GE 403
 Engineering Economy

Eng. Howaidi Alotaibi
Civil Engineering Department
E-mail halshaibani@ksu.edu.sa

Ex. 1 Consider the following cash flow profile and assume MARR is 10\% per year compounded annually.

EOY	0	1	2	3	4	5	6
NCF	$-\$ 70,000$	$\$ 30,000$	$\$ 30,000$	$\$ 30,000$	$\$ 30,000$	$\$ 30,000$	$\$ 32,000$

- Determine the IRR for this project.
- Is this project economically attractive?

Solution By Compound interest formulas

$\operatorname{Pw}($ IRR $)=-70,000+30,000 \frac{(1+i)^{5}-1}{i(1+i)^{5}}+32,000(1+i)^{-6}=0 \quad \Rightarrow \operatorname{IRR}=36.35 \%$
Since IRR > MARR, the project is economically attractive.

Solution By Compound interest tables

Pw (IRR) $=-70,000+30,000(P / A i \%, 5)+32,000(P / F i \%, 6)$
Pw (30\%) = \$9696.73
Pw (40\%) = -\$4695.15
By using interpolation IRR $=\mathbf{3 6 . 7 4 \%}$ which is Pw equals to Zero
Since IRR > MARR, the project is economically attractive.

Ex. 2 Consider the following cash flow profile and assume MARR is 10\% per year compounded annually.

EOY	0	1	2	3	4	5	6
NCF	$-\$ 100,000$	$\$ 25,000$	$\$ 25,000$	$\$ 25,000$	$\$ 25,000$	$\$ 25,000$	$\$ 25,000$

- Determine the ERR for this project.
- Is this project economically attractive?

Solution

$$
(+) \mathrm{F} w(\mathrm{MARR})=(-) \mathrm{Fw}(\mathbf{E R R})
$$

$25,000(F / A 10 \%, 6)=100,000(1+E R R)^{6}$
$25,000(7.71561)=100,000(1+E R R)^{6} \quad \Rightarrow E R R=11.57 \%$
Since ERR > MARR, the project is economically attractive.

Ex. 3 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs $\mathbf{\$ 3 8 0 , 0 0 0}$ initially and is expected to increase revenue $\mathbf{\$ 1 2 5 , 0 0 0}$ per year every year. The software and installation from Vendor B costs $\$ \mathbf{2 8 0 , 0 0 0}$ and is expected to increase revenue $\$ 95,000$ per year. The company uses a 4 -year planning horizon and a 10 percent per year MARR. (The "do nothing" alternative is feasible) Which ERP system should be purchased based on IRR \& ERR analyses?

Solution

Incremental Approach IRR Method

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate IRR on incremental cash flows

$$
\mathrm{Pw})_{\mathbf{B}-\mathrm{DN}}=-280,000+95,000(\mathrm{P} / \mathrm{A} \operatorname{IRR} \%, 4)=0 \Rightarrow \mathrm{IRR}=13.44 \%
$$

Since $\operatorname{IRR})_{B-D N}>$ MARR, therefore B is better than doing nothing
$\mathrm{Pw})_{\mathrm{A}-\mathrm{B}}=-100,000+30,000(\mathrm{P} / \mathrm{A} \operatorname{IRR} \%, 4)=0 \Rightarrow \operatorname{IRR}=7.71 \%$
Since $I R R)_{A-B}<$ MARR, therefore B is better than A

Solution

Incremental Approach ERR Method

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate ERR on incremental cash flows
$95,000 \frac{(1+0.1)^{4}-1}{0.1}=280,000\left(1+E R R_{B}-D N\right)^{4} \Rightarrow E R R=12 \%$
Since ERR $)_{\mathrm{B}-\mathrm{DN}}>\mathrm{MARR}$, therefore B is better than doing nothing

$30,000 \frac{(1+0.1)^{4}-1}{0.1}=100,000\left(1+E R R A_{-}\right)^{4} \Rightarrow E R R=8.63 \%$
Since $E R R)_{A-B}<M_{A R R}$, therefore B is better than A

The IND

