Chapter 2

Time Value of Money (TVOM)

Cash Flow Diagrams

(EOY)

Example 2.1

Cash Flow Profiles for Two Investment Alternatives

End of Year
(EOY)
CF(A)
CF(B)
CF(B-A)

0	$-\$ 100,000$	$-\$ 100,000$	$\$ 0$
1	$\$ 10,000$	$\$ 50,000$	$\$ 40,000$
2	$\$ 20,000$	$\$ 40,000$	$\$ 20,000$
3	$\$ 30,000$	$\$ 30,000$	$\$ 0$
4	$\$ 40,000$	$\$ 20,000$	$-\$ 20,000$
5	$\$ 50,000$	$\$ 10,000$	$-\$ 40,000$
Sum	$\$ 50,000$	$\$ 50,000$	$\$ 0$

Although the two investment alternatives have the same "bottom line," there are obvious differences. Which would you prefer, A or B? Why?

Principle \#7

Consider only differences in cash flows among investment alternatives

Inv. B - Inv. A

Example 2.2

Example 2.3

Alternative F

Which would you choose?

- Simple interest calculation:

$$
F_{n}=P(1+i n)
$$

- Compound Interest Calculation:

$$
F_{n}=F_{n-1}(1+i)
$$

- Where
- $P=$ present value of single sum of money
- $F_{n}=$ accumulated value of P over n periods
- $i=$ interest rate per period
- $n=$ number of periods

Example 2.7: simple interest calculation

Robert borrows $\$ 4,000$ from Susan and agrees to pay $\$ 1,000$ plus accrued interest at the end of the first year and $\$ 3,000$ plus accrued interest at the end of the fourth year. What should be the size of the payments if 8% simple interest is used?

Solution

$$
\begin{aligned}
-1^{\text {st }} \text { payment } & =\$ 1,000+0.08(\$ 4,000) \\
& =\$ 1,320 \\
-2^{\text {nd }} \text { payment } & =\$ 3,000+0.08(\$ 3,000)(3) \\
& =\$ 3,720
\end{aligned}
$$

Simple Interest Cash Flow Diagram

RULES Discounting Cash Flow

1. Money has time value!
2. Cash flows cannot be added unless they occur at the same point(s) in time.
3. Multiply a cash flow by $(1+i)$ to move it forward one time unit.
4. Divide a cash flow by $(1+i)$ to move it backward one time unit.

Example 2.8

(Lender's Perspective) Value of $\$ 10,000$ Investment Growing @ 10\% per year

Start of Year	Value of Investment	Interest Earned	End of Year	Value of Investment
1	$\$ 10,000.00$	$\$ 1,000.00$	1	$\$ 11,000.00$
2	$\$ 11,000.00$	$\$ 1,100.00$	2	$\$ 12,100.00$
3	$\$ 12,100.00$	$\$ 1,210.00$	3	$\$ 13,310.00$
4	$\$ 13,310.00$	$\$ 1,331.00$	4	$\$ 14,641.00$
5	$\$ 14,641.00$	$\$ 1,464.10$	5	$\$ 16,105.10$

Compounding of Money

Beginning of Period	Amount Owed	Interest Earned	End of Period	Amount Owed
1	P	Pi	1	$\mathrm{P}(1+\mathrm{i})$
2	$\mathbf{P}(1+\mathrm{i})$	$\mathbf{P}(1+\mathrm{i}) \mathrm{i}$	2	$\mathrm{P}(1+\mathrm{i})^{2}$
3	$\mathrm{P}(1+\mathrm{i})^{\mathbf{2}}$	$\mathrm{P}(1+\mathrm{i})^{\mathbf{2}} \mathrm{i}$	3	$\mathrm{P}(1+\mathrm{i})^{3}$
4	$\mathrm{P}(1+\mathrm{i})^{3}$	$\mathrm{P}(1+\mathrm{i})^{3 \mathrm{i}}$	4	$\mathrm{P}(1+\mathrm{i})^{4}$
5	$\mathrm{P}(1+\mathrm{i})^{4}$	$\mathbf{P}(1+i)^{4}$	5	$\mathrm{P}(1+\mathrm{i})^{5}$
\vdots	:	:	:	!
n-1	$P(1+i)^{n-2}$	$P(1+i)^{n-2} i$	n-1	$\mathrm{P}(1+\mathrm{i})^{\mathrm{n}-1}$
n	$P(1+i)^{n-1}$	$\mathbf{P}(1+\mathrm{i})^{\mathrm{n}-1} \mathbf{i}$	n	$P(1+i)^{n}$

Discounted Cash Flow Formulas

$$
\begin{aligned}
& F=P(1+i)^{n} \\
& F=P(P \mid \%, n) \\
& P=F(1+i)^{-n} \\
& P=F(P \mid F i \%, n)
\end{aligned}
$$

Excel® DCF Worksheet Functions

$$
\begin{aligned}
& F=P(1+i)^{n} \\
& F=P(F \mid P i \%, n) \\
& F=F V(i \%, n,,-P)
\end{aligned}
$$

(2.1)

```
P = F (1 +i )-n
P = F (P|F i%, n)
P =PV(i\%,n,,-F)
```

(2.3)

$$
\begin{aligned}
& \left.\begin{array}{l}
F=P(1+i)^{n} \\
F=P(F \mid P i \%, n) \\
\text { factor } \\
F=F V(i \%, n,,-P)
\end{array}\right\} \quad \text { single sum, future worth } \\
& \left.\begin{array}{l}
P=F(1+i)^{-n} \\
\begin{array}{l}
P=F(P \mid F i \%, n) \\
\text { factor } \\
P=P V(i \%, n,,-F)
\end{array}
\end{array}\right\} \quad \text { single sum, present worth }
\end{aligned}
$$

P occurs n periods before \mathbf{F}
(F occurs n periods after P)

Relationships among P, F, and A

Poccurs at the same time as A_{0}, i.e., at $\mathrm{t}=0$ Foccurs at the same time as A_{n}, i.e., at $t=n$

Example 2.9

Dia St. John borrows $\$ 1,000$ at 12% compounded annually. The loan is to be repaid after 5 years. How much must she repay in 5 years?

$$
\begin{aligned}
& F=P(F \mid P i, n) \\
& F=\$ 1,000(F \mid P 12 \%, 5) \\
& F=\$ 1,000(1.12)^{5} \\
& F=\$ 1,000(1.76234) \\
& F=\$ 1,762.34 \\
& F=F V(12 \%, 5,,-1000) \\
& F=\$ 1,762.34
\end{aligned}
$$

Example 2.11

How much must you deposit, today, in order to accumulate $\$ 10,000$ in 4 years, if you earn 5\% compounded annually on your investment?
$\mathrm{P}=\mathrm{F}(\mathrm{P} \mid \mathrm{F} \mathrm{i}, \mathrm{n})$
P = \$10,000(P|F 5\%,4)
$\mathrm{P}=\mathbf{\$ 1 0 , 0 0 0 (1 . 0 5) ^ { - 4 }}$
$\mathrm{P}=\$ 10,000(0.82270)$
$\mathrm{P}=\$ 8,227.00$

P =PV(5\%,4,,-10000)
$\mathrm{P}=\$ 8227.02$

Computing the Present Worth of Multiple Cash flows

$$
P=\sum_{t=0}^{n} A_{t}(1+i)^{-t}
$$

(2.12)
(2.13)

Determine the present worth equivalent of the CFD shown below, using an interest rate of 10% compounded annually.

$P=N P V(10 \%, 50000,40000,30000,40000,50000)-100000$ = \$59,418.45

Principles of Engineering Economic Analysis, 5th edition

Determine the future worth equivalent of the CFD shown below, using an interest rate of 10% compounded annually.

End of Year (n)	Cash Flow (CF)	$(\boldsymbol{P} \mid \boldsymbol{F} \mathbf{1 0 \%}, \mathbf{n})$	Present Worth	PV(10\%,n,,-CF)	(F\|P 10\%,5-n)	Future Worth	FV(10\%,5-n,,-CF)
0	$-\$ 100,000$	1.00000	$-\$ 100,000.00$	$-\$ 100,000.00$	1.61051	$-\$ 161,051.00$	$-\$ 161,051.00$
1	$\$ 50,000$	0.90909	$\$ 45,454.50$	$\$ 45,454.55$	1.46410	$\$ 73,205.00$	$\$ 73,205.00$
2	$\$ 40,000$	0.82645	$\$ 33,058.00$	$\$ 33,057.85$	1.33100	$\$ 53,240.00$	$\$ 53,240.00$
3	$\$ 30,000$	0.75131	$\$ 22,539.30$	$\$ 22,539.44$	1.21000	$\$ 36,300.00$	$\$ 36,300.00$
4	$\$ 40,000$	0.68301	$\$ 27,320.40$	$\$ 27,320.54$	1.10000	$\$ 44,000.00$	$\$ 44,000.00$
5	$\$ 50,000$	0.62092	$\$ 31,046.00$	$\$ 31,046.07$	1.00000	$\$ 50,000.00$	$\$ 50,000.00$
SUM			$\$ 59,418.20$	$\$ 59,418.45$		$\$ 95,694.00$	$\$ 95,694.00$

F =10000*FV(10\%,5,,-NPV(10\%,5,4,3,4,5)+10)
= \$95,694.00
Principles of Engineering Economic Analysis, 5th edition

Examples 2.13 \& 2.16

Determine the present worth equivalent of the following series of cash flows. Use an interest rate of 6% per interest period.

End of Period Cash Flow

0	$\$ 0$
1	$\$ 300$
2	$\$ 0$
3	$-\$ 300$
4	$\$ 200$
5	$\$ 0$
6	$\$ 400$
7	$\$ 0$
8	$\$ 200$

P = \$300(P|F 6\%,1)- \$300(P|F 6\%,3)+\$200(P|F 6\%,4)+\$400(P|F 6\%,6) +\$200(P|F 6\%,8) = \$597.02
P =NPV(6\%,300,0,-300,200,0,400,0,200)
P =\$597.02

Computing the Future worth of Multiple
 cash Flows

$$
\begin{align*}
& F=\sum_{t=1}^{n} A_{t}(1+i)^{n-t} \tag{2.15}\\
& F=\sum_{t=1}^{n} A_{t}(F \mid P \quad i \%, n-t)
\end{align*}
$$

(2.16)

Examples 2.14 \& 2.16

Determine the future worth equivalent of the following series of cash flows. Use an interest rate of 6% per interest period.

	0	$\$ 0$
	1	$\$ 300$
$F=\$ 300(F \mid P 6 \%, 7)-\$ 300(F \mid P 6 \%, 5)+$	2	$\$ 0$
$\$ 200(F \mid P 6 \%, 4)+\$ 400(F \mid P 6 \%, 2)+\$ 200$	3	$-\$ 300$
$F=\$ 951.59$	4	$\$ 200$
F $=$ FV(6\%,8,,-NPV(6\%,300,0,-300,200,0,400,0,200))	5	$\$ 0$
$F=\$ 951.56$	6	$\$ 400$
	7	$\$ 0$
	8	$\$ 200$

(The $3 \Varangle$ difference in the answers is due to round-off error in the tables in Appendix A.)

Some Common Cash Flow Series

- Uniform Series

$$
A_{t}=A \quad t=1, \ldots, n
$$

- Gradient Series

$$
\begin{aligned}
A_{t} & =0 & & t=1 \\
& =A_{t-1}+G & & t=2, \ldots, n \\
& =(\mathbf{t}-1) \mathbf{G} & & t=1, \ldots, n
\end{aligned}
$$

- Geometric Series

$$
\begin{aligned}
A_{t} & =A & & t=1 \\
& =A_{t-1}(1+j) & & t=2, \ldots, n \\
& =A_{1}(1+j)^{t-1} & & t=1, \ldots, n
\end{aligned}
$$

Uniform Series

DCF Uniform Series Formulas

$$
\begin{aligned}
& \mathbf{P}=\mathbf{A}\left[(1+\mathbf{i})^{\mathrm{n}}-\mathbf{1}\right] /\left[\mathrm{i}(1+\mathrm{i})^{\mathrm{n}}\right] \\
& \mathbf{P}=\mathbf{A}(\mathbf{P} \mid \mathbf{A} \mathbf{i} \%, \mathbf{n}) \\
& \mathbf{P}=[=\mathbf{P V}(\mathbf{i} \%, \mathbf{n},-\mathbf{A})] \\
& \mathbf{A}=\mathbf{P i}(1+\mathbf{i})^{\mathrm{n}} /\left[(\mathbf{1}+\mathbf{i})^{\mathrm{n}}-\mathbf{1}\right] \\
& \mathbf{A}=\mathbf{P}(\mathbf{A} \mid \mathbf{P i} \%, \mathbf{n}) \\
& \mathbf{A}=\mathbf{P M T}(\mathbf{i} \%, \mathbf{n},-\mathbf{P})
\end{aligned}
$$

P occurs 1 period before first A

$$
\begin{align*}
& \mathbf{P}=\mathbf{A}(\mathbf{P} \mid \mathbf{A} \mathbf{i} \%, \mathbf{n})=\mathbf{A}\left[\frac{(1+i)^{n}-1}{i(1+i)^{i}}\right] \tag{2.22}\\
& \mathbf{A}=\mathbf{P}(\mathbf{A} \mid \mathbf{P} \mathbf{i} \%, \mathbf{n})=\mathbf{P}\left[\frac{i(1+i)^{n}}{(1+i)^{-}-1}\right] \tag{2.25}
\end{align*}
$$

P occurs one period before the first A
$\mathbf{F}=\mathbf{A}(\mathbf{F} \mid \mathbf{A} \mathbf{i} \%, \mathbf{n})=\mathbf{A}\left[\frac{(1+i)^{n}-1}{i}\right]$
(2.28)
$\mathbf{A}=\mathbf{F}(\mathbf{A} \mid \mathbf{F} \mathbf{i} \%, \mathbf{n})=\mathbf{F}\left[\frac{i}{(1+i)^{n}-1}\right]$
(2.30)

F occurs at the same time as the last A

Example 2. 17

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw $\$ 2,000 / \mathrm{yr}$ for 5 years, with the first withdrawal occurring 1 year after the deposit?

```
P}=$2000(P|A 5%,5
P = $2000(4.32948) = $8658.96
P =PV(5%,5,-2000)
P=$8658.95
```


Example 2. 18

Troy Long deposits a single sum of money in a savings account that pays 5\% compounded annually. How much must he deposit in order to withdraw $\$ 2,000 / \mathrm{yr}$ for 5 years, with the first withdrawal occurring 3 years after the deposit?

$$
\begin{aligned}
& \mathrm{P}=\$ 2000(\mathrm{P} \mid \mathrm{A} 5 \%, 5)(\mathrm{P} \mid \mathrm{F} 5 \%, 2) \\
& \mathrm{P}=\$ 2000(4.32948)(0.90703)=\$ 7853.94 \\
& \mathrm{P}=\mathrm{PV}(5 \%, 2,,-\mathrm{PV}(5 \%, 5,-2000)) \\
& \mathrm{P}=\$ 7853.93
\end{aligned}
$$

Example 2. 19

Rachel Townsley invests $\mathbf{\$ 1 0 , 0 0 0}$ in a fund that pays $\mathbf{8 \%}$ compounded annually. If she makes 10 equal annual withdrawals from the fund, how much can she withdraw if the first withdrawal occurs 1 year after her investment?

$$
\begin{aligned}
& A=\$ 10,000(A \mid P 8 \%, 10) \\
& A=\$ 10,000(0.14903)=\$ 1490.30
\end{aligned}
$$

$\mathrm{A}=\mathrm{PMT}(\mathbf{8 \%}, 10,-10000)$
A $=\mathbf{\$ 1 4 9 0 . 2 9}$

Example 2.22

Suppose Rachel delays the first withdrawal for 2 years. How much can be withdrawn each of the $\mathbf{1 0}$ years?

```
A = $10,000(F|P 8%,2)(A|P 8%,10)
A =$10,000(1.16640)(0.14903)
A = $1738.29
A =PMT(8%,10-FV(8%,2,,-10000))
A = $1738.29
```


Example 2.20

A firm borrows $\$ \mathbf{2 , 0 0 0 , 0 0 0}$ at $\mathbf{1 2 \%}$ annual interest and pays it back with 10 equal annual payments. What is the payment?

$$
\begin{aligned}
& \mathrm{A}=\$ 2,000,000(\mathrm{~A} \mid \mathrm{P} 12 \%, 10) \\
& \mathrm{A}=\$ 2,000,000(0.17698) \\
& \mathrm{A}=\$ 353,960 \\
& \mathrm{~A}=\mathrm{PMT}(\mathbf{1 2 \%}, \mathbf{1 0},-\mathbf{2 0 0 0 0 0 0}) \\
& \mathrm{A}=\$ \mathbf{3 5 3 , 9 6 8 . 3 3}
\end{aligned}
$$

Example 2.21

Suppose the firm pays back the loan over 15 years in order to obtain a 10% interest rate. What would be the size of the annual payment?

```
\(\mathrm{A}=\mathbf{\$ 2 , 0 0 0 , 0 0 0 ( \mathrm { A } | \mathrm { P } 1 0 \% , 1 5 )}\)
\(\mathrm{A}=\mathbf{\$ 2 , 0 0 0 , 0 0 0 ( 0 . 1 3 1 4 7 )}\)
\(\mathrm{A}=\$ 262,940\)
```

A =PMT(10\%,15,-2000000)
$\mathrm{A}=\mathbf{\$ 2 6 2 , 9 4 7 . 5 5}$

Extending the loan period 5 years reduced the payment by $\$ 91,020.78$

Example 2. 23

Luis Jimenez deposits $\mathbf{\$ 1 , 0 0 0 / y r}$ in a savings account that pays 6% compounded annually. How much will be in the account immediately after his $30^{\text {th }}$ deposit?

```
\(\mathrm{F}=1000(\mathrm{~F} \mid \mathrm{A} \mathbf{6 \%}, \mathbf{3 0})\)
\(F=\$ 1000(79.05819)=\$ 79,058.19\)
\(F=F V(6 \%, 30,-1000)\)
\(\mathrm{A}=\$ 78,058.19\)
```


Example 2. 24

Andrew Brewer invests $\$ 5,000 / \mathbf{y r}$ and earns $\mathbf{6 \%}$ compounded annually. How much will he have in his investment portfolio after $\mathbf{1 5}$ yrs? 20 yrs? $\mathbf{2 5}$ yrs? 30 yrs ? (What if he earns $\mathbf{3 \%} / \mathrm{yr}$?)

$$
\begin{aligned}
& \mathrm{F}=\$ 5000(\mathrm{~F} \mid \mathbf{A} 6 \%, 15)=\$ 5000(23.27597)=\$ 116,379.85 \\
& \mathrm{~F}=\$ 5000(\mathrm{~F} \mid \mathbf{A} 6 \%, 20)=\$ 5000(36.78559)=\$ 183,927.95 \\
& \mathrm{~F}=\$ 5000(\mathrm{~F} \mid \mathbf{A} 6 \%, 25)=\$ 5000(54.86451)=\$ 274,322.55 \\
& \mathrm{~F}=\$ 5000(\mathrm{~F} \mid \mathbf{A} 6 \%, 30)=\$ 5000(79.05819)=\$ 395,290.95 \\
& \\
& \mathrm{~F}=\$ 5000(\mathrm{~F} \mid \mathbf{A} 3 \%, 15)=\$ 5000(\mathbf{1 8 . 5 9 8 9 1})=\$ 92,994.55 \\
& \mathrm{~F}=\$ 5000(\mathbf{F} \mid \mathbf{A} 3 \%, 20)=\$ 5000(\mathbf{2 6} .87037)=\$ 134,351.85 \\
& \mathrm{~F}=\$ 5000(\mathbf{F} \mid \mathbf{A} 3 \%, 25)=\$ 5000(36.45926)=\$ 182,296.30 \\
& \mathrm{~F}=\$ 5000(\mathbf{F} \mid \mathbf{A} 3 \%, 30)=\$ 5000(47.57542)=\$ 237,877.10
\end{aligned}
$$

Example 2.25

If Coby Durham earns $\mathbf{7 \%}$ on his investments, how much must he invest annually in order to accumulate $\$ \mathbf{1 , 5 0 0 , 0 0 0}$ in 25 years?

$$
\begin{aligned}
& \mathrm{A}=\$ 1,500,000(\mathrm{~A} \mid \mathrm{F} 7 \%, 25) \\
& \mathrm{A}=\$ 1,500,000(0.01581) \\
& \mathrm{A}=\$ 23,715
\end{aligned}
$$

A =PMT(7\%,25,,-1500000)
$\mathrm{A}=\mathbf{\$ 2 3 , 7 1 5 . 7 8}$

Example 2.26

If Crystal Wilson earns 10% on her investments, how much must she invest annually in order to accumulate $\$ 1,000,000$ in 40 years?

$$
\begin{aligned}
& \mathrm{A}=\$ 1,000,000(\mathrm{~A} \mid \mathrm{F} 10 \%, 40) \\
& \mathrm{A}=\$ 1,000,000(0.0022594) \\
& \mathrm{A}=\$ 2,259.40
\end{aligned}
$$

A =PMT(10\%,40,,-1000000)
A $=\mathbf{\$ 2}, \mathbf{2 5 9 . 4 1}$

Example 2.27

$\$ 500,000$ is spent for a SMP machine in order to reduce annual expenses by $\$ 92,500 / \mathrm{yr}$. At the end of a 10 -year planning horizon, the SMP machine is worth $\$ 50,000$. Based on a 10% TVOM,
a) what single sum at $t=0$ is equivalent to the SMP investment?
b) what single sum at $t=10$ is equivalent to the SMP investment?
c) what uniform annual series over the 10 -year period is equivalent to the SMP investment?

Solution:

$$
\begin{aligned}
& P=-\$ 500,000+\$ 92,500(\mathbf{P} \mid \mathbf{A} 10 \%, 10)+\$ 50,000(\mathbf{P} \mid \mathbf{F} \mathbf{1 0 \%}, 10) \\
& P=-\$ 500,000+\$ 92,500(6.14457)+\$ 50,000(0.38554)=\$ 87,649.73 \\
& P=P V(10 \%, 10,-92500,-50000)-500000=\$ 87,649.62
\end{aligned}
$$

Example 2.27 (Solution)

$$
\begin{aligned}
& F=-\$ 500,000(F \mid \mathbf{P} \mathbf{1 0 \%}, \mathbf{1 0})+\$ \mathbf{9 2 , 5 0 0}(\mathbf{F} \mid \mathbf{A} \mathbf{1 0 \%}, \mathbf{1 0})+\$ 50,000 \\
& \mathrm{~F}=-\mathbf{5 0 0 , 0 0 0}(\mathbf{2 . 5 9 3 7 4})+\$ \mathbf{9 2 , 5 0 0}(\mathbf{1 5 . 9 3 7 4 2})+\mathbf{5 0 , 0 0 0}=\$ 227,341.40 \\
& \mathrm{~F}=\mathbf{F V}(\mathbf{1 0 \%}, \mathbf{1 0},-\mathbf{9 2 5 0 0 , 5 0 0 0 0 0})+\mathbf{5 0 0 0 0}=\$ \mathbf{2 2 7 , 3 4 0 . 5 5}
\end{aligned}
$$

$\mathrm{A}=-\mathbf{5 0 0}, 000(\mathrm{~A} \mid \mathrm{P} \mathbf{1 0 \%}, 10)+\$ 92,500+\mathbf{5 0 , 0 0 0}(\mathrm{A} \mid \mathrm{F} \mathbf{1 0 \%}, \mathbf{1 0})$
$\mathrm{A}=-\mathbf{5 0 0 , 0 0 0}(\mathbf{0 . 1 6 2 7 5)}+\mathbf{\$ 9 2 , 5 0 0}+\mathbf{5 0 , 0 0 0 (0 . 0 6 2 7 5)}=\$ 14,262.50$
$\mathrm{A}=\mathrm{PMT}(\mathbf{1 0 \%}, \mathbf{1 0 , 5 0 0 0 0 0 , - 5 0 0 0 0) + 9 2 5 0 0}=\mathbf{\$ 1 4 , 2 6 4 . 5 7}$

$$
\begin{aligned}
& P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \quad \begin{array}{l}
\text { uniform series, present worth factor } \\
=A(P \mid A \%, n)=\operatorname{PV}(\%, n,-A)
\end{array} \\
& A=P\left[\frac{(1+i)^{n}}{(1+i)^{n}-1}\right] \begin{array}{l}
\text { uniform series, capital recovery factor } \\
=P(A \mid P \%, n)=\operatorname{PMT}(\%, n,-P)
\end{array} \\
& F=A\left[\frac{(1+i)^{n}-1}{i}\right] \begin{array}{l}
\text { uniform series, future worth factor } \\
=A(F A \%, n)=F V(\%, n,-A)
\end{array} \\
& A=F\left[\frac{i}{(1+i)^{n}-1}\right] \begin{array}{l}
\text { uniform series, sinking fund factor } \\
=A(A \mid F \%, n)=P M T(\%, n,,-F)
\end{array}
\end{aligned}
$$

