeSO₄ solution in molarity? The net ionic equation is

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

Solution The number of moles of KMnO₄ in 16.42 mL of the solution is

moles of KMnO₄ =
$$\frac{0.1327 \text{ mol KMnO}_4}{1000 \text{ mL soln}} \times 16.42 \text{ mL}$$

= $2.179 \times 10^{-3} \text{ mol KMnO}_4$

From the net ionic equation we see that 5 mol $\mathrm{Fe^{2+}} \simeq 1 \ \mathrm{mol} \ \mathrm{MnO_4^-}$. Therefore, the number of moles of $\mathrm{FeSO_4}$ oxidized is

moles
$$FeSO_4 = 2.179 \times 10^{-3} \text{ mol KMnO}_4 \times \frac{5 \text{ mol FeSO}_4}{1 \text{ mol KMnO}_4}$$

= $1.090 \times 10^{-2} \text{ mol FeSO}_4$

The concentration of the FeSO₄ solution in moles of FeSO₄ per liter of solution is

molarity of FeSO₄ =
$$\frac{\text{mol FeSO}_4}{\text{L soln}}$$

= $\frac{1.090 \times 10^{-2} \text{ mol FeSO}_4}{25.00 \text{ mL soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}$
= $0.4360 M$