Appendix

C/2 PLANE GEOMETRY

SELECTED ToPICS
OF MATHEMATICS

C/1 INTRODUCTION

Appendix C contains an abbreviated summary and reminder of se-
lected topics in basic mathematics which find frequent use in mechanics.
The relationships are cited without proof. The student of mechanics will
have frequent occasion to use many of these relations, and he or she will
be handicapped if they are not well in hand. Other topics not listed
will also be needed from time to time.

As the reader reviews and applies mathematics, he or she should bear
in mind that mechanics is an applied science descriptive of real bodies and
actual motions. Therefore, the geometric and physical interpretation of
the applicable mathematics should be kept clearly in mind during the de-
velopment of theory and the formulation and solution of problems.

1. When two intersect- g 4. Circle
. . s ) 1
e nse e g i Circumference = 27
tively, perpendicular _
: Area = 7r
to two other lines, B
9. Arc length s = ro
the angles formed by 2N Qectior ared = b2g
the two pairs are equal. 61=16; 4
2. Similar triangles g 5. Every triangle inscribed
within a semicircle is
XLy sy x ) : :
e }r a right triangle. By + 6y = /2
3. Any triangle 6. Angles of a triangle
I
Area = lbh i 6, + 0, + 63 = 180°
i 0, = B, + 6y
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466 AppendixC Selected Topics of Mathematics

C/3 SoLip GEOMETRY

1. Sphere

Volume = 33

Surface area = 4mr?

2. Spherical wedge

Volume = %3¢

C/4 ALGEBRA

3. Right-circular cone

. Any pyramid or cone

Volume = %m‘zh

Lateral area = mrL

L= \I‘2+h2

Volume = %Bh
where B = area of base

1. Quadratic equation
ax? + bx + ¢ =0

o 0E Vb - da

C, b2 = 4ac for real roots
2a

2. Logarithms

b* =y, x = logy y
Natural logarithms

b=e = 2718 282
e =y,x = log,y = Iny

log (ab) = loga + logb
log (a/b) = loga — logb
log (1/n) = —logn

log a™ = nloga

logl =0

logjgx =

3. Determinants
2nd order

0.4343 In x

a; by
a2 b2

3rd order

a; by ¢
Ay bz Co| = +a 1b2(,‘3 + a2b301 + a3b 1C2
ag b3 Csy _(135201 = a2b103 = 015362
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. Cubic equation

x*=Ax + B
Letp = A/3,q = B/2.

Case I: g2 — p” negative (three roots real and
distinct)

cosu = q/(pJp),0 < u < 180°

2./p cos (u/3)

X1
xy = 2/p cos (u/3 + 120°)
x3 = 2p cos (u/3 + 240°)

Case II: g% — p? positive (one root real, two
roots imaginary)

Xy = (q + \/qz _ p3)1f3 + (q . \"qu _ p3)1/3

Case III: ¢% — p® = 0 (three roots real, two
roots equal)

= 1/3 gan — 1/3
X = 297, x9 = x3 = —q

For general cubic equation

B t+axl+bx+e=0
Substitute x = x, — a/3 and get x,®> = Ax, +
B. Then proceed as above to find values of x,
from which x = x, — a/3.
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C/5 ANALYTIC GEOMETRY

1. Straight line 3. Parabola
¥ Y

~
3
=

G 1
e 5 %
y=a+mx
2. Circle 4. Ellipse
¥ y ¥
\ \ 5
\
\
\
——X L ——X
\
b } 2 2
x“ ¥y
—+—==1
2ayi=r2 SRS, E— a® b?

a
(x—a)l+(y-bP=r*

5. Hyperbola

C/6 TRIGONOMETRY

1. Definitions

I II I1I v

sin # = a/c csc =c/a S @ o T N :
cos = b/c sec O =c/b i B
tan 6 = a/b cot # = b/a 5 6656 0 + _ _ 4
2. Signs in the four quadrants —_— + e 4 =
(+) 1 11 (+) cse 0 + + - —

JA‘B( ) ( )\d? T + 9‘,JF‘ (+)
+) (= & : i == &} i —_ - +
| 1 < sec
1 7 |>I?

(=) (=) cot 0 + = + -
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3.

Miscellaneous relations 4. Law of sines
sin? 6 + cos2 6 = 1 a sin A
1 + tan® 0 = sec? ¢ b sinB

1 + cot? 6 = csc? 0

.0 T
sin o = V5(1 — cos )

2
H e J17
cos ~tha 5(1 + cos 6)

sin 20 = 2 sin # cos 6
cos 260 = cos® 8 — sin? 0

5. Law of cosines

sin(a@a *b) =sinacosbh *cosasinb 2 =a® + b2 - 2ab cos C
cos (@ = b) = cosacosb * sinasinb 2 =a%+ b2 + 2abcos D

C/7 Vector OPERATIONS

. Notation. Vector quantities are printed in boldface type, and sca-

lar quantities appear in lightface italic type. Thus, the vector quan-
tity V has a scalar magnitude V. In longhand work vector quantities
should always be consistently indicated by a symbol such as Vor V
to distinguish them from scalar quantities.

. Addition

Triangle addition P + @ = R

Parallelogram addition P + @ = R
Commutative law P + Q = Q + P
Associativelaw P + (Q + R) = (P + Q) + R

. Subtraction

P-Q=P+ (-Q

. Unit vectors 1,j, k

V= Vi+Vj+Vk
where V=V =Jv2+ Vy2 + V,2

. Direction cosines [, m, n are the cosines of the angles hetween
V and the x-, y-, z-axes. Thus,
I=V,/V m=V/V na=V/V
so that V =VUi + mj + nk)
and P+m2+n2=1
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Article C/7 Vector Operations 469

6. Dot or scalar product
P-Q = PQcos 0 (&

This product may be viewed as the magnitude of P multiplied by P

the component & cos 0 of Q in the direction of P, or as the magni-

tude of Q multiplied by the component P cos 6 of P in the direction A

of Q. y
Commutative law P-Q =QP

From the definition of the dot product
ii=jj=kk=1
i'j=jii=ik=ki=jk=kj=0

P-Q=(Pi + Pj+ Pk)(@i + Q) + @k
=PQ, + PQ, + P.Q,
PP = PF 4 PE a4 P

It follows from the definition of the dot product that two vec-
tors P and Q are perpendicular when their dot product vanishes,
P-Q = 0.

The angle 6 between two vectors P; and P, may be found from
their dot product expression P,-Py = PP, cos 6, which gives
I)l.I)2 B PIJPZI =t P].J,P?.y + PIJPQ,_

PPy P,P,

cos 0 = =Ll + mymgy + nyny

where [, m, n stand for the respective direction cosines of the vec-
tors. It is also observed that two vectors are perpendicular to each
other when their direction cosines obey the relation /;l, + mm,
+ nqng = 0.

Distributive law P-Q+R) =P-Q+ PR

7. Cross or vector product. The cross product P x Q of the two
vectors P and Q is defined as a vector with a magnitude

P x Q = PQ sin ¢

and a direction specified by the right-hand rule as shown. Reversing
the vector order and using the right-hand rule give @ x P =
-P x Q.

Distributive law Px@Q@+R)=PxQ+PxR

From the definition of the cross product, using a right-handed
coordinate system, we get

ixj=k ixk=1 kxi=]j
jxi=-k kxj=-i ixk=—j
ixi=jxj=kxk=0
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8.

With the aid of these identities and the distributive law, the vector
product may be written

PxQ

(P + Pyjj+ Pk x Qi+ Qj +Q.k)
(P,Q, - P.Q)i + (P,Q, — P,Q.j + (P,Q, — P,@)k

The cross product may also be expressed by the determinant

i j k
PxQ=|P, P, P,
Q: Q @

Additional relations

Triple scalar product (P X Q)-R = R-(P x Q). The dot and cross
may be interchanged as long as the order of the vectors is main-
tained. Parentheses are unnecessary since P x (Q-R) is meaning-
less because a vector P cannot be crossed into a scalar @ -R. Thus,
the expression may be written

PxQR=PQxR

The triple scalar product has the determinant expansion

P, P, P,
PxQR=Q @ @,
R, R, R,

Triple vector product (P x Q) x R = -R x (P x Q) = R x
(Q x P). Here we note that the parentheses must be used since an
expression P X @ x R would be ambiguous because it would not
identify the vector to be crossed. It may be shown that the triple
vector product is equivalent to

P xQ xR
or Px(Q x R)

R-PQ — R-QP
P-RQ — P-QR

The first term in the first expression, for example, is the dot product
R-P, a scalar, multiplied by the vector Q.

9. Derivafives of vectors obey the same rules as they do for scalars.
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P =hi+hj+bk
dPu) = Pi + Pu
dt
arP-Q _ o o o
TR P-Q + P-Q
dP x Q)

g7 PxQ+PxQ
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10. Integration of vectors. If V is a function of x, y, and z and an
element of volume is dr = dx dy dz, the integral of V over the
volume may be written as the vector sum of the three integrals of
its components. Thus,

deT:iJVrdT+jJVvdT+kJVsz

C/8 SERIES

(Expression in brackets following series indicates range of
convergence.)

nn —1) nn— 1n — 2) i
(1+x)"=1+nx+ 5 X2 =+ 8 W+ 12 < 1]
~ == x3+x5_x7+... [2<oo
smx—x—g 5 ? s ]

2 4 6
o & ET X 2
cosx =1 25+4[ 6!+ [x* < oo]
. ef —e " %P g 5
Slnhx—T~x+§?+%~!+j+ |_x <OCJ
& +e ™ xZ x4 xﬁ 5
COth=T=1+E+E+a+.“ [x* < o]
= X = . nwx
flx) = %o, > ancosn—+ > b, sin —
2 n=1 l n=1 l

l !
1
where a, = % J f(x) cos ? dx, b, = 7 f flx) sin ? dx
=] )

[Fourier expansion for —/ < x < []

C/9 DERIVATIVES

ot) o @
d(uv) dv du v =de udx

dxn ]
= L= ; — — =y
de dx “dx dx dx v2
lim sin Ax = sindx = tandx = dx
Ax—0
lim cos Ax = cosdx =1
Ax—0
d sin x . d cos x st 3 d tan x i
— 5 . —
dx ’ dx : dx
d sinh x d cosh x d tanh x
——— = coshx, ———— = ginh z, ————— = sech®x
dx dx dx
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C/10 INTEGRALS

xrul
nody =
[ as i
fdx
— =Inx
x

o T ——
J.‘/a + bxdx = S*b\»(a + bx)?

92 N
jx\fa + bx dx = @ (3bx — 2a)J(a + bx)3

fxz\,/a + bx dx = 105b3 (8a? — 12abx + 156%%)(a + bx)®
f dx _ 2Ja + bx
Ja + bx b
fa + x —— a t+x
———dx=—Ja+xJb—x + (@a+ b)sin?
J’dex Ja + xJb — x + (a + b) sin T
x dx 1
fm bzla+bx—aln(a+bx)]
j x dx :{a+bx)1"" a+bx a
(@ + bx)" b2 2 -—n 1—-n
J’ dx 1 le 1 _1%y/—ab
— = tan or tanh + ——
A+ 62 o s a
xdx 1 9
ja +bx2—2bln(a+bx)
f\r’xztazdx = *[x\x a2+ a®ln (x + Jx2 = ¢2)]
f /a2 — x2dx = %(x\‘a 2 + a2 sin 1—)
fxva x2dx = —3/(® — x23
fx2\/a2 - x2 dx = “E \,r’(.'_];2 - x2)3 + — (x\/az — x2 + a® sin L —)
Jx'?\fm dx = — % + 29 /(a® — #2)3
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f = —1]n(\/ﬁ+x\/€+ b) or _lsinl(b+26x)
e = Y= a X CX — — e
Ja + bx + ex®? e 2/c J—c Vb2 — dac

dx
f— =1In( + Vx2 *+ a?
Jx2 * a?

x dx
J—= +Ja? + 22
\/azixz

J'x\fxz +a2dx = %v (x2 + g2)3
2 4
P— x a a
fxz\/xg + g2 dx = 1 Jx2 + a?)Pd F Ex\/x2 o id = gln (x + Jx2 = a?

sinx dx = —cosx

cos x dx = sin x

=
a,
=
Il
DO | =
—

sin 2x

2 d=£
COs™ X ax 2 1

_ — —_— L —
&
(]
8
Il

sin? x

2

Jsinxcosxdx =

J sinh x dx = cosh x
J cosh x dx = sinh x
J‘ tanh x dx = In cosh x

jlnxdx =xlnx — x
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X

¢
Je“‘” dx = —

a

ea:r
J‘xe""" dx = == {ag — 1)
a

e™(a sin px — p cos px)

a2+p2

j €™ sin px dx

e™(a cos px + p sin px)

™ cos px dx =

4 + g2 \2
sin x dx = —CO;JC (2 + sin®x)
cos® x dx = 51r31x (2 + cos? x)

cos xdx = sinx — §sin®x + Lsin®x

= ginx — xcosx

=
2
=]
=
oy
|

xcosxdx = cosx + xsinx

x®sinxdx = 2xsinx — (x2 — 2) cosx

x2cosxdr = 2xcosx + (x2 — 2)sinx

( 273/2
(@)
dx
U
Radius of 4 d®
curvature 2, @ V3 3/2
de) "
Pra =
A 3B C r dr
\ do de?
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a2+p2
(v APRCEN ) e 22 z 2
e sin®x dx = 3 |@sin®x — sin 2x + —
4 + a a
ax 2 e” 2 : 2
e™ cos® x dx = 5 |@cos®x + sin 2¢x + —
4 +a a

e a
e™ sin x cos x dx = — sin 2x — cos 2x
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C/11 NEeEwToN’s METHOD FOR SOLVING
INTRACTABLE EQUATIONS

Frequently, the application of the fundamental principles of me-
chanics leads to an algebraic or transcendental equation which is not
solvable (or easily solvable) in closed form. In such cases, an iterative
technique, such as Newton’s method, can be a powerful tool for obtain-
ing a good estimate to the root or roots of the equation.

Let us place the equation to be solved in the form f(x) = 0. Part a
of the accompanying figure depicts an arbitrary function f(x) for values
of x in the vicinity of the desired root x,. Note that x,. is merely the value

flx)

fix)

: Tangent to

| flx)atx =y
\
\

T Xy Xy

(a) (b)

of x at which the function crosses the x-axis. Suppose that we have avail-
able (perhaps via a hand-drawn plot) a rough estimate x; of this root.
Provided that x; does not closely correspond to a maximum or minimum
value of the function f(x), we may obtain a better estimate of the root
x, by extending the tangent to f(x) at x; so that it intersects the x-axis
at xo. From the geometry of the figure, we may write

flxy)

tan 8 = f'(xy) =
Jilxy 5 —

where f'(x;) denotes the derivative of f(x) with respect to x evaluated
at x = x,. Solving the above equation for x, results in

Xg = X1 —

The term —f(x,)/f"(x,) is the correction to the initial root estimate x;.
Once x, is calculated, we may repeat the process to obtain x5, and so
forth.

Thus, we generalize the above equation to

f(xk)
X = X3 —
k+1 k f,{xl.v-)
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where

Xp.1 = the (R + 1)th estimate of the desired root x,.

%, = the kth estimate of the desired root x,.
flxy) = the function f(x) evaluated at x = x,
f'(x) = the function derivative evaluated atx = x;,

This equation is repeatedly applied until f(x,.;) is sufficiently close to
zero and x,.1 = x;. The student should verify that the equation is valid
for all possible sign combinations of x,, f(x;), and f'(x,).

Several cautionary notes are in order:

1. Clearly, f'(x;) must not be zero or close to zero. This would mean,
as restricted above, that x; exactly or approximately corresponds to
a minimum or maximum of f(x). If the slope f'(x;) is zero, then the
tangent to the curve never intersects the x-axis. If the slope f'(x;)
is small, then the correction to x;, may be so large that x;,; is a
worse root estimate than x;,. For this reason, experienced engineers
usually limit the size of the correction term; that is, if the absolute
value of f(x;)/f'(x;) is larger than a preselected maximum value,
that maximum value is used.

2. If there are several roots of the equation f(x) = 0, we must be in
the vicinity of the desired root x,. in order that the algorithm actually
converges to that root. Part b of the figure depicts the condition
when the initial estimate x; will result in convergence to x,, rather
than x,. .

3. Oscillation from one side of the root to the other can occur if, for
example, the function is antisymmetric about a root which is an
inflection point. The use of one-half of the correction will usually
prevent this behavior, which is depicted in part ¢ of the accompa-

nying figure.

Example: Beginning with an initial estimate of x; = 5, estimate the
single root of the equation ¢* — 10 cos x — 100 = 0.

The table below summarizes the application of Newton’s method to
the given equation. The iterative process was terminated when the ab-
solute value of the correction —f(x;)/f'(x;) became less than 1075.

k x Flay) ) s e g 1 J{(éi))
1 5.000 000 45.576 537 138.823 916 -0.328 305
2 4.671 695 7.285 610 96.887 065 —-0.075 197
3 4.596 498 0.292 886 89.203 650 —0.003 283
4 4.593 215 0.000 527 88.882 536 —0.000 006
5 4.593 209 —-2(10°8) 88.881 956 2.25(10°19)
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C/12 SELECTED TECHNIQUES FOR
NUMERICAL INTEGRATION

1. Area determination. Consider the problem of determining the
shaded area under the curve y = f(x) fromx = a tox = b, as depicted
in part a of the figure, and suppose that analytical integration is not
feasible. The function may be known in tabular form from experimental
measurements or it may be known in analytical form. The function is
taken to be continuous within the interval ¢ < x < b. We may divide
the area into n vertical strips, each of width Ax = (b — a)/n, and then
add the areas of all strips to obtain A = [ y dx. A representative strip
of area A; is shown with darker shading in the figure. Three useful nu-
merical approximations are cited. In each case the greater the number
of strips, the more accurate becomes the approximation geometrically.
As a general rule, one can begin with a relatively small number of strips
and increase the number until the resulting changes in the area ap-
proximation no longer improve the desired accuracy.

(a)

Rectangular

Ai:ymax
Yi+l Ym A:f_y de):ymﬂx

I. Rectangular [Figure (b)] The areas of the strips are taken to be
rectangles, as shown by the representative strip whose height y,, is cho-
sen visually so that the small cross-hatched areas are as nearly equal as
possible. Thus, we form the sum Xy, of the effective heights and mul-
tiply by Ax. For a function known in analytical form, a value for y,,
equal to that of the function at the midpoint x; + Ax/2 may be calcu-
lated and used in the summation.

II. Trapezoidal [Figure (¢)] The areas of the strips are taken to be
trapezoids, as shown by the representative strip. The area A; is the av-
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erage height (y; + y;.1)/2 times Ax. Adding the areas gives the area
approximation as tabulated. For the example with the curvature shown,
clearly the approximation will be on the low side. For the reverse cur-
vature, the approximation will be on the high side.

. Trapezoidal

YitYise1
A= Ax
! 2
, y
A=,[-de§ %04'3’1"'3'2'*' +",”71+*21 Ax
Yis1

Parabolic

AA= %U’i +4Y; 1Y)

1
A= ydr=—=—(yy+4y, + 2y, + 4y, + 2y,
Yiea fJ’ 3 Yo+ &y +ays+ayg+ 24y,
+o 4 2y, o+ 4y, _1+y)Ax

(d)

ITI. Parabolic [Figure (d)] The area between the chord and the
curve (neglected in the trapezoidal solution) may be accounted for hy
approximating the function by a parabola passing through the points
defined by three successive values of y. This area may be calculated from
the geometry of the parabola and added to the trapezoidal area of the
pair of strips to give the area AA of the pair as cited. Adding all of the
AA’s produces the tabulation shown, which is known as Simpson’s rule.
To use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve y = x 1 + x2 from
x = 0tox = 2. (An integrable function is chosen here so that the three
approximations can be compared with the exact value, which is A =
Jex V1 + 22dx = 32 + %% = 15/5 - 1) = 3.393 447))

AREA APPROXIMATIONS
NUMBER OF
SUBINTERVALS RECTANGULAR TRAPEZOIDAL PARABOLIC
4 3.361 704 3.456 731 3.392 214
10 3.388 399 3.403 536 3.393 420
50 3.393 245 3.393 850 3.393 447
100 3.393 396 3.393 547 3.393 447
1000 3.393 446 3.393 448 3.393 447
2500 3.393 447 3.393 447 3.393 447
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Note that the worst approximation error is less than 2 percent, even
with only four strips.

2. Integration of first-order ordinary differential equations. The
application of the fundamental principles of mechanics frequently re-
sults in differential relationships. Let us consider the first-order form
dy/di = f(t), where the function f(#) may not be readily integrable or
may be known only in tabular form. We may numerically integrate by
means of a simple slope-projection technique, known as Euler integra-
tion, which is illustrated in the figure.

Slope dy

= 2
di fe) y(t) I
yit) > L
Slope = f(t3) -

§ | Accumulated
l algorithmic
error

Y4

— > ete.

4 ty ts ty

Beginning at ¢;, at which the value y, is known, we project the slope
over a horizontal subinterval or step (¢; — ¢;) and see that yo = y; +
flt)(ty — ). At 5, the process may be repeated beginning at y,, and
so forth until the desired value of ¢ is reached. Hence, the general ex-
pression is

Yee1 = Y+ @G — )

If y versus t were linear, i.e., if f(¢#) were constant, the method would
be exact, and there would be no need for a numerical approach in that
case. Changes in the slope over the subinterval introduce error. For the
case shown in the figure, the estimate y, is clearly less than the true
value of the function y(#) at ¢5. More accurate integration techniques
(such as Runge-Kutta methods) take into account changes in the slope
over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in
the selection of a subinterval or step size when dealing with analytical
functions. As a rough rule, one begins with a relatively large step size
and then steadily decreases the step size until the corresponding changes
in the integrated result are much smaller than the desired accuracy. A
step size which is too small, however, can result in increased error due
to a very large number of computer operations. This type of error is
generally known as “‘round-off error,” while the error which results
from a large step size is known as algorithm error.
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Example: For the differential equation dy/dt = 5t with the initial con-
dition y = 2 when ¢ = 0, determine the value of y for ¢ = 4.
Application of the Euler integration technique yields the following

results:
NUMBER OF
SUBINTERVALS STEP SIZE yatt = 4 PERCENT ERROR
10 0.4 38 9.5
100 0.04 41.6 0.95
500 0.008 41.92 0.19
1000 0.004 41.96 0.10

This simple example may be integrated analytically. The result is y =
42 (exactly).
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