

Gradient Series

$$A_{t} = \begin{cases} 0 & t = 1 \\ A_{t-1}+G & t = 2,...,n \end{cases}$$

or

 $A_{t} = (t-1)G$ t = 1,...,n

Converting Gradient Series

Converting gradient series to present worth

$$\mathbf{P} = \mathbf{G} \begin{bmatrix} \frac{1 - (1 + ni)(1 + i)^{-n}}{i^2} \end{bmatrix}$$
(2.35)
$$\mathbf{P} = \mathbf{G} \begin{bmatrix} (P \mid A \ i\%, \ n) - n(P \mid F \ i\%, \ n) \\ i \end{bmatrix}$$
(2.36)

 $\mathbf{P} = \mathbf{G}(\mathbf{P}|\mathbf{G}|\mathbf{i}\%,\mathbf{n})$

(2.37)

Converting gradient series to annual worth

$$\mathbf{A} = \mathbf{G} \begin{bmatrix} \frac{1}{i} - \frac{n}{(1+i)^n - 1} \end{bmatrix}$$
$$\mathbf{A} = \mathbf{G} \begin{bmatrix} \frac{1-n(A \mid F \mid i\%, n)}{i} \end{bmatrix}$$
$$\mathbf{A} = \mathbf{G}(\mathbf{A} \mid \mathbf{G} \mid \mathbf{i}\%, \mathbf{n})$$

(2.38)

Converting gradient series to future worth

$$\mathbf{F} = \mathbf{G} \begin{bmatrix} (1+i)^n - (1+ni) \end{bmatrix}$$
$$\begin{bmatrix} i^2 \end{bmatrix}$$

$$\mathbf{F} = \mathbf{G} \begin{bmatrix} (F \mid A \mid i\%, n) - n \\ i \end{bmatrix}$$

 $\mathbf{F} = \mathbf{G}(\mathbf{F}|\mathbf{G}|\mathbf{i}\%,\mathbf{n})$

(not provided in the tables)

Maintenance costs for a particular production machine increase by \$1,000/year over the 5-yr life of the machine. The initial maintenance cost is \$3,000. Using an interest rate of 8% compounded annually, determine the present worth equivalent for the maintenance costs.

P = \$3,000(P|A 8%,5) + \$1,000(P|G 8%,5)P = \$3,000(3.99271) + \$1,000(7.372.43) = \$19,350.56

or

 $\mathbf{P} = (\$3,000 + \$1,000(\mathbf{A}|\mathbf{G} \$\%,5))(\mathbf{P}|\mathbf{A} \$\%,5)$

 $\mathbf{P} = (\$3,000 + \$1,000(1.846.47))(3.99271) = \$19,350.55$

or

P =1000*NPV(8%,3,4,5,6,7) = \$19,350.56

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was \$800; each successive deposit was \$100 less than the previous deposit. How much was in the fund immediately after the 5th deposit?

	Composite series						=	Uniform series				-	Gradient series						
0	1	2	3	3	4	5	0	1	2	3	4	5	0	1	2	3	4	l t	δ ι Π
															\$	100			
															Ψ		200	Ļ	
						\$400											\$	300	↓
				1	\$500	• • • •												\$4	100
			• •	600															
		, \$7	00						· · · · ·			, ,	↓						<u> </u>
	\$80)0						\$8	00 \$8	00 \$8	00 \$8	00 \$8	00						4

$$A = \$800 - \$100(A|G 8\%,5)$$

= \\$800 - \\$100(1.84647) = \\$615.35

$$F = $615.35(F|A 8\%,5)$$

= \$615.35(5.86660) = \$3,610.01

F =(FV(8%,5,,-NPV(8%,800,700,600,500,400)) F = \$3,610.03

$$P = G\left[\frac{1 - (1 + ni)(1 + i)^{-n}}{i^2}\right]$$

gradient series, present worth factor = *G*(*P*|*G P*%,*n*)

$$A = G\left[\frac{(1 + i)^{n} - (1 + ni)}{i[(1 + i)^{n} - 1]}\right]$$

gradient-to-uniform series conversion factor = *G*(*A*|*G P*%,*n*)

$$F = G\left[\frac{(1+i)^n - (1+i)}{i^2}\right]$$

gradient series, future worth factor = *A*(*F*|*G P*%,*n*)

Geometric Series

 $A_t = A_{t-1}(1+j)$ t = 2,...,n

or

 $A_{t} = A_{1}(1+j)^{t-1} \quad t = 1,...,n \qquad A_{1}(1+j)^{n-1} = \text{Note: n-1 not n}$ $A_{1}(1+j)^{2} \uparrow \qquad A_{1}(1+j)^{2} \uparrow \qquad A_{1}(1+j) \land A_{1}(1+j)$

Converting Geometric Series – I

$$P = A_{1} \left[\frac{1 - (1 + j)^{n} (1 + i)^{-n}}{i - j} \right] \qquad i \neq j$$
 (2.42)

$$P = A_{1} \left[\frac{1 - (F \mid P \mid j\%, n)(P \mid F \mid i\%, n)}{i - j} \right] \qquad i \neq j \quad j > 0$$
(2.44)

 $P = nA_1/(1+i)$ i = j (2.42)

$$P = A_1(P \mid A_1 \mid i\%, j\%, n)$$

(2.43)

Converting Geometric Series – II

$$F = A_{1} \left[\frac{(1+i)^{n} - (1+j)^{n}}{i-j} \right] \qquad i \neq j$$
 (2.45)

> 0

$$F = A_{1} \left[\frac{(F \mid P \mid i\%, n) - (F \mid P \mid j\%, n)}{i - j} \right] \qquad i \neq j \quad j$$

$$F = nA_{1}(1+i)^{n-1} \qquad i = j$$

$$F = A_{1}(F|A_{1} i\%, j\%, n)$$

Note: $(F|A_{1} i\%, j\%, n) = (F|A_{1} j\%, i\%, n)$
Notice the symmetry

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of \$1,000 is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15-year expected life?

- A₁ = \$1,000, i = 10%, j = 8%, n = 15, P = ?
- $\mathbf{P} = \$1,\!000(\mathbf{P}|\mathbf{A}_110\%,\!8\%,\!15)$
 - = \$1,000(12.03040) = \$12,030.40
- P =1000*NPV(10%,1,1.08,1.08^2,1.08^3,1.08^4,1.08^5, 1.08^6,1.08^7,1.08^8,1.08^9,1.08^10,1.08^11,1.08^12, 1.08^13,1.08^14)
- **P** = \$12,030.40

Mattie Bookhout deposits her annual bonus in a savings account that pays 8% compound annual interest. Her annual bonus is expected to increase by 10% each year. If her initial deposit is \$500, how much will be in her account immediately after her 10th deposit?

 $A_1 = $500, i = 8\%, j = 10\%, n = 10, F = ?$ $F = $500(F|A_1 8\%, 10\%, 10) = $500(21.74087)$ F = \$10,870.44

Julian Stewart invested \$100,000 in a limited partnership in a natural gas drilling project. His net revenue the 1st year was \$25,000. Each year, thereafter, his revenue decreased 10%/yr. Based on a 12% TVOM, what is the present worth of his investment over a 20-year period?

- $A_1 = $25,000, i = 12\%, j = -10\%, n = 20, P = ?$
- $\mathbf{P} = -\$100,000 + \$25,000(\mathbf{P}|\mathbf{A}_1 12\%,-10\%,20)$
- $\mathbf{P} = -\$100,000 + \$25,000[1 (0.90)^{20}(1.12)^{-20}]/(0.12 + 0.10)$

P = \$13,636.36

Chapter 2 tables and figures [Compatibility Mode] - Microsoft Excel											x	
Home Insert Page Layout Formulas Data Review View Acrobat												
	A	B	C	D	Е	F	G	Н		J	*	
	~	D	U	D	L	I	0	11	I	5	-	
		End of	Cash Flow									
2		Year (n)	(CF)									
3		0	-\$100,000									
4		1	\$25,000									
5		2	\$22,500									
6		3	\$20,250									
7		4	\$18,225									
8		5	\$16,403									
9		6	\$14,762									
10		7	\$13,286									
11		8	\$11,957								=	
12		9	\$10,762									
13		10	\$9,686									
14		11	\$8,717									
15		12	\$7,845		●=C14*0.9							
16		13	\$7,061									
17		14	\$6,355									
18		15	\$5,719									
19		16	\$5,147									
20		17	\$4,633									
21		18	\$4,169									
22		19	\$3,752									
23		20	\$3,377									
24		P =	\$12,204.15		•=NPV(12%	6,C4:C23)+C3						
25		24 / Figure 2.25	Figure 2.26	/ Figure 7	2.20 / Figure 2.20	2 20					-	
	Higure 2	2.24 / Higure 2.25 /	Figure 2.26 / Figure 2.27	Higure 2	2.26 / Figure 2.29 / Fig	Jure 2.30 / 🖓 🗍 🗍		III	Θ		▶ (+)	

Principles of Engineering Economic Analysis, 5th edition

$$P = A_1 \left[\frac{1 - (1 + j)^n (1 + i)^{-n}}{i - j} \right]$$

 $P = nA_1/(1 + i)$ $P = A_1(P|A_1 i\%, f\%, n)$

geometric series, present worth factor
i≠ j
i= j

$$F = A_1 \left[\frac{(1 + i)^n - (1 + j)^n}{i - j} \right]$$

Principles of Engineering Economic Analysis, 5th edition

geometric series, future worth factor $i \neq j$

i = j

 $F = nA_{1}(1 + i)^{n-1}$ $F = A_{1}(F|A_{1} i\%, j\%, n)$