CH5: Permutation Groups - Problem
Session
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Question 2: Consider the permutations

/1 2 3 45 6 7 8
“~\2 345 1 7 8 6

and
g_(1 2345678
~\1 3 8§ 6 5 2 4

Express a, B8, and a8 as products of disjoint cycles and as products of 2-cycles.

~
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Solution: Finding « in cycle notation:

e 1—+2—3—4— 95— 1 (gives us a 5-cycle)
e 6 —-7—38

> 0 (gives us a 3-cycle)

Disjoint cycle form:| o = (12345)(678)

As a product of 2-cycles: Using the formula

(a1as...a,) = (a1a,)(a1a,_1) - - - (aq1a9):

. (12345) = (15)(14)(13)(12)
. (678) = (68)(67)

o = (15)(14)(13)(12)(68)(67)




Finding B in cycle notation: 8

« 1 — 1 (fixed point)
e 253 —>8—>4—7T— 2(gives us a 5-cycle)

« 5 — 6 — 9 (gives us a 2-cycle)

Disjoint cycle form:| 3 = (23847)(56)

As a product of 2-cycles:

. (23847) = (27)(24)(28)(23)
- (56) = (56)

B = (27)(24)(28)(23)(56)

|
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Finding af in cycle notation: Compute the composition (a3)(xz) = a(8(x)) Apply 3
first, then ac: a8 = (12345)(678)(23 84 7)(5 6)

Tracethecycle:l] -2 -4 -8 —>5—>7T—-3—>6—1

Disjoint cycle form:| a3 = (12485736)

As a product of 2-cycles: (12485736) = (16)(13)(17)(15)(18)(14)(12)

af = (16)(13)(17)(15)(18)(14)(12)
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Question3: Write each of the following permutations as a product of disjoint cycles.

a. (1235)(413)
b. (13256)(23)(46512)
c. (12)(13)(23)(142)

Kolution: Part a: (1235)(413) Answer: (1235)(413) = (15)(234)
Part b: (13256)(23)(46512) Answer: (13256)(23)(46512) = (124)(35)
Part c: (12)(13)(23)(142) Answer: (12)(13)(23)(142) = (1423)
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Question4: Find the order of each of the following permutations.
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Solution: Part a: (14). This is a 2-cycle (transposition)
+ (14)* = ¢ (identity). Order =
: (147). This is a 3-cycle
. (147)% = (174), (147)° = €. Order = 3
Part c: (14762) This is a 5-cycle. Order =
3

aias . .. a,k). This is a k-cycle. After k applications, each element returns to its
original position. Order = k
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Question5: What is the order of each of the following permutations?
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Solution: Theorem: For disjoint cycles, order = lcm(lengths of individual cycles)

Part a:

124)(357). Lengths: 3 and 3. Order = lem(3,3) = 3
)

(124)(
: (124)(3567). Lengths: 3 and 4. Order = lcm(3,4) = 12
Part c: (124)(35). Lengths: 3 and 2. Order = lcm(3,2) = 6
: (124)(357869). Lengths: 3 and 6. Order = lcm(3,6) = 6
(1235)

Part e: (1235 (24567). These cycles are NOT disjoint (share element 2). Must compute
(1235)(24567) in disjoint form first. Disjoint form: (123 6 5 7 4). Order = 7

Part f: (345)(245). NOT disjoint (share 4 and 5). (345)(245) = (2453). Order = 4.
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Question7: What is the order of the product of a pair of disjoint cycles of lengths 4 and 67
What about the product of three disjoint cycles of lengths 6, 8, and 107

Solution: Part 1: Disjoint cycles of lengths 4 and 6. Order = lcm(4, 6) — |12

Part 2: Three disjoint cycles of lengths 6, 8, and 10. Order = lcm(6, 8, 10). Prime
factorizations: 6 =2 x 3,8 = 2%, 10 =2 x 5.lem = 2° x 3 x 5 =120

Key Principle: For disjoint cycles, the order of their product equals the least common
multiple of their individual lengths.
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Question8: Determine whether the following permutations are even or odd.

(12)(134)(152)
(1243)(3521)

Solution: Theorem: An m-cycle can be written as a product of (n — 1) transpositions.

« Odd-length cycles — even permutations

« Even-length cycles — odd permutations
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Part a: (135). Length 3 (odd) — 3 — 1 = 2 transpositions. Even permutation
Part b: (1356). Length 4 (even) - 4 — 1 = 3 transpositions. Odd permutation
Part c: (13567). Length 5 (odd) - 5 — 1 = 4 transpositions. Even permutation

Part d: (12)(134)(152). (12) - 1 transposition (odd), (134) — 2 transpositions (even),
(152) — 2 transpositions (even). Total: 1 4+ 2 4+ 2 = 5 transpositions. Odd permutation

Part e: (1243)(3521). (1243) - 3 transpositions (odd), (3521) — 3 transpositions (odd),

Total: 3 + 3 = 6 transpositions. Even permutation
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Question9: Write ((14562)(2345)(136)(235))' as a product of disjoint cycles.

Solution:

((14562)(2345)(136)(235))" = ((153)(46))™ = (153)'°(46)* = (153).

10/13/2025 Fahd Alshammari - math 343 14



Question10: Write (13)(1245)(13) and (24)(13456)(24) in disjoint cycle form. Give a

simple description of how each product cycle compares with middle cycle in each product.
Solution: (13)(1245)(13) = (3245); (24)(13456)(24) = (13256).

In general, for any cycle a we have (ij)a(%7) is the same as o with 7 replaced by j.
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Question11: Let n be a positive integer. If 1 is odd, is an n-cycle an odd or an even

permutation? If n is even, is an n-cycle an odd or an even permutation?
Solution: An n-cycle can be expressed as (n — 1) transpositions:

+ (ar1asas...a,) = (a1a,)(a1a,-1) - - - (a1a3)(aras)

Case 1: n is odd. Number of transpositions = n — 1 = even number. An n-cycle is an

EVEN permutation.

Case 2: n is even. Number of transpositions = n — 1 = odd number. An n-cycle is an

ODD permutation.

Summary: An n-cycle has the opposite parity of n itself.
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Question12: If «x is even, prove that a iseven. If ais odd, prove that a s odd.
Proof: Suppose a can be written as a product of k transpositions: o« = 779 * - - T, where
each 7; Is a transposition (2-cycle).

Key fact: Each transposition is self-inverse: 'Tf = g, SO Tz-_l = T;

. : ~1 ~1 ~1 ~1_—1
Taking the inverse: a ~ = (1172« -+ Tk) = T Ty Ty — Tk ToTi

This shows o ! is also a product of k transpositions (the same ones, in reverse order).

Conclusion: & and & * have the same parity.
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Question15: Let o and 3 belong to \S,,. Prove that af is even if and only if a and (3 are
both even or both odd.

Proof: Let a be a product of k transpositions and 3 be a product of m transpositions. Then
af is a product of £ + m transpositions.

Case 1: « and [ are both even. k is even, m is even. k + m is even. a3 is even v

Case 2: v and 3 are both odd. k is odd, m is odd. k + m is even (odd + odd = even). a3
is even v

Case 3: a is even and 3 is odd (or vice versa). One of k, m is even, the other is odd. kK + m
is odd (even + odd = odd). af is odd X

Conclusion: a3 is even <= « and (8 have the same parity (both even or both odd) [

Analogy: This is like multiplication of £1:

« (+1)(+1) = +1 (even x even = even)
« (=1)(—1) = +1 (odd x odd = even)
1013 s (41)(—1) = —1 (even x odd = odd) b



Question17: If . is any integer and « is odd, complete the following statement: & is odd if
and only if .

Solution: Suppose « is a product of k transpositions, where k is odd. Then a" is a product
of nk transpositions. For " to be odd:

« nk must be odd.
« Since k is odd, we need nk to be odd.

 This happens if and only if 12 is odd.
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Question19: Let v and 8 belong to S),,. Prove that a_5,8a3 is odd if and only if £ is odd.

Proof:

Step 1: Analyze the parity of Cc_5,8a3. Using properties of parity: o ° has the same parity
as a’. o is odd (ff o’ is odd (ff o is odd

Step 2: Apply the product rule. a_55a3 has parity determined by the number of odd
factors:

D 3

Case 1: v iseven. @ ° is even, &” Is even. Parity of a_5ﬂa3 = parity of (even)(3)(even) =
parity of 8. a °Ba’ is odd <= B is odd v

Case 2: v is odd. o ° is odd, a® is odd. Parity of o:_55a3 = parity of (odd)(3)(odd).
a °Ba’ is odd <= fis odd v

Key insight: Conjugation preserves parity!



Question24: Find an element in Ag of order 15. Find an element in A19 of order 30.
Solution:

« Strategy: Order of disjoint cycles = lcm of cycle lengths
 Need even permutation (in A,,)

« Odd-length cycles are even permutations

Part 1: Element of order 15 in Ag. 15 = 3 x 5 = lem(3, 5). Use a 3-cycle and a 5-cycle
(disjoint), Both are even permutations (odd lengths). Answer: o = (123)(45678).
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Part 2: Element of order 30in A15.30 =2 x 3 x 5 =lecm(2,3,5) = lem(5, 6)

« Need product of disjoint cycles with lcm = 30

« Must be even permutation

Issue: Single 2-cycle is odd; need multiple even factors. Solution using lem(5, 3, 2, 2) = 30:

8 = (12345)(678)(9 10)(11 12).
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Question25: let 3 = (13579 86)(2 4 10). What is the smallest positive integer n for
which B = B °7

Solution: |3] = lem(7,3) = 21.BThm, 8" = B " iffn = —5 (mod 21). So
n =16 (mod 21).Son = 16 is the smallest such n.
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Question26: What cycle is (a1a2 e an)_l?
Solution: Determine where each element maps under the inverse.

« Forward cycle: (alag - a,n).

 |Inverse must reverse these:

(a1as...a,) "' = (apan_i...a2a1) | = (@1GnGn_1 - .. a2)

Alternative notation: Reverse the order of elements in the cycle.

Examples: (12345) ' = (54321) = (15432). (abc) ' = (cba) = (ach)
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Question27: Show that if H is a subgroup of S,,, then either every member of H is an even
permutation or exactly half of the members are even.

Proof: Let H be a subgroup of S,,. If all of H are even permutations. Then we're done.
Suppose H contains at least one odd permutation, say a.

Define: E = {8 € H | 3 is even} (the even permutations in H). Claim: |E| = |H|/2.
Proof of claim: Define ¢ : E — H \ E by ¢(8) = af

¢ is well-defined: If 3 € E (even), then a3 is odd (odd x even = odd). Soaf8 € H \ E .
¢ is injective: If a8y = afs, multiply left by & : B = B

¢ is surjective: Lety € H \ E (v is odd). Then a_lfy Is even (odd x odd = even). So
a 'y € Eand d(a 'y) = ala 'y) = 7.

Conclusion: ¢ is a bijection, so |E| — |H \ E| Therefore |E| — |H|/2




Question29: Give two reasons why the set of odd permutations in .S,, is not a subgroup.
Solution: Let O = {a € S,, | ais odd } be the set of odd permutations.

Reason 1: Not closed under composition: Let ar, 8 € O (both odd). Then a3 has parity:
odd x odd = even. So a8 ¢ O.

Reason 2: Does not contain the identity: The identity permutation € is even. € € 0.
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Question34: Let H = {z” | £ € A4}. Prove that H is not a subgroup of Ay.

Solution: A4 is given by
{e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

By direct computations of H = {:1:2 | T c A4}:

- 2 = ¢ (123)% = (132), (132)? = (123), (124)? = (142), etc.
- [(12)(34)]° = [(13)(24)]* = [(14)(23)]* = ¢

so H = {e, (123), (132), (124), (142), (134), (143), (234), (243)}

Note that (123)(124) — (13)(24) ¢ H . Therefore H is not closed, so it is not a
subgroup. [
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Question42: If o and 3 are distinct 2-cycles, what are the possibilities for |a/3|?

Solution: If & and 3 are disjoint, then |a3| = lem(2,2) = 2. If & and 3 have exactly
one symbol in common we can write &« = (ab) and 8 = (ac). Then

aff = (ab)(ac) = (acd) and |af| = 3.
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Question51: Prove that \S,, is non-Abelian for all n > 3. Prove that A4,, is non-Abelian for
allm > 4.

Solution:

S, is non-Abelian for n > 3:

+ Note (12),(23) € S,,. (12)(23) = (123), but (23)(12) = (132).
A,, is non-Abelian for n > 4:

. Note (123), (124) € A,. (123)(124) = (13)(24), but (124)(123) = (14)(23).
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Question55: In Sy, find a cyclic subgroup of order 4 and a noncyclic subgroup of order 4.

Solution: Part 1: For a cyclic subgroup of order 4, need an element of order 4 in Sy 4-
cycles have order 4. Let a« = (1234) and our subgroup is given by ((1234)).

Part 2: Noncyclic subgroup of order 4, need a 4-element subgroup without an element of
order 4. Consider H = {¢, (12)(34), (13)(24), (14)(23)}. Check it's a subgroup:
« Contains € Vv
 Closure:
. (12)(34) - (13)(24) = (14)(23) v
. (12)(34) - (14)(23) = (13)(24) v
. (13)(24) - (14)(23) = (12)(34) v
» Each element squared is € Vv
* Inverses: Each element is its own inverse v

Check it's noncyclic: Every non-identity element has order 2. So no element of order 4.
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