GE 403 Engineering Economy

Eng. Howaidi Alotaibi Civil Engineering Department E-mail halshaibani@ksu.edu.sa **Ex.1** DuraTech Manufacturing is evaluating a process improvement project. The estimated receipts and disbursements associated with the project are shown below. MARR is 10 percent/year. Should DuraTech implement the proposed process improvement **based on future worth**?

EOY	0	1	2	3	4	5
Receipts	\$0	\$600	\$600	\$700	\$700	\$700
Disbursements	\$1000	\$300	\$300	\$300	\$300	\$300

Fw = -1000 (F/P 10%, 5) + 300 (F/A 10%, 5) + 100 (F/A 10%, 3)

Fw = -1000(1.61051) + 300(6.10510) + 100(3.31) =\$552.02

Solution

Since Fw > 0, the proposed process improvement should be implemented.

Ex.2 DuraTech Manufacturing is evaluating a process improvement project. The estimated receipts and disbursements associated with the project are shown below. MARR is 10 percent/year. Should DuraTech implement the proposed process improvement **based on annual worth**?

EOY	0	1	2	3	4	5
Receipts	\$0	\$600	\$600	\$700	\$700	\$700
Disbursements	\$1,000	\$300	\$300	\$300	\$300	\$300

Aw = -1,000(A/P 10%, 5) + 300 + 100(F/A 10%, 3)(A/F 10%, 5)

Aw = -1000(0.26380) + 300 + 100(3.31)(0.16380) = \$90.42

Solution

Since Aw > 0, the proposed process improvement should be implemented.

Ex.3 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs \$380,000 initially and is expected to increase revenue \$125,000 per year every year. The software and installation from Vendor **B** costs \$280,000 and is expected to increase revenue **\$95,000** per year. The company uses a 4-year planning horizon and a 10 percent per year MARR. (The "do nothing" alternative is feasible and assumed to have a Pw of \$0.) Which ERP system should be purchased based on <u>ranking and incremental</u> future worth analyses?

Fw)_B = -280,000(F/P 10%, 4) + 95,000(F/A 10%, 4) = 30,947.63Fw)_A = -380,000(F/P 10%, 4) + 125,000(F/A 10%, 4) = 23,767.83

 $Fw)_{DN} = \$0$

Ranking Approach

Solution

Incremental Approach

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate **F**w on incremental cash flows

 $Fw)_{B-DN} = -280,000(F/P \ 10\%. \ 4) + 95,000(F/A \ 10\%, \ 4) = \$30,947.63$ Fw > \$0, therefore B is better than doing nothing

 $Fw)_{A-B} = -100,000 (F/P \ 10\%. \ 4) + 30,000(F/A \ 10\%, \ 4) = -\7179.8 Fw < \$0, therefore B is better than A

Ex.4 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs \$380,000 initially and is expected to increase revenue \$125,000 per year every year. The software and installation from Vendor **B** costs \$280,000 and is expected to increase revenue **\$95,000** per year. The company uses a 4-year planning horizon and a 10 percent per year MARR. (The "do nothing" alternative is feasible and assumed to have a Pw of \$0.) Which ERP system should be purchased based on <u>ranking and incremental</u> annual worth analyses?

Ranking Approach

 $Aw)_{DN} =$

Aw)_B = $-280,000(A/P \ 10\%, 4) + 95,000 = $6,668.4$

 $Aw)_{A} = -380,000(A/P \ 10\%, 4) + 125,000 = $5,121.4$

Incremental Approach

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate Aw on incremental cash flows

Aw)_{**B-DN**} = $-280,000(A/P \ 10\%. \ 4) + 95,000 = $6,668.4$ Aw > \$0, therefore B is better than doing nothing

 $Aw)_{A-B} = -100,000 (A/P 10\%. 4) + 30,000 = -1547 Aw < \$0, therefore B is better than A

Ex.5 The expected cash flows for two ovens are shown below. What are the capital

recovery costs of these alternatives using a MARR of 8 percent/year.

	Alt. A	Alt. B	
Initial Investment	\$50,000	\$80,000	
Estimated Life	10	5	
End of Life Salvage	\$10,000	\$0	
Annual Income	\$19,400	\$26,000	
Annual Expense	\$10,000	\$6,000	

Capital Recovery Cost Formulas

$\mathbf{CR} = \mathbf{P}(\mathbf{A})$	[Pi%,n) - F(A Fi%,n) (CR = (P-F)(A Fi%,n) + Pi) (CR = (P-F)(A Pi%,n) + Fi)
Alt. A	P = \$50,000 F = \$10,000 Useful life =10 yrs. MARR= 8%
	CR = \$50,000(A/P, 8%,10) - \$10,000(A/F, 8%, 10)
	CR = \$50,000(0.14903) - \$10,000(0.06903) = \$6,761.2
Alt. B	P = \$80,000 F = \$0 Useful life =5 yrs. MARR= 8%
	CR = \$80,000(A/P, 8%, 5) - \$0(A/F, 8%, 5)
	CR = \$80,000(0.25046) = \$20,036.8

Ex.6 Consider the net cash flows (NCF) and salvage values (SV) shown below. Assume the alternatives can be indefinitely renewed with the same cash flows and salvage values. Using a MARR 8% per year, determine AW of each alternative based on **a**) LCM

of lives approach, b) their "natural" lives and c) assume both alternatives are one shot

	Alt	A	Alt. B		
EOY	NCF SV		NCF	SV	
0	-\$100	\$100	-\$70	\$70	
1	\$50	\$40	\$30	\$60	
2	\$50	\$20	\$40	\$50	
3	\$40	\$10			
4	\$60	\$5			

investments.

a) LCM of lives approach t = 4

EOY	0	1	2	3	4
Alt. A	-\$100	\$50	\$50	\$40	\$60+ <mark>\$5</mark>
Alt. B	-\$70	\$30	\$40+ \$50 -\$70	\$30	\$40+ <mark>\$5</mark> 0

 $Aw)_{A} = [-100 + 50(P/A 8\%. 2) + 400 (P/F 8\%, 3) + 65(P/F 8\%, 4)](A/P 8\%. 4)$ = [-100 + 50(1.78326) + 400 (0.79383) + 65(0.73503)](0.30192) = \$107.02

 $Aw)_{\mathbf{B}} = [-70+30(P/F8\%,1)+20(P/F8\%,2)+30(P/F8\%,3)+90(P/F8\%,4)](A/P8\%,4)$ = [-70+30(0.92593)+20(0.85734)+30(0.79383)+90(0.73503)](0.30192)= \$19.6

 $Aw_A > Aw_B$, therefore Alt. A is better than Alt. B

b) Natural life (t = 4 for Alt. A, t = 2 for Alt. B)

EOY	0	1	2	3	4
Alt. A	-\$100	\$50	\$50	\$40	\$60+ <mark>\$5</mark>
Alt. B	-\$70	\$30	\$40+ <mark>\$5</mark> 0		

 $Aw)_{A} = [-100 + 50(P/A 8\%. 2) + 400 (P/F 8\%, 3) + 65(P/F 8\%, 4)](A/P 8\%. 4)$ = [-100 + 50(1.78326) + 400 (0.79383) + 65(0.73503)](0.30192) = \$107.02

 $Aw)_{B} = [-70+30(P/F8\%,1)+90(P/F8\%,2)](A/P8\%,2)$ = [-70+30(0.92593)+90(0.85734)](0.56077)= \$19.6

 $Aw_A > Aw_B$, therefore Alt. A is better than Alt. B

c) Alternatives are one shot investment t = 4

EOY	0	1	2	3	4
Alt. A	-\$100	\$50	\$50	\$40	\$60+ <mark>\$5</mark>
Alt. B	-\$70	\$30	\$40+ <mark>\$5</mark> 0	\$0	\$0

 $Aw)_{A} = [-100 + 50(P/A 8\%. 2) + 400 (P/F 8\%, 3) + 65(P/F 8\%, 4)](A/P 8\%. 4)$ = [-100 + 50(1.78326) + 400 (0.79383) + 65(0.73503)](0.30192) = \$107.02

 $Aw)_{B} = [-70+30(P/F8\%,1)+90(P/F8\%,2)](A/P8\%,4)$ = [-70+30(0.92593)+90(0.85734)](0.30192) = \$10.55

 $Aw_A > Aw_B$, therefore Alt. A is better than Alt. B