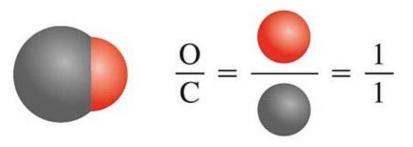


Because learning changes everything. $^{\tiny{(\!R)}}$

Chapter 2

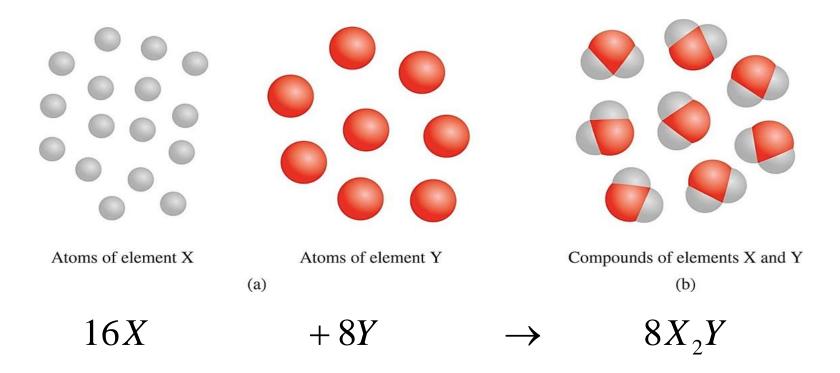
Atoms, Molecules, and Ions



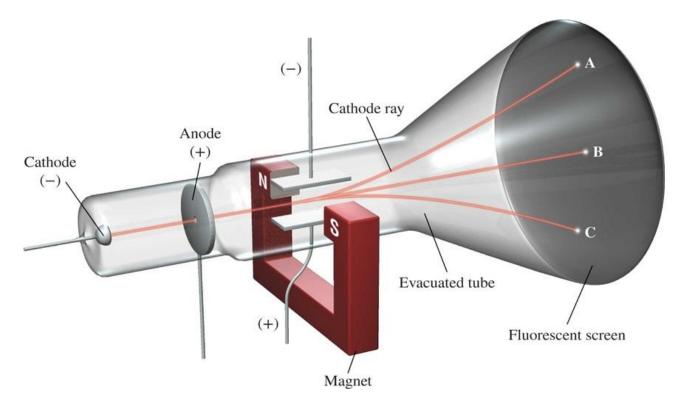
Dalton's Atomic Theory (1808)

- 1. Elements are composed of extremely small particles called *atoms*.
- 2. All *atoms* of a given element are identical, having the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other elements.
- **3. Compounds** are composed of atoms of more than one element. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
- 4. A *chemical reaction* involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.

Dalton's Atomic Theory


Carbon monoxide

Carbon dioxide $\frac{O}{C} = \frac{O}{O} = \frac{2}{1}$


Law of Multiple Proportions

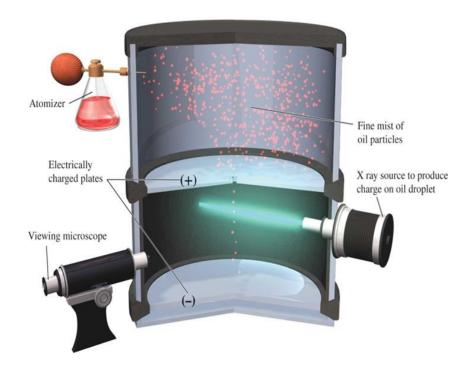
Law of Conservation of Mass

The law of conservation of mass must be conserved in a chemical reaction.

Cathode Ray Tube

J.J. Thomson, **measured mass/charge of e-,** conducted experiments with cathode rays, he found that the cathode rays had mass and also that they were negatively charged. Cathode rays were later classified as negatively charged particles known as electrons.

(1906 Nobel Prize in Physics)

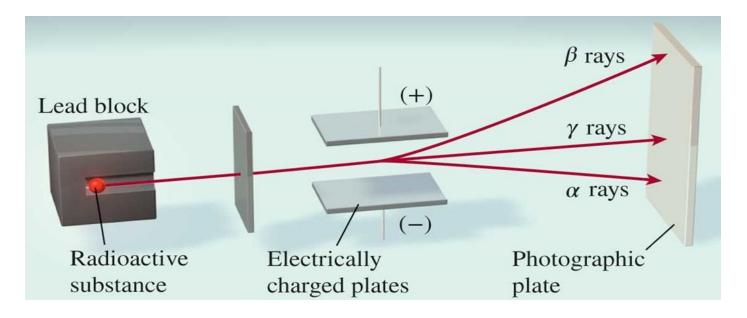

Cathode Ray Tube

The negatively charge particles is e⁻

(b) When the negative end of a magnet is introduced to a stream of electrons, the electrons are repelled away from the magnet, because like charges repel.(c) When the positive end of a magnet is introduced to a stream of electrons, the electrons are attracted toward the magnet, because opposite charges attract.

Millikan's Experiment

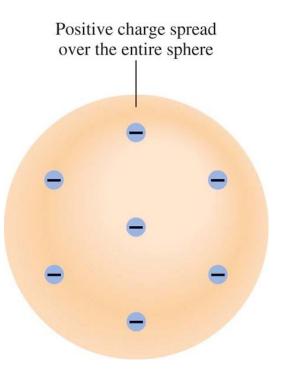
Millikan found that the negative charges on the particles were quantized, and he was the first to calculate the charge of a single electron.


Measured mass of e^-

(1923 Nobel Prize in Physics)

 e^{-} charge = -1.60×10^{-19} C Thompson's charge/mass of $e^{-} = -1.76 \times 10^{8}$ C/g e^{-} mass = 9.10×10^{-28} g

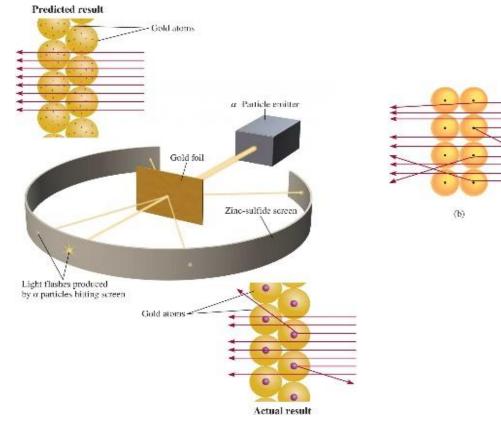
Types of Radioactivity


Radioactivity to describe this spontaneous emission of particles and/or radiation.

- Alpha (α) rays consist of positively charged (+) particles, called α particles, and therefore are deflected by the positively charged plate.
- **2.** Beta (β) rays, negatively charged (-) particles called β particles, are electrons and are deflected by the negatively charged plate.
- **3. Gamma (γ) rays,** radioactive radiation consists of high-energy rays, have no charge and are not affected by an external field.

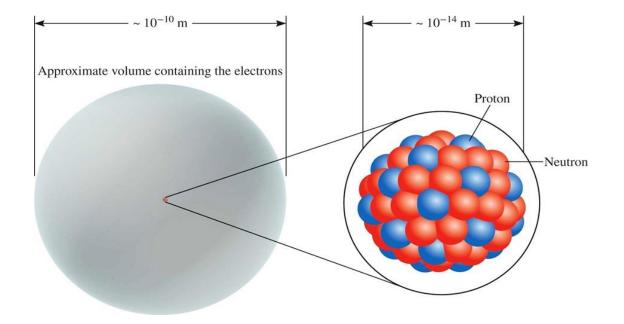
Thomson's Model

- 1. By the early 1900s, two features of atoms had become clear:
 - They contain electrons, and they are electrically neutral.
 - To maintain electric neutrality, an atom must contain an equal number of positive and negative charges.
- 2. Thomson proposed that an atom could be a positive sphere of matter in which electrons are embedded like raisins in a cake This so-called "plum-pudding" model was the accepted theory for a number of years.



Rutherford's Experiment

- 1. atoms positive charge is concentrated in the nucleus
- 2. proton (p) has opposite (+) charge of electron (-)
- 3. mass of p is $1840 \times \text{mass of } e^{-}(1.67 \times 10^{-24} \text{g})$


 α particle velocity ~ 1.4 × 10⁷ m/s (~ 5 % speed of light)

(1908 Nobel Prize in Chemistry)

(a)

Rutherford's Model of the Atom

atomic radius ~ 100 pm = 1×10^{-10} m nuclear radius ~ 5×10^{-3} pm = 5×10^{-15} m

"If the size of an atom were expanded to that of this sports stadium, the size of the nucleus would be that of a marble."

Chadwick's Experiment (1932)

(1935 Noble Prize in Physics)

$$\alpha + {}^{9}Be \rightarrow {}^{1}n + {}^{12}C + \text{energy}$$

Chadwick named these subatomic particles **neutrons**, because they proved to be electrically neutral particles with a mass slightly greater than that of protons.

- H atoms: 1 p; He atoms: 2 p
- mass He/mass H should = 2
- measured mass He/mass H = 4

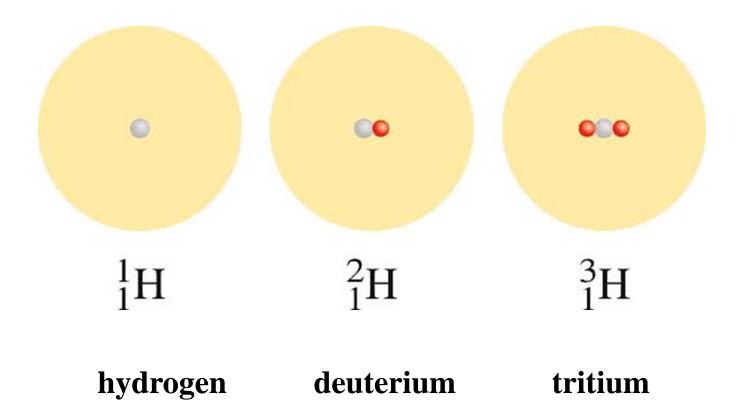
neutron (n) is neutral (charge = 0) n mass \approx p mass = 1.67 × 10⁻²⁴ g

Properties of Subatomic Particles

TABLE 2.1	Mass and Charge of Subatomic Particles							
		Char	ge					
Particle	Mass (g)	Coulomb	Charge Unit					
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1					
Proton	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1					
Neutron	1.67493×10^{-24}	0	0					

*More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

mass p ≈ mass n ≈ 1840 x mass e⁻


Atomic Number, Mass Number, and Isotopes

Atomic number (Z) = number of protons in nucleus
Mass number (A) = number of protons + number of neutrons
= atomic number (Z) + number of neutrons
Isotopes are atoms of the same element (X) with different numbers of neutrons in their nuclei

 $\begin{array}{c} \text{Mass Number} \rightarrow A \\ \text{Atomic Number} \rightarrow Z \end{array} X \leftarrow \textbf{Element Symbol} \end{array}$

 ${}^{1}_{1}H \qquad {}^{2}_{1}H (D) \qquad {}^{3}_{1}H (T)$ ${}^{235}_{92}U \qquad {}^{238}_{92}U$

The Isotopes of Hydrogen

Atomic number, Mass number and Isotopes

Atoms are electrically neutral; the number of electrons is equal to the number of protons.

How many protons, neutrons, and electrons are \ln_{6}^{14} C? 6 protons, 8 (14 – 6) neutrons, 6 electrons

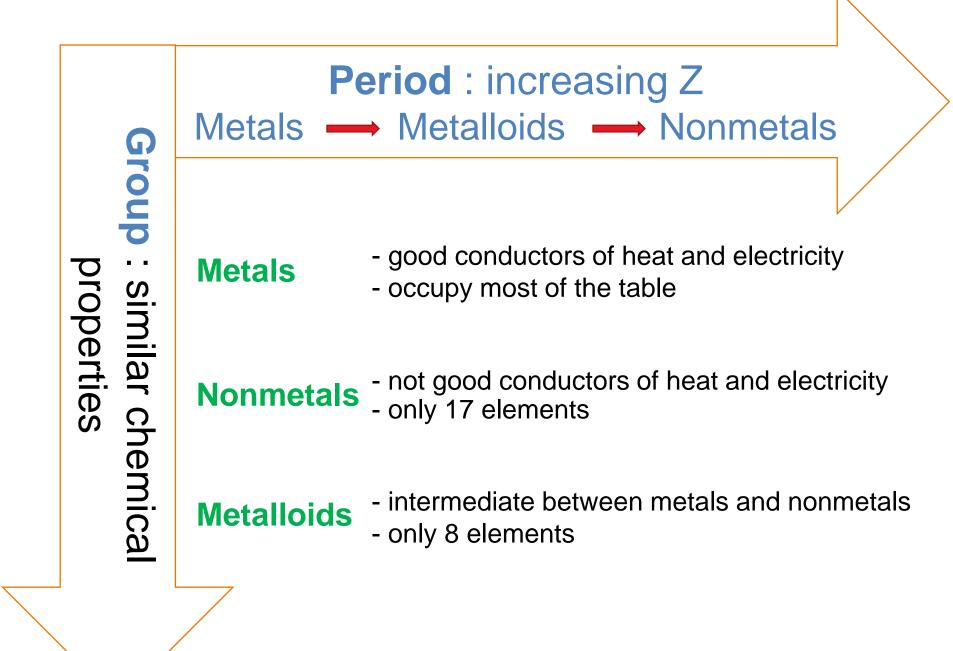
How many protons, neutrons, and electrons are \ln_{6}^{11} C?

6 protons, 5 (11 - 6) neutrons, 6 electrons

Atomic number, Mass number and Isotopes

Find number of electrons, protons, and neutrons?

	⁶³ ₂₉ Cu	²³⁹ ₉₄ Pu	²⁶ ₁₃ AI	¹⁷ ₈ O	²⁰² ₈₀ Hg	⁴⁸ Ti 22
e⁻	29	94	13	8	80	22
p +	29	94	13	8	80	22
n	34	145	13	9	122	26

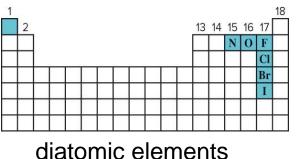

EXAMPLE 2.1

Give the number of protons, neutrons, and electrons in each of the following species: (a) $^{20}_{11}$ Na, (b) $^{22}_{11}$ Na, (c) 17 O, and (d) carbon-14.

- **Solution** (a) The atomic number is 11, so there are 11 protons. The mass number is 20, so the number of neutrons is 20 11 = 9. The number of electrons is the same as the number of protons; that is, 11.
- (b) The atomic number is the same as that in (a), or 11. The mass number is 22, so the number of neutrons is 22 11 = 11. The number of electrons is 11. Note that the species in (a) and (b) are chemically similar isotopes of sodium.
- (c) The atomic number of O (oxygen) is 8, so there are 8 protons. The mass number is 17, so there are 17 8 = 9 neutrons. There are 8 electrons.
- (d) Carbon-14 can also be represented as ¹⁴C. The atomic number of carbon is 6, so there are 14 6 = 8 neutrons. The number of electrons is 6.

1 1A		The Modern Periodic Table															
ı F	Alka											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
												5 B	4	7 N	8 0	¢ I	1) Ne
Alkali	arth	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al		15 P	16 S	1 7	Nobl
i Metal	\leq	21 Sc	22 Ti	23 V	24 Cr	25	26	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	Groc	33 As	34 Se	alo	
etal	etal	39 Y	40 Zr	41 Nb	42 Mo	Tc	riod Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In		51 Sb	52 Te	gen	Gas
55 C5	55 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 P 0	83 Bi	84 Po	85 At	85 Rn
87 F7	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(117)	1-8
	Metal	8	Ň	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Metal	loids		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Nonm	etals		1/	of	مامس	onte	diec		' od h		n l		<u> </u> 10_10	00)		

¹⁄₂ of elements discovered between (1800–1900) Only noble gases exists as single atoms called monoatomic



© McGraw Hill LLC

Molecules

A *molecule* is an aggregate of two or more atoms in a definite arrangement held together by chemical forces.

A *diatomic molecule* contains only two atoms: same elements: H_2 , N_2 , O_2 , Br_2 different elements: HCI, CO

A *polyatomic molecule* contains more than two atoms: O_3 , H_2O , NH_3 , CH_4

lons

An *ion* is an atom, or group of atoms, that has a net positive or negative charge.

cation – ion with a positive charge

If a neutral atom **loses** one or more electrons it becomes a cation.

11 protons11 electrons

11 protons10 electrons

anion – ion with a negative charge

If a neutral atom **gains** one or more electrons it becomes an anion.

17 protons 17 electrons

17 protons18 electrons

Types of lons

A monatomic ion contains only one atom:

$$Na^{+}, Cl^{-}, Ca^{2+}, O^{2-}, Al^{3+}, N^{3-}$$

A *polyatomic ion* contains more than one atom: $OH^-, CN^-, NH_4^+, NO_3^-$

How many protons and electrons are in $^{27}_{13}AI^{3+}$?

13 protons, 10 (13 - 3) electrons

How many protons and electrons are in $^{78}_{34}$ Se²⁻?

34 protons, 36 (34 + 2) electrons

© McGraw Hill LLC

Common Ions Shown on the Periodic Table

1 1A																	18 8A
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
Li+													C4-	N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Al ³⁺		P ³⁻	S ²⁻	Cl-	
K ⁺	Ca ²⁺				Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺				Se ²⁻	Br-	
Rb ⁺	Sr ²⁺									Ag ⁺	Cd ²⁺		Sn ²⁺ Sn ⁴⁺		Te ²⁻	I-	
Cs ⁺	Ba ²⁺									Au ⁺ Au ³⁺	$\begin{array}{c} Hg_2^{2+} \\ Hg^{2+} \end{array}$		Pb ²⁺ Pb ⁴⁺				

© McGraw Hill LLC

Types of Formulas

A *molecular formula* shows the exact number of atoms of each element in the smallest unit of a substance.

An *empirical formula* shows the simplest whole-number ratio of the atoms in a substance.

<u>molecular</u>	<u>empirical</u>
H_2O	H_2O
$C_{6}H_{12}O_{6}$	CH ₂ O
O ₃	0
N_2H_4	NH_2

Formulas and Models

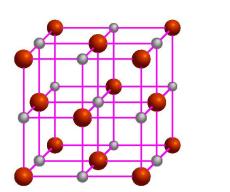
	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H ₂ O	NH ₃	CH_4
Structural formula	Н—Н	Н—О—Н	H-N-H H	H H-N-H H
Ball-and-stick model	0-0			
Space-filling model				

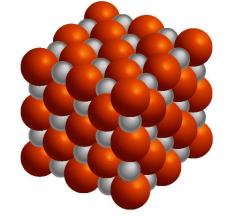
EXAMPLE 2.3

Write the empirical formulas for the following molecules: (a) acetylene (C_2H_2), which is used in welding torches; (b) glucose ($C_6H_{12}O_6$), a substance known as blood sugar; and (c) nitrous oxide (N_2O), a gas that is used as an anesthetic gas ("laughing gas") and as an aerosol propellant for whipped creams.

Strategy Recall that to write the empirical formula, the subscripts in the molecular formula must be converted to the smallest possible whole numbers.

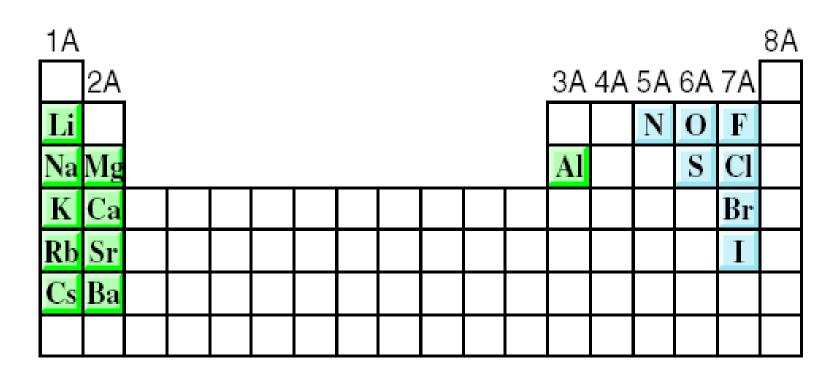
Solution


- (a) There are two carbon atoms and two hydrogen atoms in acetylene. Dividing the subscripts by 2, we obtain the empirical formula CH.
- (b) In glucose there are 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. Dividing the subscripts by 6, we obtain the empirical formula CH_2O . Note that if we had divided the subscripts by 3, we would have obtained the formula $C_2H_4O_2$. Although the ratio of carbon to hydrogen to oxygen atoms in $C_2H_4O_2$ is the same as that in $C_6H_{12}O_6$ (1:2:1), $C_2H_4O_2$ is not the simplest formula because its subscripts are not in the smallest whole-number ratio.
- (c) Because the subscripts in N₂O are already the smallest possible whole numbers, the empirical formula for nitrous oxide is the same as its molecular formula.

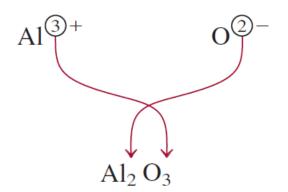

Ionic Compounds

lonic compounds consist of a combination of cations and anions.

- The formula is usually the same as the empirical formula.
- The sum of the charges on the cation(s) and anion(s) in each formula unit must equal zero.


The ionic compound NaCl

Reactive Elements


The most reactive **metals** (green) and the most reactive **nonmetals** (blue) combine to form **ionic compounds**.

Formula of Ionic Compounds

If the charges on the cation and anion are numerically different, we apply the following rule to make the formula electrically neutral.

The subscript of the cation is numerically equal to the charge on the anion, and the subscript of the anion is numerically equal to the charge on the cation.

Aluminum Oxide. The cation is Al³⁺ and the oxygen anion is O²⁻

The sum of the charges is 2(+3) + 3(-2) = 0 Thus, the formula for aluminum oxide is Al_2O_3 .

Formula of Ionic Compounds

$$2 \times +3 = +6$$

Al₂O₃
Al³⁺ Al₂O₃ O²⁻

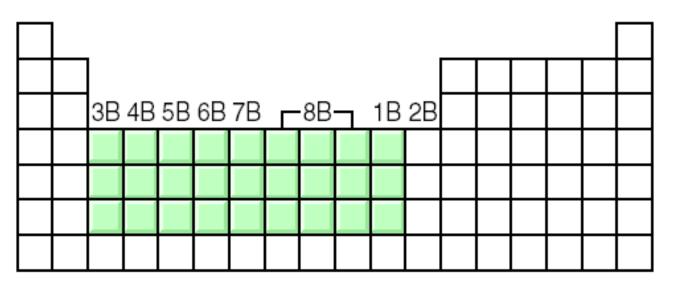
Chemical Nomenclature

Ionic Compounds

- Often a metal + nonmetal
- Anion (nonmetal), add "-ide" to element name

BaCl ₂	barium chloride
K ₂ O	potassium oxide
Mg(OH) ₂	magnesium hydroxide
KNO ₃	potassium nitrate

Naming Monatomic Anions


TABLE 2.2	The "-ide" Nomenclature of Some Common Monatomic Anions
	According to Their Positions in the Periodic Table

Group 4A	Group 5A	Group 6A	Group 7A
C carbide (C ⁴⁻)*	N nitride (N ³⁻)	O oxide (O^{2-})	F fluoride (F ⁻)
Si silicide (Si ⁴⁻)	P phosphide (P ³⁻)	S sulfide (S^{2-})	Cl chloride (Cl ⁻)
		Se selenide (Se ²⁻)	Br bromide (Br ⁻)
		Te telluride (Te ^{2–})	I iodide (I ⁻)

*The word "carbide" is also used for the anion C_2^{2-} .

Transition metal ionic compounds

Indicate charge on metal with Roman numerals (I, II, III, ..)

FeCl₂ 2 Cl⁻ -2, so Fe is +2 Iron (II) chloride

FeCl₃ 3 Cl^2 -3, so Fe is +3 Iron (III) chloride

 Cr_2S_3 3 S⁻² -6, so Cr is +3 (6/2) Chromium (III) sulfide

If transition metals can form more than one type of cations we use (-ic) for higher charge and (-ous) for lower charge.

FeCl₂ iron(II) chloride becomes ferrous chloride

FeCl₃ iron(III) chloride becomes ferric chloride

CuCl cupper(I) chloride becomes cupperous chloride

CuCl₂ cupper(II) chloride becomes cupperic chloride

TABLE 2.3Names and Formulas of Some Common Inorganic Cations
and Anions

Cation	Anion
aluminum (Al ³⁺)	bromide (Br ⁻)
ammonium (NH ₄ ⁺)	carbonate (CO_3^{2-})
barium (Ba ²⁺)	chlorate (ClO_3^-)
cadmium (Cd ²⁺)	chloride (Cl ⁻)
calcium (Ca ²⁺)	chromate (CrO_4^{2-})
cesium (Cs ⁺)	cyanide (CN ⁻)
chromium(III) or chromic (Cr ³⁺)	dichromate $(Cr_2O_7^{2-})$
cobalt(II) or cobaltous (Co ²⁺)	dihydrogen phosphate (H ₂ PO ₄ ⁻)
copper(I) or cuprous (Cu ⁺)	fluoride (F ⁻)
copper(II) or cupric (Cu ²⁺)	hydride (H ⁻)
hydrogen (H ⁺)	hydrogen carbonate or bicarbonate (HCO ₃)
iron(II) or ferrous (Fe ²⁺)	hydrogen phosphate (HPO ₄ ²⁻)
iron(III) or ferric (Fe ³⁺)	hydrogen sulfate or bisulfate (HSO ₄ ⁻)
lead(II) or plumbous (Pb ²⁺)	hydroxide (OH ⁻)
lithium (Li ⁺)	iodide (I ⁻)
magnesium (Mg ²⁺)	nitrate (NO_3^-)
manganese(II) or manganous (Mn ²⁺)	nitride (N ³⁻)
mercury(I) or mercurous $(Hg_2^{2+})^*$	nitrite (NO_2^-)
mercury(II) or mercuric (Hg ²⁺)	oxide (O^{2-})
potassium (K ⁺)	permanganate (MnO ₄ ⁻)
rubidium (Rb ⁺)	peroxide $(O_2^{2^-})$
silver (Ag ⁺)	phosphate (PO_4^{3-})
sodium (Na ⁺)	sulfate (SO_4^{2-})
strontium (Sr ²⁺)	sulfide (S ²⁻)
tin(II) or stannous (Sn ²⁺)	sulfite (SO_3^{2-})
zinc (Zn ²⁺)	thiocyanate (SCN ⁻)

*Mercury(I) exists as a pair as shown.

Name the following compounds: (a) $Cu(NO_3)_2$, (b) KH_2PO_4 , and (c) NH_4ClO_3 . Solution

- (a) The nitrate ion (NO_3^-) bears one negative charge, so the copper ion must have two positive charges. Because copper forms both Cu^+ and Cu^{2+} ions, we need to use the Stock system and call the compound copper(II) nitrate.
- (b) The cation is K^+ and the anion is $H_2PO_4^-$ (dihydrogen phosphate). Because potassium only forms one type of ion (K^+), there is no need to use potassium(I) in the name. The compound is potassium dihydrogen phosphate.
- (c) The cation is NH_4^+ (ammonium ion) and the anion is ClO_3^- . The compound is ammonium chlorate.

Write chemical formulas for the following compounds: (a) mercury(I) nitrite, (b) cesium sulfide, and (c) calcium phosphate.

Strategy We refer to Table 2.3 for the formulas of cations and anions. Recall that the Roman numerals in the Stock system provide useful information about the charges of the cation.

Solution

- (a) The Roman numeral shows that the mercury ion bears a +1 charge. According to Table 2.3, however, the mercury(I) ion is diatomic (that is, Hg_2^{2+}) and the nitrite ion is NO_2^- . Therefore, the formula is $Hg_2(NO_2)_2$.
- (b) Each sulfide ion bears two negative charges, and each cesium ion bears one positive charge (cesium is in Group 1A, as is sodium). Therefore, the formula is Cs_2S .
- (c) Each calcium ion (Ca^{2+}) bears two positive charges, and each phosphate ion (PO_4^{3-}) bears three negative charges. To make the sum of the charges equal zero, we must adjust the numbers of cations and anions:

$$3(+2) + 2(-3) = 0$$

Thus, the formula is $Ca_3(PO_4)_2$.

Molecular Compounds

- They are usually composed of nonmetallic elements.
- Many molecular compounds are binary compounds.
- Naming binary molecular compounds is similar to naming binary ionic compounds.
- We place the name of the first element in the formula first, and the second element is named by adding -ide to the root of the element name.
 - HCI hydrogen chloride
 - HBr hydrogen bromide
 - SiC silicon carbide

If a pair of elements form more than one compound, use prefixes to indicate number of each kind of atom

Notes in naming compounds with prefixes:

The prefix "mono-" may be omitted for the first element.

For example, PCl₃ is named phosphorus trichloride, not monophosphorus trichloride.

For oxides, the ending "a" in the prefix is sometimes omitted.

For example, N_2O_4 may be called dinitrogen tetroxide rather than dinitrogen tetraoxide.

TABLE 2.4

Greek Prefixes Used in Naming Molecular Compounds

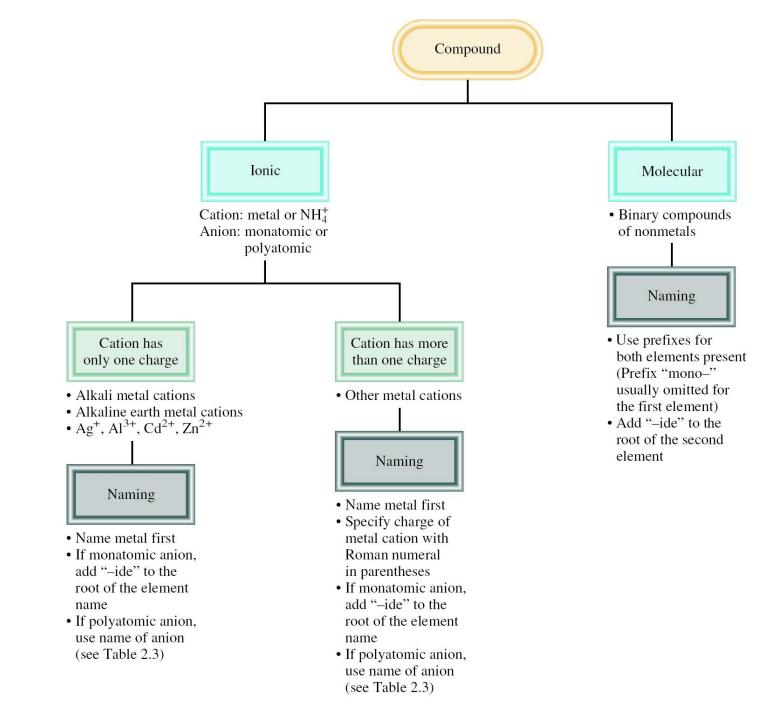
Prefix	Meaning
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Name the following compounds:

- HI hydrogen iodide
- NF₃ nitrogen trifluoride
- SO₂ sulfur dioxide
- N₂Cl₄ dinitrogen tetrachloride
- NO₂ nitrogen dioxide
- N₂O dinitrogen monoxide

Name the following molecular compounds: (a) $SiCl_4$ and (b) P_4O_{10} .

Strategy We refer to Table 2.4 for prefixes. In (a) there is only one Si atom so we do not use the prefix "mono."


- **Solution** (a) Because there are four chlorine atoms present, the compound is silicon tetrachloride.
- (b) There are four phosphorus atoms and ten oxygen atoms present, so the compound is tetraphosphorus decoxide. Note that the "a" is omitted in "deca."

EXAMPLE 2.8

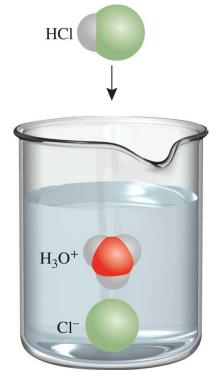
Write chemical formulas for the following molecular compounds: (a) carbon disulfide and (b) disilicon hexabromide.

Strategy Here we need to convert prefixes to numbers of atoms (see Table 2.4). Because there is no prefix for carbon in (a), it means that there is only one carbon atom present.

- **Solution** (a) Because there are two sulfur atoms and one carbon atom present, the formula is CS_2 .
- (b) There are two silicon atoms and six bromine atoms present, so the formula is Si_2Br_6 .

Acids

An *acid* can be defined as a substance that yields hydrogen ions (H⁺) when dissolved in water.


For example: HCI gas and HCI in water

Pure substance: hydrogen chloride

Dissolved in water $(H_3O^+ \text{ and } CI^-)$, hydrochloric acid

Anions whose names end in "-ide" form acids with a "hydro-" prefix and an "-ic" ending.

HCI hydrogen chlorideHCI hydrochloric acid

Some Examples of Acids

TABLE 2.5 Some Simple Acids

Anion

- F⁻ (fluoride)
- Cl⁻ (chloride)
- Br⁻ (bromide)
- I^- (iodide)
- CN⁻ (cyanide)
- S²⁻ (sulfide)

Corresponding Acid

HF (hydrofluoric acid)
HCl (hydrochloric acid)
HBr (hydrobromic acid)
HI (hydroiodic acid)
HCN (hydrocyanic acid)
H₂S (hydrosulfuric acid)

Naming Oxoacids and Oxoanions

An **oxoacid** is an acid that contains hydrogen, oxygen, and another element.

The formulas of **oxoacids** are usually written with the H first, followed by the central element and then O.

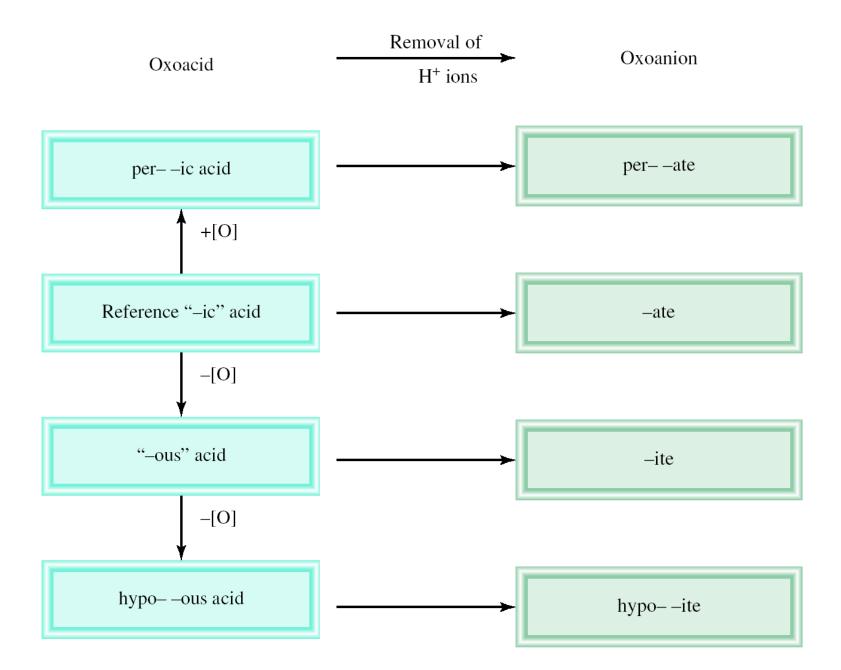
 H_2CO_3 (carbonic acid), $HCIO_3$ (chloric acid), HNO₃ (nitric acid), H_3PO_4 (phosphoric acid), H_2SO_4 (sulfuric acid) Two or more **oxoacids** have the same central atom but <u>a different</u> <u>number of O atoms</u>; the following rules to name these compounds.

- Addition of one O atom to the "-ic" acid: The acid is called "per . . -ic" acid. (--ate) HCIO₃ chloric acid HCIO₄ perchloric acid
- 2. Removal of one O atom from the "-ic" acid: The acid is called "-ous" acid. (--ite) HNO₃ nitric acid HNO₂ nitrous acid
- 3. Removal of two O atoms from the "-ic" acid: The acid is called "hypo . . . -ous" acid. HBrO₃ Bromic acid HBrO hypobromous acid

The rules for naming **oxoanions**, **anions of oxoacids**, are as follows:

- 1. When all the **H** ions are removed from the "-ic" acid, the anion's name ends with "-ate."
- 2. When all the **H** ions are removed from the "-ous" acid, the anion's name ends with "-ite."
- 3. The names of anions in which one or more but not all the hydrogen ions have been removed must indicate the number of H ions present.

For example:


- HPO₄²⁻

 $-PO_{4}^{3-}$

- $-H_3PO_4$ phosphoric acid
- $-H_2PO_4^-$ dihydrogen phosphate
 - hydrogen phosphate
 - phosphate

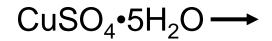
TABLE 2.6	Names of Oxoacids	and Oxoanions That Contain Chlorine
Acid		Anion
HClO ₄ (percl	hloric acid)	ClO ₄ ⁻ (perchlorate)
HClO ₃ (chlor	ric acid)	ClO_3^- (chlorate)
HClO ₂ (chlor	rous acid)	ClO_2^- (chlorite)
HClO (hypod	chlorous acid)	ClO ⁻ (hypochlorite)

parent acid for all halogenic acids is: HXO₃ Halogenic acid

Name the following oxoacid and oxoanion: (a) H_3PO_3 and (b) IO_4^- .

- **Solution** (a) We start with our reference acid, phosphoric acid (H_3PO_4). Because H_3PO_3 has one fewer O atom, it is called phosphorous acid.
- (b) The parent acid is HIO_4 . Because the acid has one more O atom than our reference iodic acid (HIO_3), it is called periodic acid. Therefore, the anion derived from HIO_4 is called periodate.

Bases


A **base** can be defined as a substance that yields hydroxide ions (**OH**⁻) when dissolved in water.

NaOH	sodium hydroxide	
KOH	potassium hydroxide	
Ba(OH) ₂	barium hydroxide	

Hydrated Compounds

Hydrates are compounds that have a specific number of water molecules attached to them.

BaCl₂•2H₂O LiCl•H₂O MgSO₄•7H₂O Sr(NO₃)₂•4H₂O barium chloride dihydrate lithium chloride monohydrate magnesium sulfate heptahydrate strontium nitrate tetrahydrate

- CuSO₄

Common and Systematic Names of Compounds

Common and Systematic Names of Some Compounds

Formula	Common Name	Systematic Name
H ₂ O	Water	Dihydrogen monoxide
NH ₃	Ammonia	Trihydrogen nitride
CO ₂	Dry ice	Solid carbon dioxide
NaCl	Table salt	Sodium chloride
N ₂ O	Laughing gas	Dinitrogen monoxide
CaCO ₃	Marble, chalk, limestone	Calcium carbonate
CaO	Quicklime	Calcium oxide
Ca(OH) ₂	Slaked lime	Calcium hydroxide
NaHCO ₃	Baking soda	Sodium hydrogen carbonate
Na ₂ CO ₃ ·10H ₂ O	Washing soda	Sodium carbonate decahydrate
MgSO ₄ ·7H ₂ O	Epsom salt	Magnesium sulfate heptahydrate
Mg(OH) ₂	Milk of magnesia	Magnesium hydroxide
CaSO ₄ ·2H ₂ O	Gypsum	Calcium sulfate dehydrate