

Time Value of Money (TVOM)

Cash Flow Diagrams

Cash Flow Profiles for Two Investment Alternatives

End of Year			
(EOY)	CF(A)	CF(B)	CF(B-A)
0	-\$100,000	-\$100,000	\$0
1	\$10,000	\$50,000	\$40,000
2	\$20,000	\$40,000	\$20,000
3	\$30,000	\$30,000	\$0
4	\$40,000	\$20,000	-\$20,000
5	\$50,000	\$10,000	-\$40,000
Sum	\$50,000	\$50,000	\$0

Although the two investment alternatives have the same "bottom line," there are obvious differences. Which would you prefer, A or B? Why?

Principle #7

Consider only differences in cash flows among investment alternatives

Inv. B – Inv. A

Principles of Engineering Economic Analysis, 5th edition

Simple interest calculation:

$$F_n = P(1 + in)$$

Compound Interest Calculation:

$$F_n = F_{n-1}(1+i)$$

- Where
 - *P* = present value of single sum of money
 - F_n = accumulated value of P over n periods
 - i = interest rate per period
 - *n* = number of periods

Example 2.7: simple interest calculation

Robert borrows \$4,000 from Susan and agrees to pay \$1,000 plus accrued interest at the end of the first year and \$3,000 plus accrued interest at the end of the fourth year. What should be the size of the payments if 8% simple interest is used?

Solution

 1st payment = \$1,000 + 0.08(\$4,000) = \$1,320
 2nd payment = \$3,000 + 0.08(\$3,000)(3) = \$3,720

Simple Interest Cash Flow Diagram

RULES Discounting Cash Flow

- 1. Money has *time value*!
- 2. Cash flows cannot be added *unless they occur* at the same point(s) in time.
- Multiply a cash flow by (1+i) to move it forward one time unit.
- Divide a cash flow by (1+i) to move it backward one time unit.

(Lender's Perspective) Value of \$10,000 Investment Growing @ 10% per year

Start of Year	Value of Investment	Interest Earned	End of Year	Value of Investment
1	\$10,000.00	\$1,000.00	1	\$11,000.00
2	\$11, <mark>000.00</mark>	\$1,100.00	2	\$12,100.00
3	\$12,100.00	\$1,210.00	3	\$13,310.00
4	\$13,310.00	\$1,331.00	4	\$14,641.00
5	\$14,641.00	\$1,464.10	5	\$16,105.10

Compounding of Money

Beginning of Period	Amount Owed	Interest Earned	End of Period	Amount Owed
1	Ρ	Pi	1	P(1+i)
2	P(1+i)	P(1+i)i	2	P(1+i) ²
3	P(1+i) ²	P(1+i) ² i	3	P(1+i) ³
4	P(1+i) ³	P(1+i) ³ i	4	P(1+i) ⁴
5	P(1+i) ⁴	P(1+i)⁴i	5	P(1+i) ⁵
	•	•	•	•
n-1	P(1+i) ⁿ⁻²	P(1+i) ⁿ⁻² i	n-1	P(1+i) ⁿ⁻¹
n	P(1+i) ⁿ⁻¹	P(1+i) ⁿ⁻¹ i	n	P(1+i) ⁿ

Discounted Cash Flow Formulas

Excel® DCF Worksheet Functions

F = P (1 + i) ⁿ F = P (F|P i%, n) F =FV(i%,n,,-P)

P = F (1 + i) -n
P = F (P | F i%, n)
P = PV(i%,n,,-F)

(2.1)

(2.3)

Relationships among P, F, and A

P occurs at the same time as A_0 , i.e., at t = 0*F* occurs at the same time as A_n , i.e., at t = n

Dia St. John borrows \$1,000 at 12% compounded annually. The loan is to be repaid after 5 years. How much must she repay in 5 years?

- F = \$1,000(F|P 12%,5)
- F = \$1,000(1.12)⁵
- F = \$1,000(1.76234)
- F = \$1,762.34
- F =FV(12%,5,,-1000)
- F = \$1,762.34

How much must you deposit, today, in order to accumulate \$10,000 in 4 years, if you earn 5% compounded annually on your investment?

- **P** = **F**(**P**|**F** i, n)
- P = \$10,000(P|F 5%,4)
- $P = $10,000(1.05)^{-4}$
- P = \$10,000(0.82270)
- P = \$8,227.00
- P =PV(5%,4,,-10000) P = \$8227.02

<u>Computing the Present Worth of</u> <u>Multiple Cash flows</u>

$$P = \sum_{t=0}^{n} A_{t} (1+i)^{-t}$$

$$P = \sum_{t=0}^{n} A_{t} (P | F i\%, t)$$

Determine the present worth equivalent of the CFD shown below, using an interest rate of 10% compounded annually.

End of Year	Cash Flow	$(D \mid E \mid 100 \mid n)$	Present	$P_{1}/(100/p_{c})$	(E D 100(E n))	Future	$E_{1}^{1}(4.00)$ E_{10} C_{10}	
(n)	(CF)	(~ [~ 10%,1])	Worth	FV(10%,N,,-CF)	(<i>F</i> <i>F</i> 10%,5-n)	Worth	FV(10/0,3-11,,-CF)	
0	-\$100,000	1.00000	-\$100,000.00	-\$100,000.00	1.61051	-\$161,051.00	-\$161,051.00	
1	\$50,000	0.90909	\$45,454.50	\$45,454.55	1.46410	\$73,205.00	\$73,205.00	
2	\$40,000	0.82645	\$33,058.00	\$33,057.85	1.33100	\$53,240.00	\$53,240.00	
3	\$30,000	0.75131	\$22,539.30	\$22,539.44	1.21000	\$36,300.00	\$36,300.00	
4	\$40,000	0.68301	\$27,320.40	\$27,320.54	1.10000	\$44,000.00	\$44,000.00	
5	\$50,000	0.62092	\$31,046.00	\$31,046.07	1.00000	\$50,000.00	\$50,000.00	
SUM			\$59,418.20	\$59,418.45		\$95,694.00	\$95,694.00	

P =NPV(10%,50000,40000,30000,40000,50000)-100000 = \$59,418.45

Determine the future worth equivalent of the CFD shown below, using an interest rate of 10% compounded annually.

End of Year	Cash Flow	(P E 10% n)	Present	P\/(10% n -CE)	$(E P 10\% 5_{-}n)$	Future	EV/(10% 5-n -CE)
(n)	(CF)	(//////////////////////////////////////	Worth		(1 1 10 /0,5-11)	Worth	
0	-\$100,000	1.00000	-\$100,000.00	-\$100,000.00	1.61051	-\$161,051.00	-\$161,051.00
1	\$50,000	0.90909	\$45,454.50	\$45,454.55	1.46410	\$73,205.00	\$73,205.00
2	\$40,000	0.82645	\$33,058.00	\$33,057.85	1.33100	\$53,240.00	\$53,240.00
3	\$30,000	0.75131	\$22,539.30	\$22,539.44	1.21000	\$36,300.00	\$36,300.00
4	\$40,000	0.68301	\$27,320.40	\$27,320.54	1.10000	\$44,000.00	\$44,000.00
5	\$50,000	0.62092	\$31,046.00	\$31,046.07	1.00000	\$50,000.00	\$50,000.00
SUM			\$59,418.20	\$59,418.45		<u>\$95,6</u> 94.00	\$95,694.00

F =10000*FV(10%,5,,-NPV(10%,5,4,3,4,5)+10) = \$95,694.00

Examples 2.13 & 2.16

Determine the present worth equivalent of the following series of cash flows. Use an interest rate of 6% per interest period.

0 **\$0** \$300 1 2 **\$0** 3 -\$300 4 \$200 5 **\$0** 6 \$400 7 **\$0** 8 \$200

P = \$300(P|F 6%,1)- \$300(P|F 6%,3)+\$200(P|F 6%,4)+\$400(P|F 6%,6) +\$200(P|F 6%,8) = \$597.02 P =NPV(6%,300,0,-300,200,0,400,0,200) P =\$597.02

Computing the Future worth of Multiple cash Flows

$$F = \sum_{t=1}^{n} A_{t} (1+i)^{n-t}$$
(2.15)

$$F = \sum_{t=1}^{n} A_{t} (F \mid P \quad i\%, n-t)$$
(2.16)

Examples 2.14 & 2.16

Determine the future worth equivalen series of cash flows. Use an interest	t of the st rate o	following f 6% per
interest period.	End of Period	Cash Flow
	0	\$0
	1	\$300
	2	\$0
F = \$300(F P 6%,7)-\$300(F P 6%,5)+	3	-\$300
5200(F F 6%,4)+5400(F F 6%,2)+5200 F = \$951.59	4	\$200
	5	\$0
F = FV(6%, 8, ., -NPV(6%, 300, 0, -300, 200, 0, 400, 0, 200))	6	\$400
F =\$951.50	7	\$0
	8	\$200

(The 3¢ difference in the answers is due to round-off error in the tables in Appendix A.)

Chapter 2 tables and figures (10-20-08) [Compatibility Mode] - Microsoft Excel								
Home Insert Page Layout Formulas Data Review View Acrobat C12 ✓ f _* =NPV(6%,C4:C11) ¥								
	Α	В	С	D	Е	F	G	
1								
		End of Year	Cash Flow					
2		(n)	(CF)					
3		0	\$0					
4		1	\$300				=	
5		2	\$0					
6		3	-\$300					
7		4	\$200					
8		5	\$ 0					
9		6	\$400					
10		7	\$ 0					
11		8	\$200					
12		P =	\$597.02		=NPV(6%	,C4:C11)		
13		F =	\$951.56		=FV(6%,8	3,,-C12)		
	Figu	ure 2.12 / Figure 2.13 / Figure 2.14	¥ / Figure 2.15 / Figure 2.16 F	igure 2.	17 F (

Principles of Engineering Economic Analysis, 5th edition

Some Common Cash Flow Series

• Uniform Series

 $\mathbf{A}_{t} = \mathbf{A} \qquad \qquad \mathbf{t} = \mathbf{1}, \dots, \mathbf{n}$

- Gradient Series
 - $\mathbf{A}_{\mathbf{t}} = \mathbf{0} \qquad \qquad \mathbf{t} = \mathbf{1}$

$$= A_{t-1} + G$$
 $t = 2,...,n$

$$= (t-1)G$$
 $t = 1,...,n$

Geometric Series

$$\begin{aligned} A_t &= A & t = 1 \\ &= A_{t-1}(1+j) & t = 2,...,n \\ &= A_1(1+j)^{t-1} & t = 1,...,n \end{aligned}$$

DCF Uniform Series Formulas

 $\mathbf{A} = \mathbf{PMT}(\mathbf{i}\%, \mathbf{n}, \mathbf{-F})$

$$\mathbf{P} = \mathbf{A}(\mathbf{P}|\mathbf{A} \mathbf{i},\mathbf{n}) = \mathbf{A} \begin{bmatrix} \frac{(1+i)^n - 1}{i(1+i)^n} \end{bmatrix}$$
(2.22)
$$\mathbf{A} = \mathbf{P}(\mathbf{A}|\mathbf{P} \mathbf{i},\mathbf{n}) = \mathbf{P} \begin{bmatrix} \frac{i(1+i)^n}{(1+i)^n - 1} \end{bmatrix}$$
(2.25)

P occurs one period before the first **A**

$$\mathbf{F} = \mathbf{A}(\mathbf{F}|\mathbf{A} \mathbf{i}, \mathbf{n}) = \mathbf{A} \begin{bmatrix} \frac{(1+i)^n - 1}{i} \end{bmatrix}$$
(2.28)
$$\mathbf{A} = \mathbf{F}(\mathbf{A}|\mathbf{F} \mathbf{i}, \mathbf{n}) = \mathbf{F} \begin{bmatrix} \frac{i}{(1+i)^n - 1} \end{bmatrix}$$
(2.30)

F occurs at the same time as the last A

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal *occurring 1 year after* the deposit?

P = \$2000(P|A 5%,5)P = \$2000(4.32948) = \$8658.96

P =PV(5%,5,-2000) P = \$8658.95

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, *with the first withdrawal occurring 3 years after the deposit?*

P = \$2000(P|A 5%,5)(P|F 5%,2)P = \$2000(4.32948)(0.90703) = \$7853.94

P =PV(5%,2,,-PV(5%,5,-2000)) P = \$7853.93

<u>Example 2. 19</u>

Rachel Townsley invests \$10,000 in a fund that pays 8% compounded annually. If she makes 10 equal annual withdrawals from the fund, how much can she withdraw if the first withdrawal occurs *1 year after* her investment?

A = \$10,000(A|P 8%,10) A = \$10,000(0.14903) = \$1490.30

A =PMT(8%,10,-10000) A = \$1490.29

Suppose Rachel delays the first withdrawal for 2 years. How much can be withdrawn each of the 10 years?

A = \$10,000(F|P 8%,2)(A|P 8%,10) A = \$10,000(1.16640)(0.14903) A = \$1738.29

A =PMT(8%,10-FV(8%,2,,-10000)) A = \$1738.29

A firm borrows \$2,000,000 at 12% annual interest and pays it back with 10 equal annual payments. What is the payment?

A = \$2,000,000(A|P 12%,10)A = \$2,000,000(0.17698)

A = \$353,960

A =PMT(12%,10,-200000) A = \$353,968.33

Suppose the firm pays back the loan over 15 years in order to obtain a 10% interest rate. What would be the size of the annual payment?

- A = \$2,000,000(A|P 10%,15)
- A = \$2,000,000(0.13147)
- A = \$262,940
- A =PMT(10%,15,-200000) A = \$262,947.55

Extending the loan period 5 years reduced the payment by \$91,020.78

Luis Jimenez deposits \$1,000/yr in a savings account that pays 6% compounded annually. How much will be in the account *immediately after* his 30th deposit?

F = 1000(F|A 6%,30) F = \$1000(79.05819) = \$79,058.19

F =FV(6%,30,-1000) A = \$78,058.19

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs? (What if he earns 3%/yr?)

- F = \$5000(F|A 6%,15) = \$5000(23.27597) = \$116,379.85 F = \$5000(F|A 6%,20) = \$5000(36.78559) = \$183,927.95 F = \$5000(F|A 6%,25) = \$5000(54.86451) = \$274,322.55F = \$5000(F|A 6%,30) = \$5000(79.05819) = \$395,290.95
- $F = \$5000(F|A \ 3\%,15) = \$5000(18.59891) = \$92,994.55$ $F = \$5000(F|A \ 3\%,20) = \$5000(26.87037) = \$134,351.85$ $F = \$5000(F|A \ 3\%,25) = \$5000(36.45926) = \$182,296.30$ $F = \$5000(F|A \ 3\%,30) = \$5000(47.57542) = \$237,877.10$

If Coby Durham earns 7% on his investments, how much must he invest annually in order to accumulate \$1,500,000 in 25 years?

- A = \$1,500,000(A|F 7%,25)
- A = \$1,500,000(0.01581)
- A = \$23,715

A =PMT(7%,25,,-1500000) A = \$23,715.78

If Crystal Wilson earns 10% on her investments, how much must she invest annually in order to accumulate \$1,000,000 in 40 years?

- A = \$1,000,000(A|F 10%,40) A = \$1,000,000(0.0022594) A = \$2,259.40
- A =PMT(10%,40,,-1000000) A = \$2,259.41

\$500,000 is spent for a SMP machine in order to reduce annual expenses by \$92,500/yr. At the end of a 10-year planning horizon, the SMP machine is worth \$50,000. Based on a 10% TVOM,

- a) what single sum at t = 0 is equivalent to the SMP investment?
- **b**) what single sum at t = 10 is equivalent to the SMP investment?
- c) what uniform annual series over the 10-year period is equivalent to the SMP investment?

Solution:

 $P = -\$500,000 + \$92,500(P|A \ 10\%,10) + \$50,000(P|F \ 10\%,10)$ P = -\$500,000 + \$92,500(6.14457) + \$50,000(0.38554) = \$87,649.73P = PV(10%,10,-92500,-50000) - 500000 = \$87,649.62

Example 2.27 (Solution)

 $F = -\$500,000(F|P \ 10\%,10) + \$92,500(F|A \ 10\%,10) + \$50,000$ F = -\$500,000(2.59374) + \$92,500(15.93742) + \$50,000 = \$227,341.40F = FV(10%,10,-92500,500000) + 50000 = \$227,340.55

A = -\$500,000(A|P 10%,10) + \$92,500 + \$50,000(A|F 10%,10) A = -\$500,000(0.16275) + \$92,500 + \$50,000(0.06275) = \$14,262.50A = PMT(10%,10,500000,-50000) + 92500 = \$14,264.57

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$
$$A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$
$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$
$$A = F \left[\frac{i}{(1+i)^n - 1} \right]$$

uniform series, present worth factor = A(P|A / / / , n) = PV(/ / / , n, -A)

uniform series, capital recovery factor = P(A|P N, n) = PMT(N, n, -P)

uniform series, future worth factor = A(F|A / / / , n) = FV(/ / / , n, -A)

uniform series, sinking fund factor $= F(A|F P_{0}, n) = PMT(P_{0}, n, -F)$