Chapter 3

Borrowing, Lending, and Investing

Section 3-7: Equivalence and Indifference . Section 3-9: Variable Interest Rates

Equivalence and Indifference . Section 3-7

Equivalence

Two cash flow streams are said to be equivalent at $\mathbf{k \%}$ interest if and only if their present worth are equal at $k \%$ interest.

Example 3.21

What uniform series over periods $[1,8]$ is equivalent at 15% to the following cash flow profile?

End of Period	Cash Flow
1	$\$ 100$
3	$\$ 200$
4	$\$ 100$
5	$\$ 300$

Solution:

$[100(\mathrm{~F} \mid \mathrm{P} 15 \%, 7)+\mathbf{2 0 0}(\mathrm{F} \mid \mathrm{P} 15 \%, 5)+\mathbf{1 0 0}(\mathrm{F} \mid \mathrm{P} 15 \%, 4)$
$+300(\mathrm{~F} \mid \mathrm{P} 15 \%, \mathbf{3})](\mathrm{A} \mid \mathrm{F} \mathbf{1 5 \%}, \mathrm{8})=\$ 94.86$

Example 3.22

What single sum at $t=6$ is equivalent at 10% to the following cash flow profile

Solution:

$$
\begin{aligned}
& {[-400+100(\mathbf{P} \mid \mathbf{A} 10 \%, \mathbf{3})](\mathbf{F} \mid \mathbf{P} 10 \%, 5)+} \\
& 100(\mathbf{P} \mid \mathbf{A} 10 \%, \mathbf{3})(\mathbf{F} \mid \mathbf{P} 10 \%, \mathbf{1})=\$ 29.85
\end{aligned}
$$

Alternative Solution:
 $10 \%, 2$)
$\mathrm{F}=[\$ 100(9.48717)-\$ 400(1.94872)-\$ 100(1.33100)](0.82645)$
$\mathrm{F}=\mathbf{\$ 2 9 . 8 6}$

Example 3.23

What uniform series over $[1,5]$ is equivalent to the following cash flow profile if $\mathbf{i}=\mathbf{8 \%}$?

End of Period
Cash Flow

1	$\$ 0$
2	$\$ 500$
3	$\$ 400$
4	$\$ 300$
5	$\$ 200$
6	$\$ 100$
7	$\$ 0$

Solution:
The uniform series equivalent over $[2,6]$ is
$\mathrm{A}=\mathbf{\$ 5 0 0}-\mathbf{\$ 1 0 0}(\mathrm{A} \mid \mathrm{G} 8 \%, 5)=\$ 500-\$ 100(1.84647)=\$ 315.35$
The uniform series equivalent over [1,5] is
$\mathbf{A}=\mathbf{\$ 3 1 5 . 3 5}(\mathbf{P} \mid \mathbf{F 8 \%}, \mathbf{1})=\mathbf{\$ 3 1 5 . 3 5}(\mathbf{0 . 9 2 5 9 3})=\mathbf{\$ 2 9 1 . 9 9}$

Example 3.24

Determine the value of X that makes the two CFDs equivalent.

$$
\begin{aligned}
& \text { FW }(\text { LHS })=\$ 200(\mathbf{F} \mid \mathbf{A} 15 \%, 4)+\$ 100(\mathbf{F} \mid \mathbf{A} 15 \%, \mathbf{3})+\$ 100 \\
& \mathbf{F W}(\text { RHS })=[\$ 200+\text { X }(\mathbf{A} \mid \mathbf{G} \mathbf{1 5 \%}, \mathbf{4})](\mathbf{F} \mid \mathbf{A} 15 \%, 4)
\end{aligned}
$$

Equating the two and eliminating the common term of $\$ 200(F \mid A 15 \%, 4)$, $\mathbf{\$ 1 0 0}(\mathbf{3 . 4 7 2 5 0})+\$ 100=\mathbf{X}(\mathbf{1 . 3 2 6 2 6})(\mathbf{4 . 9 9 3 3 8})$

Solving for \mathbf{X} give a value of $\$ 67.53$.

Example 3.25

For what interest rate are the two cash flow diagrams equivalent?

Solution:

$-\$ 4000(\mathrm{~A} \mid \mathrm{Pi} \mathbf{\%}, 5)+\$ 1500=$ $-\$ 7000(\mathrm{~A} \mid \mathrm{Pi} \%, 5)+\$ 1500+\$ 500(\mathrm{~A} \mid \mathrm{G} \mathbf{i} \%, 5)$
$\mathrm{i} \approx 13.8641 \%$ (by interpolation)

Section 3-9

Variable Interest Rates

Consider the case in which different interest rates apply for different time periods. Let A_{t} denote the magnitude of the cash flow at the end of time period t, $t=1, \ldots, n$. Let i_{s} denote the interest rate during time period $s, s=1, \ldots, t$. The present worth of $\left\{A_{t}\right\}$ is given by

$$
P=\sum_{t=1}^{n} A_{t} \prod_{s=1}^{t}\left(1+i_{s}\right)^{-1}
$$

Example 3.30

You deposit $\$ 1000$ in a fund paying 8% annual interest; after 3 years the fund increases its interest rate to 10%; after 4 years of paying 10% interest the fund begins paying 12%. How much will be in the fund 9 years after the initial deposit?

Solution:

$$
\begin{aligned}
& \text { let } \mathbf{V}_{\mathbf{t}}=\text { value of fund at time } \mathbf{t} \\
& \mathbf{V}_{3}=\$ 1000.00(\mathrm{~F} \mid \mathrm{P} 8 \%, 3)=\$ 1259.71 \\
& \mathbf{V}_{7}=\$ 1259.71(\mathrm{~F} \mid \mathrm{P} 10 \%, 4)=\$ 1844.34 \\
& \mathbf{V}_{9}=\$ 1844.34(\mathrm{~F} \mid \mathrm{P} \mathbf{1 2 \%}, 2)=\$ 2313.54
\end{aligned}
$$

$\mathbf{V}_{\mathbf{9}}=$ FVSCHEDULE $(1000,\{8 \%, \mathbf{8 \%}, \mathbf{8 \%}, \mathbf{1 0 \%}, \mathbf{1 0 \%}$, $10 \%, 10 \%, 12 \%, 12 \%\})=\$ 2,313.55 ~ \vdash$

Example 3.31

Consider a cash flow profile in which $\$ 200$ is received at $t=1$, spent at $\mathbf{t}=2$, and received at $\mathbf{t}=5$, and $\$ 300$ is received at $t=3$. Suppose the interest rate is 10% the first 2 periods, 8% the next two periods, and is $\mathbf{1 2 \%}$ the $5^{\text {th }}$ period. What are the equivalent present worth, future worth, and uniform series for the cash flow profile? [note: t denotes end of period t]

Solution:

$\mathbf{P}=\$ 200(\mathrm{P} \mid \mathbf{F} \mathbf{1 0 \%}, \mathbf{1})-\mathbf{\$ 2 0 0}(\mathbf{P} \mid \mathbf{F} \mathbf{1 0 \%}, \mathbf{2})+$ $\mathbf{\$ 3 0 0 (P | F ~ 8 \% , 1) (P | F ~ 1 0 \% , 2) + ~}$ $\mathbf{\$ 2 0 0 (P | F ~ 1 2 \% , 1) (P | F ~ 8 \% , 2) (P | F ~ 1 0 \% , 2) ~}$
$\mathrm{P}=\$ 372.63$

$$
\begin{aligned}
& \mathbf{F}=\mathbf{\$ 2 0 0}+\mathbf{\$ 3 0 0}(\mathbf{F} \mid \mathbf{P} 8 \%, \mathbf{1})(\mathbf{F} \mid \mathbf{P} \mathbf{1 2 \%}, \mathbf{1})- \\
& \mathbf{\$ 2 0 0 (F | P ~ 8 \% , 2) (F | P ~ 1 2 \% , 1) ~ + ~} \\
& \text { \$200(F|P 10\%,1)(F|P 8\%,2)(F|P 12\%,1) } \\
& \text { F }=\mathbf{\$ 5 8 9 . 0 1} \upharpoonright
\end{aligned}
$$

F =FVSCHEDULE $(200,\{0.1,0.08,0.08,0.12\})$
-FVSCHEDULE (200,\{0.08,0.08,0.12\})
+FVSCHEDULE(300,\{0.08,0.12\})+200
F $=\$ 589.01$

To solve for the uniform series equivalent,

notice

$$
\begin{aligned}
& \mathbf{F}=\mathbf{A}[\mathbf{1}+(\mathbf{F} \mid \mathbf{P} \mathbf{1 2 \%}, \mathbf{1})+(\mathbf{F} \mid \mathbf{P} \mathbf{8 \%}, \mathbf{1})(\mathbf{F} \mid \mathbf{P} \mathbf{1 2 \%}, \mathbf{1})+ \\
& \text { (F|P 8\%,2)(F|P 12\%,1)+ } \\
& \text { (F|P 10\%,1)(F|P 8\%,2)(F|P 12\%,1)] } \\
& =\mathrm{A}[1+1.12+\mathbf{1 . 0 8}(1.12)+\mathbf{1 . 1 6 6 4 (1 . 1 2)} \\
& +1.1(1.08)(1.12)]=\$ 589.01 \\
& \$ 589.01=6.073 \mathrm{~A} \\
& \mathrm{~A}=\$ 589.01 / 6.073=\$ 96.99
\end{aligned}
$$

