

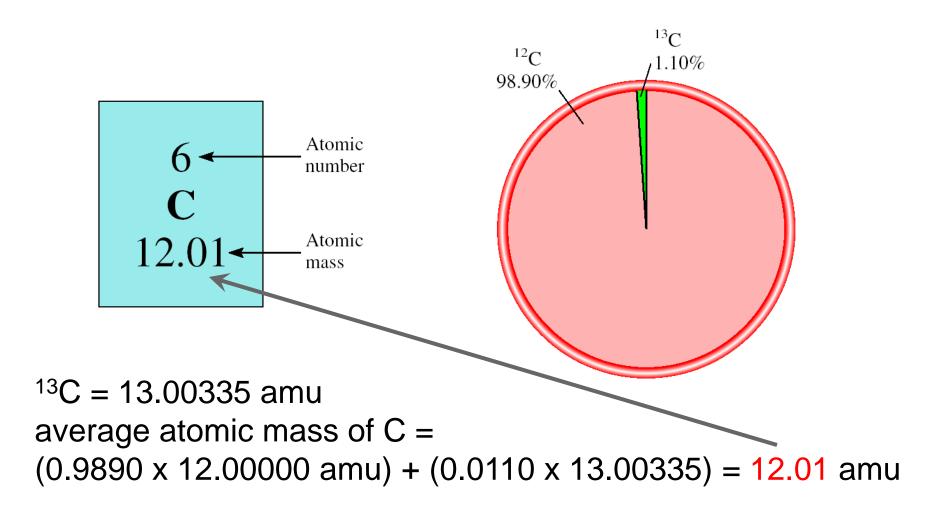
Chapter 3

Mass Relationships in Chemical Reactions

Atomic mass

Micro World ____ Macro World atoms & molecules grams

Atomic mass is the mass of an atom in atomic mass units (amu)


amu definition: the mass exactly equal to 1/12 the mass of one ¹²C atom

12
C = 6p, 6n = 12.00 amu m_{e^-} = 0

Experiment shows one atom ${}^{1}H = 8.400\%$ of ${}^{12}C$ atom thus; mass of one atom ${}^{1}H = 1.008$ amu (12.00 x 0.08400)

 $^{16}O = 16.00 \text{ amu}, ^{26}Fe = 55.85 \text{ amu}, \dots$

The *average atomic mass* is the weighted average of all the naturally occurring isotopes of the element.

Naturally occurring lithium is:

7.42% ⁶Li (6.015 amu)

92.58% ⁷Li (7.016 amu)

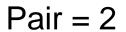
Average atomic mass of lithium:

$$\frac{(7.42 \times 6.015) + (92.58 \times 7.016)}{100} = 6.941 \text{ amu}$$

Copper, a metal known since ancient times, is used in electrical cables and pennies, among other things. The atomic masses of its two stable isotopes, $^{63}_{29}$ Cu (69.09 percent) and $^{65}_{29}$ Cu (30.91 percent), are 62.93 amu and 64.9278 amu, respectively. Calculate the average atomic mass of copper. The relative abundances are given in parentheses.

Strategy Each isotope contributes to the average atomic mass based on its relative abundance. Multiplying the mass of an isotope by its fractional abundance (not percent) will give the contribution to the average atomic mass of that particular isotope.

Solution First the percents are converted to fractions: 69.09 percent to 69.09/100 or 0.6909 and 30.91 percent to 30.91/100 or 0.3091. We find the contribution to the average atomic mass for each isotope, then add the contributions together to obtain the average atomic mass.


(0.6909)(62.93 amu) + (0.3091)(64.9278 amu) = 63.55 amu

1 1 A 1 H Hydrogen	2	10 — Atomic number Ne Neon 13 14 15 16 17															18 8A 2 He Helium
3 Li Lithium 6.941 ◀	2A 4 Be Beryllium 9.012		- Av	erag	ge a	tom	5 B Boron 10.81	4A 6 C Carbon 12.01	5A 7 N Nitrogen 14.01	8 O Oxygen 16.00	7A 9 F Fluorine 19.00	4.003 10 Ne Neon 20.18					
11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.88	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.1	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In Indium 114.8	50 Sn Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 I Iodine 126.9	54 Xe Xenon 131.3
55 Cs Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.9	75 Re Rhenium 186.2	76 Os Osmium 190.2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	80 Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	84 Po Polonium (210)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (257)	105 Db Dubnium (260)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Ds Darmstadtium (269)	111 Rg Roentgenium (272)	112	113	114	115	116	(117)	118
	Metals Metalloids			58 Ce Cerium 140.1	59 Pr Praseodymium 140.9	60 Nd Neodymium 144.2	61 Pm Promethium (147)	62 Sm Samarium 150.4	63 Eu Europium 152.0	64 Gd Gadolinium 157.3	65 Tb Terbium 158.9	66 Dy Dysprosium 162.5	67 Ho Holmium 164.9	68 Er Erbium 167.3	69 Tm Thulium 168.9	70 Yb Ytterbium 173.0	71 Lu Lutetium 175.0
	Nonmetals			90 Th Thorium 232.0	91 Pa Protactinium (231)	92 U Uranium 238.0	93 Np Neptunium (237)	94 Pu Plutonium (242)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (249)	99 Es Einsteinium (254)	100 Fm Fermium (253)	101 Md Mendelevium (256)	102 No Nobelium (254)	103 Lr Lawrencium (257)

The Mole

The Mole (mol): A unit to count numbers of particles

Dozen = 12

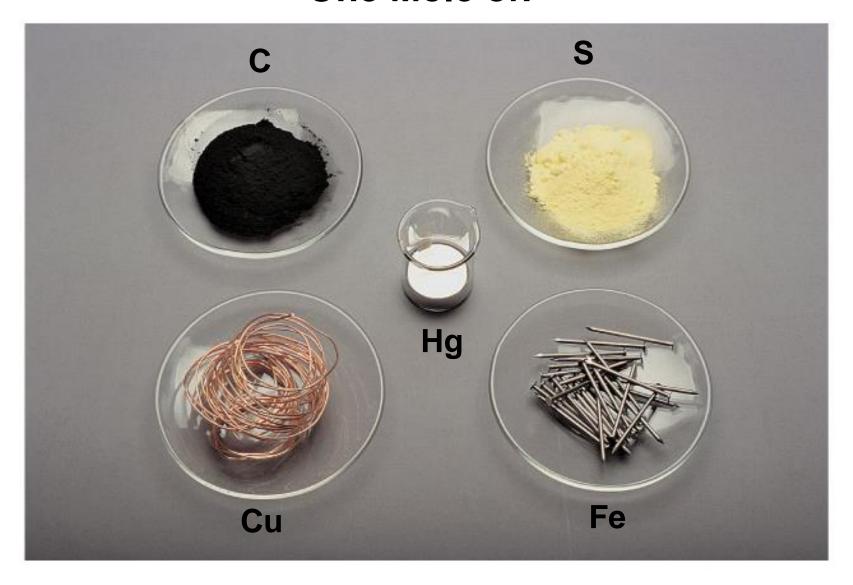
The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 mol = N_A = 6.0221367 x 10²³

Avogadro's number (N_A)

Molar mass is the mass of 1 mole of shoes marbles

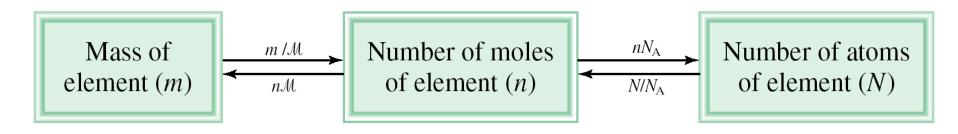
eggs shoes in grams marbles atoms


1 mole 12 C atoms = 6.022 x 10^{23} atoms = 12.00 g 1^{12} C atom = 12.00 amu

1 mole 12 C atoms = 12.00 g 12 C

1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams)


One Mole of:

Conversion Between Mass and Atoms

$$\frac{1^{12}\text{C atom}}{12.00 \text{ amu}} \times \frac{12.00 \text{ g}}{6.022 \times 10^{23}} = \frac{1.66 \times 10^{-24} \text{ g}}{1 \text{ amu}}$$

1 amu = $1.66 \times 10^{-24} \, \text{g}$ or $1 \, \text{g} = 6.022 \times 10^{23} \, \text{amu}$

 $\mathcal{M} = \text{molar mass in } (\mathbf{g/mol})$

 N_A = Avogadro's number

How many atoms are in 0.551 g of potassium (K)?

1 mol
$$K = 39.10 g K$$

1 mol K =
$$6.022 \times 10^{23}$$
 atoms K

$$0.551 \, \text{gK} \times \frac{1 \, \text{mol K}}{39.10 \, \text{gK}} \times \frac{6.022 \times 10^{23} \, \text{atoms K}}{1 \, \text{mol K}} =$$

8.49 x 10²¹ atoms K

Helium (He) is a valuable gas used in industry, low-temperature research, deep-sea diving tanks, and balloons. How many moles of He atoms are in 6.46 g of He?

Solution The conversion factor needed to convert between grams and moles is the molar mass. In the periodic table (see inside front cover) we see that the molar mass of He is 4.003 g. This can be expressed as

1 mol He =
$$4.003$$
 g He

From this equality, we can write two conversion factors

$$\frac{1 \text{ mol He}}{4.003 \text{ g He}}$$
 and $\frac{4.003 \text{ g He}}{1 \text{ mol He}}$

The conversion factor on the left is the correct one. Grams will cancel, leaving the unit mol for the answer, that is,

$$6.46 \text{ g He} \times \frac{1 \text{ mol He}}{4.003 \text{ g He}} = 1.61 \text{ mol He}$$

Thus, there are 1.61 moles of He atoms in 6.46 g of He.

Zinc (Zn) is a silvery metal that is used in making brass (with copper) and in plating iron to prevent corrosion. How many grams of Zn are in 0.356 mole of Zn?

Solution The conversion factor needed to convert between moles and grams is the molar mass. In the periodic table (see inside front cover) we see the molar mass of Zn is 65.39 g. This can be expressed as

$$1 \text{ mol Zn} = 65.39 \text{ g Zn}$$

From this equality, we can write two conversion factors

$$\frac{1 \text{ mol Zn}}{65.39 \text{ g Zn}} \quad \text{and} \quad \frac{65.39 \text{ g Zn}}{1 \text{ mol Zn}}$$

The conversion factor on the right is the correct one. Moles will cancel, leaving unit of grams for the answer. The number of grams of Zn is

$$0.356 \text{ mol Zn} \times \frac{65.39 \text{ g Zn}}{1 \text{ mol Zn}} = 23.3 \text{ g Zn}$$

Thus, there are 23.3 g of Zn in 0.356 mole of Zn.

Sulfur (S) is a nonmetallic element that is present in coal. When coal is burned, sulfur is converted to sulfur dioxide and eventually to sulfuric acid that gives rise to the acid rain phenomenon. How many atoms are in 16.3 g of S?

Solution We need two conversions: first from grams to moles and then from moles to number of particles (atoms). The first step is similar to Example 3.2. Because

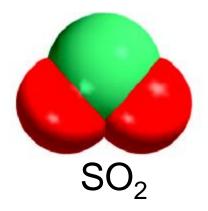
$$1 \text{ mol } S = 32.07 \text{ g } S$$

the conversion factor is

$$\frac{1 \text{ mol S}}{32.07 \text{ g S}}$$

Avogadro's number is the key to the second step. We have

1 mol =
$$6.022 \times 10^{23}$$
 particles (atoms)


and the conversion factors are

$$\frac{6.022\times 10^{23}~\textrm{S atoms}}{1~\textrm{mol S}}~~\textrm{and}~~\frac{1~\textrm{mol S}}{6.022\times 10^{23}~\textrm{S atoms}}$$

$$16.3 \text{ g-S} \times \frac{1 \text{ mol-S}}{32.07 \text{ g-S}} \times \frac{6.022 \times 10^{23} \text{ S atoms}}{1 \text{ mol-S}} = 3.06 \times 10^{23} \text{ S atoms}$$

Molecular Mass

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

1S 32.07 amu
2O +
$$(2 \times 16.00 \text{ amu})$$

 SO_2 64.07 amu

For any molecule molecular mass (amu) = molar mass (grams)

1 molecule
$$SO_2 = 64.07$$
 amu
1 mole $SO_2 = 64.07$ g SO_2

Methane (CH₄) is the principal component of natural gas. How many moles of CH₄ are present in 6.07 g of CH₄?

Solution The conversion factor needed to convert between grams and moles is the molar mass. First we need to calculate the molar mass of CH₄, following the procedure in Example 3.5:

molar mass of
$$CH_4 = 12.01 \text{ g} + 4(1.008 \text{ g})$$

= 16.04 g

Because

$$1 \text{ mol CH}_4 = 16.04 \text{ g CH}_4$$

the conversion factor we need should have grams in the denominator so that the unit g will cancel, leaving the unit mol in the numerator:

$$\frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4}$$

We now write

$$6.07 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.378 \text{ mol CH}_4$$

Thus, there is 0.378 mole of CH_4 in 6.07 g of CH_4 .

How many H atoms are in 72.5 g of C₃H₈O?

1 mol
$$C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$$

1 mol C_3H_8O molecules = 8 mol H atoms
1 mol H = 6.022 x 10^{23} atoms H

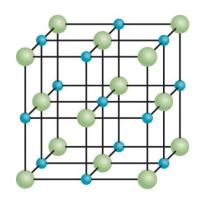
72.5 g
$$C_3H_8O$$
 x $\frac{1 \text{ mol } C_3H_8O}{60 \text{ g } C_3H_8O}$ x $\frac{8 \text{ mol H atoms}}{1 \text{ mol } C_3H_8O}$ x $\frac{6.022 \text{ x } 10^{23} \text{ H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{1000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{10000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{10000 \text{ mol H atoms}}{1 \text{ mol H atoms}} = \frac{10000 \text{ mol H atoms}}{1 \text{ m$

5.82 x 10²⁴ atoms H

How many hydrogen atoms are present in 25.6 g of urea [(NH₂)₂CO], which is used as a fertilizer, in animal feed, and in the manufacture of polymers? The molar mass of urea is 60.06 g.

Solution To calculate the number of H atoms, we first must convert grams of urea to moles of urea using the molar mass of urea. This part is similar to Example 3.2. The molecular formula of urea shows there are four moles of H atoms in one mole of urea molecule, so the mole ratio is 4:1. Finally, knowing the number of moles of H atoms, we can calculate the number of H atoms using Avogadro's number. We need two conversion factors: molar mass and Avogadro's number. We can combine these conversions

grams of urea \longrightarrow moles of urea \longrightarrow moles of H \longrightarrow atoms of H


into one step:

$$25.6 \text{ g (NH2)2CO} \times \frac{1 \text{ mol (NH2)2CO}}{60.06 \text{ g (NH2)2CO}} \times \frac{4 \text{ mol H}}{1 \text{ mol (NH2)2CO}} \times \frac{6.022 \times 10^{23} \text{ H atoms}}{1 \text{ mol H}}$$

$$= 1.03 \times 10^{24} \text{ H atoms}$$

Formula Mass

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

For any ionic compound

formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu

1 mole NaCl = 58.44 g NaCl

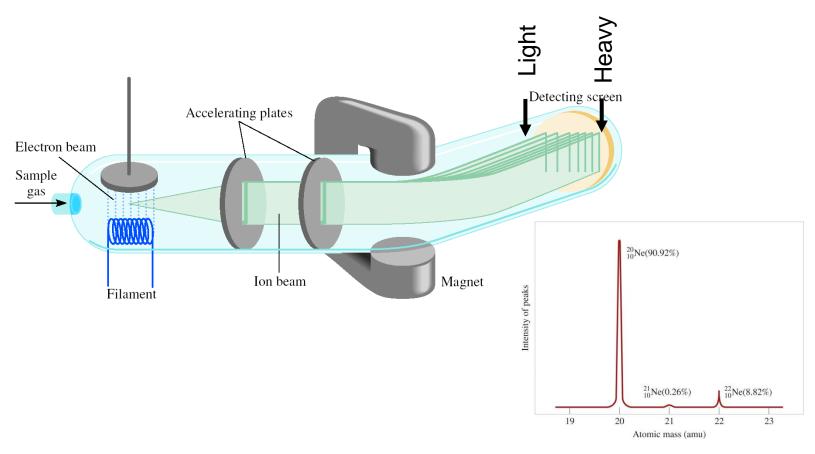
Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

For any ionic compound formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl

What is the formula mass of $Ca_3(PO_4)_2$?

1 formula unit of $Ca_3(PO_4)_2$

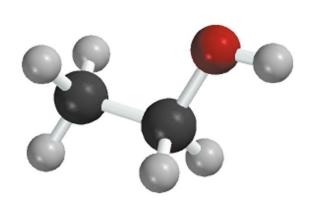

```
3 Ca 3 x 40.08
2 P 2 x 30.97
```

8 O + 8 x 16.00

310.18 amu

Mass Spectrometer

The most direct and most accurate method for determining atomic and molecular masses is mass spectrometry



Mass Spectrum of Ne

Percent composition of an element in a compound =

n x molar mass of element molar mass of compound x 100%

n is the number of moles of the element in 1 mole of the compound

$$C_2H_6O$$

$$%C = \frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$$

%H =
$$\frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$$

%O =
$$\frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$$

Examples

What is the mass of H,Cl in 10 g HCl?

What is % composition of the elements C in CH₃COOH?

What is % composition of the elements in 25.00 g H_2SO_4 if m_H = 0.5142 g and m_O = 16.3239 g and m_S = 8.1619 g ?

Percent Composition and Empirical Formulas

Mass percent

Convert to grams and divide by molar mass

Moles of each element

Divide by the smallest number of moles

Mole ratios of elements

Change to integer subscripts

Empirical formula Determine the empirical formula of a compound that has the following percent composition by mass:

K 24.75, Mn 34.77, O 40.51 percent.

$$n_{\rm K} = 24.75 \, \text{g K} \, \text{x} \frac{1 \, \text{mol K}}{39.10 \, \text{g K}} = 0.6330 \, \text{mol K}$$

$$n_{\text{Mn}} = 34.77 \text{ g Min x } \frac{1 \text{ mol Mn}}{54.94 \text{ g Min}} = 0.6329 \text{ mol Mn}$$

$$n_{\rm O} = 40.51 \,\text{gO} \times \frac{1 \,\text{mol O}}{16.00 \,\text{gO}} = 2.532 \,\text{mol O}$$

Percent Composition and Empirical Formulas

Convert to grams and divide by molar mass

Moles of each element

Divide by the smallest number of moles

Mole ratios of elements

Change to integer subscripts

Empirical formula

$$n_{\rm K} = 0.6330, n_{\rm Mn} = 0.6329, n_{\rm O} = 2.532$$

$$K: \frac{0.6330}{0.6329} \approx 1.0$$

Mn:
$$\frac{0.6329}{0.6329} = 1.0$$

O:
$$\frac{2.532}{0.6329} \approx 4.0$$

KMnO₄

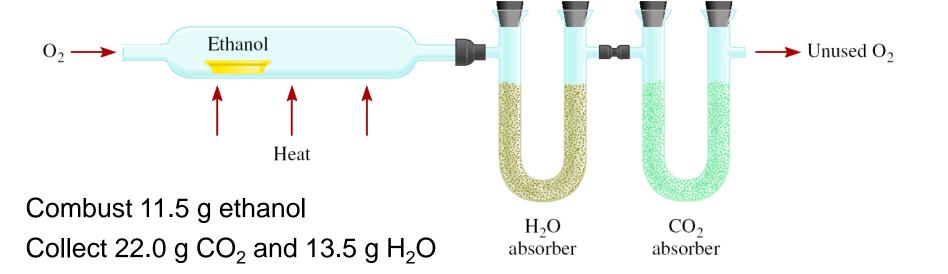
Ascorbic acid (vitamin C) cures scurvy. It is composed of 40.92 percent carbon (C), 4.58 percent hydrogen (H), and 54.50 percent oxygen (O) by mass. Determine its empirical formula.

Solution

$$n_{\rm C} = 40.92 \, {\rm geV} \times \frac{1 \, {\rm mol} \, {\rm C}}{12.01 \, {\rm geV}} = 3.407 \, {\rm mol} \, {\rm C}$$
 $n_{\rm H} = 4.58 \, {\rm gH} \times \frac{1 \, {\rm mol} \, {\rm H}}{1.008 \, {\rm gH}} = 4.54 \, {\rm mol} \, {\rm H}$
 $n_{\rm O} = 54.50 \, {\rm geV} \times \frac{1 \, {\rm mol} \, {\rm O}}{16.00 \, {\rm geV}} = 3.406 \, {\rm mol} \, {\rm O}$
 ${\rm C:} \, \frac{3.407}{3.406} \approx 1 \quad {\rm H:} \, \frac{4.54}{3.406} = 1.33 \quad {\rm O:} \, \frac{3.406}{3.406} = 1$
 $1.33 \times 1 = 1.33$
 $1.33 \times 2 = 2.66$
 $1.33 \times 3 = 3.99 \approx 4$

Because 1.33×3 gives us an integer (4), we multiply all the subscripts by 3 and obtain $C_3H_4O_3$ as the empirical formula for ascorbic acid.

Chalcopyrite (CuFeS₂) is a principal mineral of copper. Calculate the number of kilograms of Cu in 3.71×10^3 kg of chalcopyrite.


Strategy Chalcopyrite is composed of Cu, Fe, and S. The mass due to Cu is based on its percentage by mass in the compound. How do we calculate mass percent of an element?

Solution The molar masses of Cu and CuFeS₂ are 63.55 g and 183.5 g, respectively. The mass percent of Cu is therefore

%Cu =
$$\frac{\text{molar mass of Cu}}{\text{molar mass of CuFeS}_2} \times 100\%$$

= $\frac{63.55 \text{ g}}{183.5 \text{ g}} \times 100\% = 34.63\%$

To calculate the mass of Cu in a 3.71×10^3 kg sample of CuFeS₂, we need to convert the percentage to a fraction (that is, convert 34.63 percent to 34.63/100, or 0.3463) and write

mass of Cu in CuFeS₂ =
$$0.3463 \times (3.71 \times 10^3 \text{ kg}) = 1.28 \times 10^3 \text{ kg}$$

$$g CO_2 \longrightarrow mol CO_2 \longrightarrow mol C \longrightarrow g C$$
 6.0 $g C = 0.5 mol C$
 $g H_2O \longrightarrow mol H_2O \longrightarrow mol H \longrightarrow g H$ 1.5 $g H = 1.5 mol H$

g of
$$O = g$$
 of sample – $(g \text{ of } C + g \text{ of } H)$ 4.0 g $O = 0.25 \text{ mol } O$

Empirical formula C_{0.5}H_{1.5}O_{0.25} Divide by smallest subscript (0.25)

Empirical formula C₂H₆O

Molecular Formulas

Molecular weight of the compound should be known

$$X = \frac{\mathcal{M}_{actual}}{\mathcal{M}_{empirical}}$$
 Multiply the empirical formula by the integer x

A compound has empirical formula $C_6H_{10}S_2O$ but its molecular weight is 324 g/mol !

$$C_{12}H_{20}S_4O_2$$

Calculate the number of grams of Al in 371 g of Al₂O₃? 196.5 g

A sample of a compound contains 1.52 g of nitrogen (N) and 3.47 g of oxygen (O). The molar mass of this compound is between 90 g and 95 g. Determine the molecular formula and the accurate molar mass of the compound.

Solution We are given grams of N and O. Use molar mass as a conversion factor to convert grams to moles of each element. Let *n* represent the number of moles of each element. We write

$$n_{\rm N} = 1.52 \,\text{g N} \times \frac{1 \,\text{mol N}}{14.01 \,\text{g N}} = 0.108 \,\text{mol N}$$

 $n_{\rm O} = 3.47 \,\text{g O} \times \frac{1 \,\text{mol O}}{16.00 \,\text{g O}} = 0.217 \,\text{mol O}$

Thus, we arrive at the formula $N_{0.108}O_{0.217}$, which gives the identity and the ratios of atoms present. However, chemical formulas are written with whole numbers. Try to convert to whole numbers by dividing the subscripts by the smaller subscript (0.108). After rounding off, we obtain NO_2 as the empirical formula.

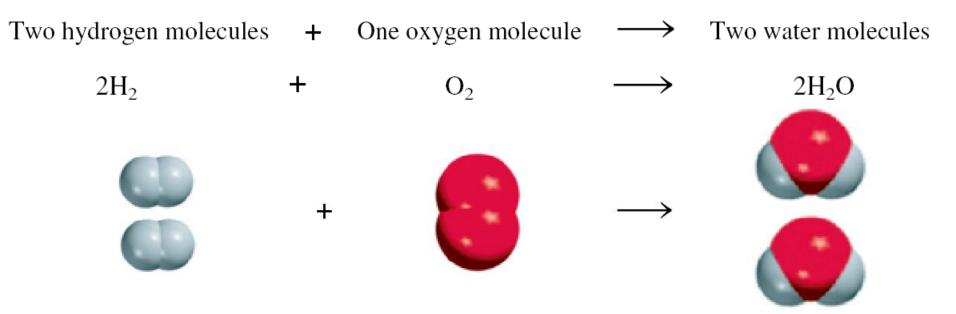
empirical molar mass =
$$14.01 \text{ g} + 2(16.00 \text{ g}) = 46.01 \text{ g}$$

Next, we determine the ratio between the molar mass and the empirical molar mass

$$\frac{\text{molar mass}}{\text{empirical molar mass}} = \frac{90 \text{ g}}{46.01 \text{ g}} \approx 2$$

The molar mass is twice the empirical molar mass. This means that there are two NO_2 units in each molecule of the compound, and the molecular formula is $(NO_2)_2$ or N_2O_4 .

The actual molar mass of the compound is two times the empirical molar mass, that is, 2(46.01 g) or 92.02 g, which is between 90 g and 95 g.


Chemical Reaction

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*

A *chemical equation* uses chemical symbols to show what happens during a chemical reaction

reactants ---- products

3 ways of representing the reaction of H₂ with O₂ to form H₂O

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO

2 moles Mg + 1 mole O₂ makes 2 moles MgO

48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

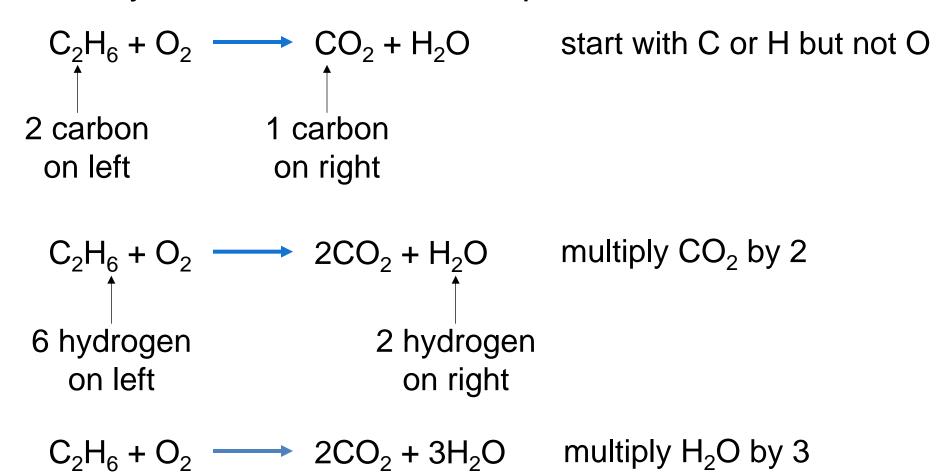
NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

Balancing Chemical Equations

1. Write the **correct** formula(s) for the reactants on the left side and the **correct** formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water


$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

2. Change the numbers in front of the formulas (*coefficients*) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

$$2C_2H_6$$
 NOT C_4H_{12}

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.

Balancing Chemical Equations

4. Balance those elements that appear in two or more reactants or products.

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O \qquad \text{multiply } O_2 \text{ by } \frac{7}{2}$$

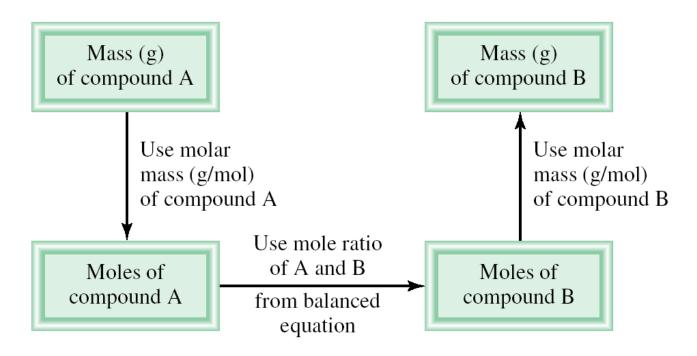
$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$2 \text{ oxygen} \qquad 4 \text{ oxygen} + 3 \text{ oxygen} = 7 \text{ oxygen}$$

$$\text{on left} \qquad (2x2) \qquad (3x1) \qquad \text{on right}$$

$$C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$$
 remove fraction multiply both sides by 2

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$


Balancing Chemical Equations

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

Reactants	Products
4 C (2 x 2)	4 C
12 H (2 x 6)	12 H (6 x 2)
14 O (7 x 2)	14 O (4 x 2 + 6)

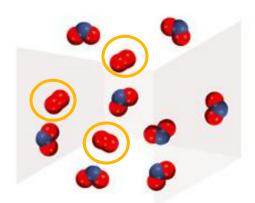
Amounts of Reactants and Products

- 1. Write balanced chemical equation.
- 2. Convert quantities of known substances into moles.
- Use coefficients in balanced equation to calculate the number of moles of the sought quantity.
- 4. Convert moles of sought quantity into desired units.

Methanol burns in air according to the equation

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?


grams $CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow grams H_2O$

molar mass coefficients molar mass CH₃OH chemical equation H₂O

209 g CH₃OH x
$$\frac{1 \text{ mol CH}_3\text{OH}}{32.0 \text{ g CH}_3\text{OH}}$$
 x $\frac{4 \text{ mol H}_2\text{O}}{2 \text{ mol CH}_3\text{OH}}$ x $\frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ =

235 g H₂O

Before reaction has started

After reaction is complete

Limiting Reagent

Reactant **used up first** in the reaction

$$2NO + O_2 \longrightarrow 2NO_2$$

NO is the **limiting** reagent

O₂ is the excess reagent

In one process, 124 g of Al are reacted with 601 g of Fe_2O_3 2Al + $Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$

Calculate the mass of Al₂O₃ formed.

g Al
$$\longrightarrow$$
 mol Al \longrightarrow mol Fe₂O₃ needed \longrightarrow g Fe₂O₃ needed OR

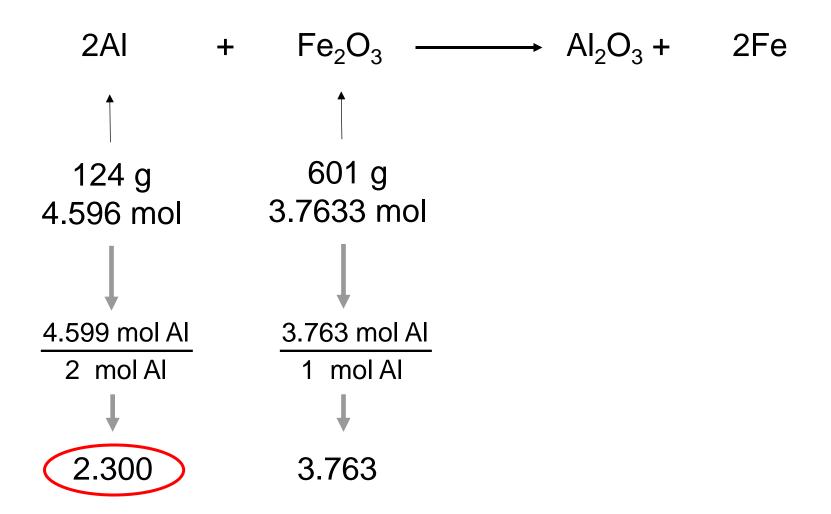
 $g Fe_2O_3 \longrightarrow mol Fe_2O_3 \longrightarrow mol Al needed \longrightarrow g Al needed$

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Fe}_2O_3}{2 \text{ mol Al}}$ x $\frac{160. \text{ g Fe}_2O_3}{1 \text{ mol Fe}_2O_3} = 367 \text{ g Fe}_2O_3$

Start with 124 g Al \longrightarrow need 367 g Fe₂O₃

Have more Fe₂O₃ (601 g) so Al is the limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.


g Al
$$\longrightarrow$$
 mol Al \longrightarrow mol Al₂O₃ \longrightarrow g Al₂O₃

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$

124 g Al x
$$\frac{1 \text{ mol Al}}{26.98 \text{ g Al}}$$
 x $\frac{1 \text{ mol Al}_2\text{O}_3}{2 \text{ mol Al}}$ x $\frac{102.0 \text{ g Al}_2\text{O}_3}{1 \text{ mol Al}_2\text{O}_3} = 234.4 \text{ g Al}_2\text{O}_3$

At this point, all the Al is consumed and Fe₂O₃ remains in excess.

Another method

Al is the least thus it is the limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$g AI \longrightarrow mol AI \longrightarrow mol AI_2O_3 \longrightarrow g AI_2O_3$$

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

$$124 g At x \xrightarrow{1 mol AI} x \xrightarrow{1 mol AI_2O_3} x \xrightarrow{1 mol AI_2O_3} x \xrightarrow{1 mol AI_2O_3} = 234.4 g AI_2O_3$$

At this point, all the **Al** is consumed and **Fe₂O₃** remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

Calculate % yield if 803 g of CaO is produced?

$$5 \text{ Ca} + V_2O_5 \longrightarrow 5 \text{ CaO} + 2 \text{ V}$$

$$1.96 \times 10^3 \text{ g} \qquad 1.54 \times 10^3 \text{ g} \qquad ? \text{ g}$$

$$48.90 \text{ mol} \qquad 8.467 \text{ mol} \qquad 42.34 \text{ mol}$$

$$48.90 \text{ mol Ca}$$

$$5 \text{ mol Ca}$$

$$5 \text{ mol Ca}$$

$$9.78 \qquad 8.467$$

$$9.78 \qquad 8.467$$

$$8.467$$

$$9.78 \qquad 8.467$$

$$9.78 \qquad 8.467$$

$$8.467$$

$$9.78 \qquad 8.467$$

$$9.78 \qquad 8.467$$

EXAMPLE 3.16

Titanium is a strong, lightweight, corrosion-resistant metal that is used in rockets, aircraft, jet engines, and bicycle frames. It is prepared by the reaction of titanium(IV) chloride with molten magnesium between 950°C and 1150°C:

$$TiCl_4(g) + 2Mg(l) \longrightarrow Ti(s) + 2MgCl_2(l)$$

In a certain industrial operation 3.54×10^7 g of TiCl₄ are reacted with 1.13×10^7 g of Mg. (a) Calculate the theoretical yield of Ti in grams. (b) Calculate the percent yield if 7.91×10^6 g of Ti are actually obtained.

Solution Carry out two separate calculations to see which of the two reactants is the limiting reagent. First, starting with 3.54×10^7 g of TiCl₄, calculate the number of moles of Ti that could be produced if all the TiCl₄ reacted. The conversions are

grams of TiCl₄
$$\longrightarrow$$
 moles of TiCl₄ \longrightarrow moles of Ti

moles of Ti = 3.54×10^7 g TiCl₄ $\times \frac{1 \text{ mol TiCl}_4}{189.7 \text{ g TiCl}_4} \times \frac{1 \text{ mol Ti}}{1 \text{ mol TiCl}_4}$

= 1.87×10^5 mol Ti

Next, we calculate the number of moles of Ti formed from 1.13×10^7 g of Mg. The conversion steps are

grams of Mg
$$\longrightarrow$$
 moles of Mg \longrightarrow moles of Ti
moles of Ti = 1.13×10^7 g Mg $\times \frac{1 \text{ mol Mg}}{24.31 \text{ g Mg}} \times \frac{1 \text{ mol Ti}}{2 \text{ mol Mg}}$
= 2.32×10^5 mol Ti

Therefore, TiCl₄ is the limiting reagent because it produces a smaller amount of Ti. The mass of Ti formed is

$$1.87 \times 10^5 \text{ mol Ti} \times \frac{47.88 \text{ g Ti}}{1 \text{ mol Ti}} = 8.95 \times 10^6 \text{ g Ti}$$
 (Continued)

Solution The percent yield is given by

% yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$
$$= \frac{7.91 \times 10^6 \text{ g}}{8.95 \times 10^6 \text{ g}} \times 100\%$$
$$= 88.4\%$$