Gradient Series

Gradient Series

$$
A_{t}= \begin{cases}0 & t=1 \\ A_{t-1}+G & t=2, \ldots, n\end{cases}
$$

or

$$
A_{t}=(t-1) G \quad t=1, \ldots, n
$$

Converting Gradient Series

Converting gradient series to present worth

$$
\begin{align*}
& \mathbf{P}=\mathbf{G}\left\lfloor\frac{1-(1+n i)(1+i)^{-n}}{i^{2}}\right\rfloor \tag{2.35}\\
& \mathbf{P}=\mathbf{G}\left\lfloor\frac{(P \mid A i \%, n)-n(P \mid F i \%, n)}{i}\right] \\
& \mathbf{P}=\mathbf{G}(\mathbf{P} \mid \mathbf{G} \mathbf{i} \%, \mathbf{n})
\end{align*}
$$

Converting gradient series to annual worth

$$
\begin{aligned}
& \mathbf{A}=\mathbf{G}\left[\frac{1}{i}-\frac{n}{(1+i)^{n}-1}\right] \\
& \mathbf{A}=\mathbf{G}\left[\frac{1-n(A \mid F i \%, n)}{i}\right] \\
& \mathbf{A}=\mathbf{G}(\mathbf{A} \mid \mathbf{G} \mathbf{i} \%, \mathbf{n})
\end{aligned}
$$

Converting gradient series to future worth

$$
\begin{align*}
& \mathbf{F}=\mathbf{G}\left[\frac{(1+i)^{n}-(1+n i)}{i^{2}}\right] \tag{2.39}\\
& \mathbf{F}=\mathbf{G}\left[\frac{(F \mid A i \%, n)-n}{i}\right] \\
& \mathbf{F}=\mathbf{G}(\mathbf{F} \mid \mathbf{G} \mathbf{i} \%, \mathbf{n})
\end{align*}
$$

(not provided in the tables)

Example 2.28

Maintenance costs for a particular production machine increase by $\$ 1,000 /$ year over the $5-\mathrm{yr}$ life of the machine. The initial maintenance cost is $\$ \mathbf{3 , 0 0 0}$. Using an interest rate of $\mathbf{8 \%}$ compounded annually, determine the present worth equivalent for the maintenance costs.

Principles of Engineering Economic Analysis, 5th edition

$$
\begin{aligned}
& P=\$ 3,000(\mathbf{P} \mid \mathbf{A} 8 \%, 5)+\$ 1,000(\mathbf{P} \mid \mathbf{G} 8 \%, 5) \\
& P=\$ 3,000(3.99271)+\$ 1,000(7.372 .43)=\$ 19,350.56
\end{aligned}
$$

or

$$
\begin{aligned}
& P=(\$ 3,000+\$ 1,000(\mathrm{~A} \mid \mathrm{G} 8 \%, 5))(\mathrm{P} \mid \mathrm{A} \mathrm{8} \mathrm{\%,5)} \\
& \mathrm{P}=(\$ 3,000+\$ 1,000(1.846 .47))(3.99271)=\$ 19,350.55
\end{aligned}
$$

or

$$
P=1000 * N P V(8 \%, 3,4,5,6,7)=\$ 19,350.56
$$

Example 2.29

Amanda Dearman made 5 annual deposits into a fund that paid $\mathbf{8 \%}$ compound annual interest. Her first deposit was $\$ 800$; each successive deposit was $\$ 100$ less than the previous deposit. How much was in the fund immediately after the $5^{\text {th }}$ deposit?

Principles of Engineering Economic Analysis, 5th edition

$$
\begin{aligned}
\mathrm{A} & =\$ 800-\$ 100(\mathrm{~A} \mid \mathrm{G} 8 \%, 5) \\
& =\$ 800-\$ 100(1.84647)=\$ 615.35 \\
\mathrm{~F} & =\$ 615.35(\mathrm{~F} \mid \mathrm{A} 8 \%, 5) \\
& =\$ 615.35(5.86660)=\$ 3,610.01 \\
\mathrm{~F} & =(\mathrm{FV}(8 \%, 5,,-\mathrm{NPV}(8 \%, 800,700,600,500,400)) \\
\mathrm{F} & =\$ 3,610.03
\end{aligned}
$$

$$
\begin{aligned}
& P=G\left[\frac{1-(1+n i)(1+i)^{-n}}{\eta^{2}}\right] \quad \begin{array}{l}
\text { gradient series, present worth factor } \\
=G(P \mid G \%, n)
\end{array} \\
& \begin{array}{ll}
A=G\left[\frac{(1+i)^{n}-(1+n i)}{\left.\Lambda(1+i)^{n}-1\right]}\right] & \begin{array}{l}
\text { gradient-to-uniform series conversion } \\
\text { factor } \\
\end{array} \\
& =G(A \mid G \%, n)
\end{array} \\
& F=G\left[\frac{(1+i)^{n}-(1+n i)}{r^{2}}\right] \quad \begin{array}{l}
\text { gradient series, future worth factor } \\
=A(F G \%, n)
\end{array}
\end{aligned}
$$

Geometric Series

Geometric Series

$$
A_{t}=A_{t-1}(1+j) \quad t=2, \ldots, n
$$

or

$$
A_{t}=A_{1}(1+j)^{t-1} \quad t=1, \ldots, n
$$

$A_{1}(1+\mathrm{j})^{\mathrm{n-1}}(\underline{m}$ Note: $\mathrm{n}-1$ not n

Converting Geometric Series - I

$$
\begin{equation*}
P=A_{1}\left[\frac{1-(1+j)^{n}(1+i)^{-n}}{i-j}\right] \quad i \neq j \tag{2.42}
\end{equation*}
$$

$$
P=A_{1}\left\lceil\frac{1-(F \mid P j \%, n)(P \mid F i \%, n)}{i-j}\right] \quad i \neq j \quad j>0
$$

$$
P=n A_{1} /(1+i) \quad i=j
$$

(2.42)

$$
P=A_{1}\left(P \mid A_{1} i \%, j \%, n\right)
$$

(2.44)

Converting Geometric Series - II

$$
\begin{equation*}
F=A_{1}\left[\frac{(1+i)^{n}-(1+j)^{n}}{i-j}\right] \quad i \neq j \tag{2.45}
\end{equation*}
$$

$$
F=A_{1}\left[\frac{(F \mid P i \%, n)-(F \mid P j \%, n)}{i-j}\right] \quad i \neq j \quad j>0
$$

$F=n A_{1}(1+i)^{n-1}$

$$
i=j
$$

$F=A_{1}\left(F \mid A_{1} i \%, j \%, n\right)$
Note: $\left(F \mid A_{1} i \%, j \%, n\right)=\left(F \mid A_{1} j \%, i \%, n\right)$
Notice the symmetry

Example 2.30

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of $\$ \mathbf{1 , 0 0 0}$ is expected. Using a $\mathbf{1 0 \%}$ interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15 -year expected life?

$$
\begin{aligned}
& A_{1}=\$ 1,000, i=10 \%, j=8 \%, n=15, P=\text { ? } \\
& \mathbf{P}=\$ 1,000\left(\mathbf{P} \mid \mathbf{A}_{1} \mathbf{1 0 \%}, \mathbf{8 \%}, 15\right) \\
& =\$ 1,000(12.03040)=\$ 12,030.40 \\
& \text { P }=1000^{*} \mathrm{NPV}\left(10 \%, 1,1.08,1.08^{\wedge} \mathbf{2 , 1 . 0 8}{ }^{\wedge} 3,1.08^{\wedge} 4,1.08^{\wedge} 5\right. \text {, } \\
& 1.08^{\wedge} 6,1.08^{\wedge} 7,1.08^{\wedge} 8,1.08^{\wedge} 9,1.08^{\wedge} 10,1.08^{\wedge} 11,1.08^{\wedge} 12 \text {, } \\
& \left.1.08^{\wedge} 13,1.08^{\wedge} 14\right) \\
& \mathbf{P}=\mathbf{\$ 1 2 , 0 3 0 . 4 0}
\end{aligned}
$$

Example 2.31

Mattie Bookhout deposits her annual bonus in a savings account that pays 8% compound annual interest. Her annual bonus is expected to increase by $\mathbf{1 0 \%}$ each year. If her initial deposit is $\$ 500$, how much will be in her account immediately after her $10^{\text {th }}$ deposit?

$$
\begin{aligned}
& A_{1}=\$ 500, i=8 \%, j=10 \%, n=10, F=? \\
& F=\$ 500\left(F \mid A_{1} 8 \%, 10 \%, 10\right)=\$ 500(21.74087) \\
& F=\$ 10,870.44
\end{aligned}
$$

Example 2.32

Julian Stewart invested $\mathbf{\$ 1 0 0 , 0 0 0}$ in a limited partnership in a natural gas drilling project. His net revenue the $1^{\text {st }}$ year was $\mathbf{\$ 2 5 , 0 0 0}$. Each year, thereafter, his revenue decreased $\mathbf{1 0 \%} / \mathrm{yr}$. Based on a 12% TVOM, what is the present worth of his investment over a 20-year period?

$$
\begin{aligned}
& \mathrm{A}_{1}=\$ 25,000, \mathrm{i}=12 \%, \mathrm{j}=-10 \%, \mathrm{n}=20, \mathrm{P}=? \\
& \mathrm{P}=-\$ 100,000+\$ 25,000\left(\mathbf{P} \mid \mathrm{A}_{1} 12 \%,-10 \%, 20\right) \\
& \mathrm{P}=-\$ 100,000+\$ 25,000\left[1-(0.90)^{20}(1.12)^{-20}\right] /(0.12+\mathbf{0 . 1 0}) \\
& \mathrm{P}=\$ 13,636.36
\end{aligned}
$$

$$
\begin{aligned}
& P=A_{1}\left[\frac{1-(1+j)^{n}(1+i)^{-n}}{i-j}\right] \begin{array}{l}
\text { geometric series, present worth factor } \\
i \neq j \\
i=j
\end{array} \\
& P=n A_{1} /(1+i) \\
& P=A_{1}\left(P \mid A_{1} \%, \rho \%, n\right) \\
& F=A_{1}\left[\frac{(1+i)^{n}-(1+j)^{n}}{i-j}\right] \\
& F=n A_{1}(1+i)^{n-1} \\
& F=A_{1}\left(F A_{1} \%, j \%, n\right) \\
& i \neq j \\
& i=j
\end{aligned} \quad \begin{aligned}
& \text { geometric series, future worth factor } \\
& i=j
\end{aligned}
$$

