CH5: Permutation Groups - Problem Session

Question 2: Consider the permutations

$$lpha = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{pmatrix}$$

and

$$eta = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}$$

Express α , β , and $\alpha\beta$ as products of disjoint cycles and as products of 2-cycles.

Solution: Finding α in cycle notation:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{pmatrix}$$

- 1
 ightarrow 2
 ightarrow 3
 ightarrow 4
 ightarrow 5
 ightarrow 1 (gives us a 5-cycle)
- 6
 ightarrow 7
 ightarrow 8
 ightarrow 6 (gives us a 3-cycle)

Disjoint cycle form: lpha=(12345)(678)

As a product of 2-cycles: Using the formula $(a_1a_2\ldots a_n)=(a_1a_n)(a_1a_{n-1})\cdots (a_1a_2)$:

- (12345) = (15)(14)(13)(12)
- (678) = (68)(67)

$$\alpha = (15)(14)(13)(12)(68)(67)$$

Finding β in cycle notation:

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}$$

- $1 \rightarrow 1$ (fixed point)
- $2 \rightarrow 3 \rightarrow 8 \rightarrow 4 \rightarrow 7 \rightarrow 2$ (gives us a 5-cycle)
- $5 \rightarrow 6 \rightarrow 5$ (gives us a 2-cycle)

Disjoint cycle form:
$$eta=(23847)(56)$$

As a product of 2-cycles:

- (23847) = (27)(24)(28)(23)
- (56) = (56)

$$\beta = (27)(24)(28)(23)(56)$$

Finding $\alpha\beta$ in cycle notation: Compute the composition $(\alpha\beta)(x)=\alpha(\beta(x))$ Apply β first, then α : $\alpha\beta=(12345)(678)(2\ 3\ 8\ 4\ 7)(5\ 6)$

Trace the cycle: 1 o 2 o 4 o 8 o 5 o 7 o 3 o 6 o 1

Disjoint cycle form: $\alpha \beta = (12485736)$

As a product of 2-cycles: (12485736) = (16)(13)(17)(15)(18)(14)(12)

$$\alpha\beta = (16)(13)(17)(15)(18)(14)(12)$$

Question3: Write each of the following permutations as a product of disjoint cycles.

- a. (1235)(413)
- b. (13256)(23)(46512)
- c. (12)(13)(23)(142)

Solution: Part a: (1235)(413) Answer: (1235)(413) = (15)(234)

Part b: (13256)(23)(46512) Answer: (13256)(23)(46512) = (124)(35)

Part c: (12)(13)(23)(142) Answer: (12)(13)(23)(142) = (1423)

Question4: Find the order of each of the following permutations.

a. (14)

b. (147)

c. (14762)

d. $(a_1a_2\ldots a_k)$

Solution: Part a: (14). This is a 2-cycle (transposition)

• $(14)^2 = \varepsilon$ (identity). Order = 2

Part b: (147). This is a 3-cycle

• $(147)^2 = (174)$, $(147)^3 = \varepsilon$. Order = 3

Part c: (14762) This is a 5-cycle. **Order = 5**

Part d: $(a_1a_2...a_k)$. This is a k-cycle. After k applications, each element returns to its original position. **Order** = k

Question5: What is the order of each of the following permutations?

- a. (124)(357)
- b. (124)(3567)
- c. (124)(35)
- d. (124)(357869)
- e. (1235)(24567)
- f. (345)(245)

Solution: Theorem: For disjoint cycles, order = lcm(lengths of individual cycles)

Part a: (124)(357). Lengths: 3 and 3. Order = $\mathrm{lcm}(3,3)=3$

Part b: (124)(3567). Lengths: 3 and 4. Order = $\mathrm{lcm}(3,4)=12$

Part c: (124)(35). Lengths: 3 and 2. Order = $\operatorname{lcm}(3,2)=6$

Part d: (124)(357869). Lengths: 3 and 6. Order = $\mathrm{lcm}(3,6)=6$

Part e: (1235)(24567). These cycles are NOT disjoint (share element 2). Must compute (1235)(24567) in disjoint form first. Disjoint form: $(1\ 2\ 3\ 6\ 5\ 7\ 4)$. Order = 7

Part f: (345)(245). NOT disjoint (share 4 and 5). (345)(245) = (2453). Order = 4.

Question7: What is the order of the product of a pair of disjoint cycles of lengths 4 and 6? What about the product of three disjoint cycles of lengths 6, 8, and 10?

Solution: Part 1: Disjoint cycles of lengths 4 and 6. Order = ${
m lcm}(4,6)=12$

Part 2: Three disjoint cycles of lengths 6, 8, and 10. Order = lcm(6, 8, 10). Prime factorizations: $6 - 2 \times 2 \times 2 \times 2 \times 5 = 120$

factorizations: 6=2 imes3, $8=2^3$, 10=2 imes5. 1cm $=2^3 imes3 imes5=120$

Key Principle: For disjoint cycles, the order of their product equals the least common multiple of their individual lengths.

Question8: Determine whether the following permutations are even or odd.

- a. (135)
- b. (1356)
- c. (13567)
- d. (12)(134)(152)
- e. (1243)(3521)

Solution: Theorem: An n-cycle can be written as a product of (n-1) transpositions.

- Odd-length cycles → even permutations
- Even-length cycles → odd permutations

Part a: (135). Length 3 (odd) $\rightarrow 3-1=2$ transpositions. Even permutation

Part b: (1356). Length 4 (even) $\rightarrow 4-1=3$ transpositions. Odd permutation

Part c: (13567). Length 5 (odd) $\rightarrow 5-1=4$ transpositions. Even permutation

Part d: (12)(134)(152). $(12) \rightarrow$ 1 transposition (odd), $(134) \rightarrow$ 2 transpositions (even), $(152) \rightarrow$ 2 transpositions (even). Total: 1+2+2=5 transpositions. Odd permutation

Part e: (1243)(3521). $(1243) \rightarrow 3$ transpositions (odd), $(3521) \rightarrow 3$ transpositions (odd), Total: 3+3=6 transpositions. Even permutation

Question9: Write $((14562)(2345)(136)(235))^{10}$ as a product of disjoint cycles.

Solution:

$$((14562)(2345)(136)(235))^{10} = ((153)(46))^{10} = (153)^{10}(46)^{10} = (153).$$

Question10: Write (13)(1245)(13) and (24)(13456)(24) in disjoint cycle form. Give a simple description of how each product cycle compares with middle cycle in each product.

Solution: (13)(1245)(13) = (3245); (24)(13456)(24) = (13256).

In general, for any cycle a we have $(ij)\alpha(ij)$ is the same as α with i replaced by j.

Question11: Let n be a positive integer. If n is odd, is an n-cycle an odd or an even permutation? If n is even, is an n-cycle an odd or an even permutation?

Solution: An n-cycle can be expressed as (n-1) transpositions:

•
$$(a_1a_2a_3\ldots a_n)=(a_1a_n)(a_1a_{n-1})\cdots(a_1a_3)(a_1a_2)$$

Case 1: n is odd. Number of transpositions = n - 1 = even number. An n-cycle is an EVEN permutation.

Case 2: n is even. Number of transpositions = n-1 = odd number. An n-cycle is an ODD permutation.

Summary: An n-cycle has the opposite parity of n itself.

Question12: If α is even, prove that α^{-1} is even. If α is odd, prove that α^{-1} is odd.

Proof: Suppose α can be written as a product of k transpositions: $\alpha = \tau_1 \tau_2 \cdots \tau_k$, where each τ_i is a transposition (2-cycle).

Key fact: Each transposition is self-inverse: $au_i^2=arepsilon$, so $au_i^{-1}= au_i$

Taking the inverse: $\alpha^{-1} = (\tau_1 \tau_2 \cdots \tau_k)^{-1} = \tau_k^{-1} \cdots \tau_2^{-1} \tau_1^{-1} = \tau_k \cdots \tau_2 \tau_1$

This shows α^{-1} is also a product of k transpositions (the same ones, in reverse order).

Conclusion: α and α^{-1} have the same parity. \square

Question15: Let α and β belong to S_n . Prove that $\alpha\beta$ is even if and only if α and β are both even or both odd.

Proof: Let α be a product of k transpositions and β be a product of m transpositions. Then $\alpha\beta$ is a product of k+m transpositions.

Case 1: lpha and eta are both even. k is even, m is even. k+m is even. lphaeta is even \checkmark

Case 2: α and β are both odd. k is odd, m is odd. k+m is even (odd + odd = even). $\alpha\beta$ is even \checkmark

Case 3: α is even and β is odd (or vice versa). One of k, m is even, the other is odd. k+m is odd (even + odd = odd). $\alpha\beta$ is odd X

Conclusion: $\alpha\beta$ is even $\Longleftrightarrow \alpha$ and β have the same parity (both even or both odd) \square

Analogy: This is like multiplication of ± 1 :

- (+1)(+1) = +1 (even × even = even)
- (-1)(-1) = +1 (odd × odd = even)

$$_{10/13}$$
 • $(+1)(-1) = -1$ (even × odd = odd)

Question17: If n is any integer and α is odd, complete the following statement: α^n is odd if and only if _____.

Solution: Suppose α is a product of k transpositions, where k is odd. Then α^n is a product of nk transpositions. For α^n to be odd:

- nk must be odd.
- Since k is odd, we need nk to be odd.
- This happens if and only if n is odd.

Question19: Let α and β belong to S_n . Prove that $\alpha^{-5}\beta\alpha^3$ is odd if and only if β is odd.

Proof:

Step 1: Analyze the parity of $\alpha^{-5}\beta\alpha^3$. Using properties of parity: α^{-5} has the same parity as α^5 . α is odd iff α^5 is odd iff α^3 is odd

Step 2: Apply the product rule. $\alpha^{-5}\beta\alpha^3$ has parity determined by the number of odd factors:

Case 1: α is even. α^{-5} is even, α^3 is even. Parity of $\alpha^{-5}\beta\alpha^3$ = parity of (even)(β)(even) = parity of β . $\alpha^{-5}\beta\alpha^3$ is odd $\iff \beta$ is odd \checkmark

Case 2: α is odd. α^{-5} is odd, α^3 is odd. Parity of $\alpha^{-5}\beta\alpha^3$ = parity of (odd)(β)(odd). $\alpha^{-5}\beta\alpha^3$ is odd $\iff \beta$ is odd \checkmark

Key insight: Conjugation preserves parity!

Question24: Find an element in A_8 of order 15. Find an element in A_{12} of order 30.

Solution:

- **Strategy:** Order of disjoint cycles = lcm of cycle lengths
- Need even permutation (in A_n)
- Odd-length cycles are even permutations

Part 1: Element of order 15 in A_8 . $15=3\times 5={
m lcm}(3,5)$. Use a 3-cycle and a 5-cycle (disjoint), Both are even permutations (odd lengths). Answer: $\alpha=(123)(45678)$.

Part 2: Element of order 30 in A_{12} . $30=2 imes3 imes5=\mathrm{lcm}(2,3,5)=\mathrm{lcm}(5,6)$

- Need product of disjoint cycles with lcm = 30
- Must be even permutation

Issue: Single 2-cycle is odd; need multiple even factors. Solution using lcm(5, 3, 2, 2) = 30: $\beta = (12345)(678)(9\ 10)(11\ 12)$.

Question25: Let $\beta=(1\ 3\ 5\ 7\ 9\ 8\ 6)(2\ 4\ 10)$. What is the smallest positive integer n for which $\beta^n=\beta^{-5}$?

Solution: $|eta|=\mathrm{lcm}(7,3)=21$. B Thm, $eta^n=eta^{-5}$ iff $n\equiv -5\pmod{21}$. So $n\equiv 16\pmod{21}$. So $n\equiv 16\pmod{21}$. So $n\equiv 16\pmod{21}$.

Question26: What cycle is $(a_1a_2 \dots a_n)^{-1}$?

Solution: Determine where each element maps under the inverse.

- Forward cycle: $(a_1a_2\ldots a_n)$.
- Inverse must reverse these:

$$(a_1a_2\dots a_n)^{-1}=\Big|(a_na_{n-1}\dots a_2a_1)\Big|=(a_1a_na_{n-1}\dots a_2)$$

Alternative notation: Reverse the order of elements in the cycle.

Examples:
$$(12345)^{-1} = (54321) = (15432)$$
. $(abc)^{-1} = (cba) = (acb)$

Question27: Show that if H is a subgroup of S_n , then either every member of H is an even permutation or exactly half of the members are even.

Proof: Let H be a subgroup of S_n . If all of H are even permutations. Then we're done. Suppose H contains at least one odd permutation, say α .

Define: $E = \{ \beta \in H \mid \beta \text{ is even} \}$ (the even permutations in H). Claim: |E| = |H|/2.

Proof of claim: Define $\phi:E o H\setminus E$ by $\phi(eta)=lphaeta$

 ϕ is well-defined: If $eta\in E$ (even), then lphaeta is odd (odd imes even = odd). So $lphaeta\in H\setminus E$.

 ϕ is injective: If $lphaeta_1=lphaeta_2$, multiply left by $lpha^{-1}$: $eta_1=eta_2$

 ϕ is surjective: Let $\gamma \in H \setminus E$ (γ is odd). Then $\alpha^{-1}\gamma$ is even (odd \times odd = even). So $\alpha^{-1}\gamma \in E$ and $\phi(\alpha^{-1}\gamma) = \alpha(\alpha^{-1}\gamma) = \gamma$.

Conclusion: ϕ is a bijection, so $|E|=|H\setminus E|$. Therefore |E|=|H|/2 \square

Question29: Give two reasons why the set of odd permutations in S_n is not a subgroup.

Solution: Let $O = \{ \alpha \in S_n \mid \alpha \text{ is odd} \}$ be the set of odd permutations.

Reason 1: Not closed under composition: Let $\alpha, \beta \in O$ (both odd). Then $\alpha\beta$ has parity: odd \times odd = even. So $\alpha\beta \notin O$.

Reason 2: Does not contain the identity: The identity permutation ε is even. $\varepsilon \notin O$.

Question34: Let $H=\{x^2\mid x\in A_4\}$. Prove that H is not a subgroup of A_4 .

Solution: A_4 is given by

$$\{\varepsilon, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}$$

By direct computations of $H=\{x^2\mid x\in A_4\}$:

- $\varepsilon^2 = \varepsilon$, $(123)^2 = (132)$, $(132)^2 = (123)$, $(124)^2 = (142)$, etc.
- $[(12)(34)]^2 = [(13)(24)]^2 = [(14)(23)]^2 = \varepsilon$

So
$$H = \{ \varepsilon, (123), (132), (124), (142), (134), (143), (234), (243) \}$$

Note that $(123)(124)=(13)(24)\notin H$. Therefore H is not closed, so it is not a subgroup. \square

Question42: If α and β are distinct 2-cycles, what are the possibilities for $|\alpha\beta|$?

Solution: If α and β are disjoint, then $|\alpha\beta|=\mathrm{lcm}(2,2)=2$. If α and β have exactly one symbol in common we can write $\alpha=(ab)$ and $\beta=(ac)$. Then $\alpha\beta=(ab)(ac)=(acb)$ and $|\alpha\beta|=3$.

Question51: Prove that S_n is non-Abelian for all $n \geq 3$. Prove that A_n is non-Abelian for all $n \geq 4$.

Solution:

 S_n is non-Abelian for $n \geq 3$:

• Note $(12), (23) \in S_n$. (12)(23) = (123), but (23)(12) = (132).

 A_n is non-Abelian for $n \geq 4$:

• Note $(123), (124) \in A_n$. (123)(124) = (13)(24), but (124)(123) = (14)(23).

Question55: In S_4 , find a cyclic subgroup of order 4 and a noncyclic subgroup of order 4.

Solution: Part 1: For a cyclic subgroup of order 4, need an element of order 4 in S_4 4-cycles have order 4. Let $\alpha=(1234)$ and our subgroup is given by $\langle (1234) \rangle$.

Part 2: Noncyclic subgroup of order 4, need a 4-element subgroup without an element of order 4. Consider $H = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$. Check it's a subgroup:

- Contains $\varepsilon \checkmark$
- Closure:

•
$$(12)(34) \cdot (13)(24) = (14)(23) \checkmark$$

•
$$(12)(34) \cdot (14)(23) = (13)(24) \checkmark$$

•
$$(13)(24) \cdot (14)(23) = (12)(34) \checkmark$$

- Each element squared is ε \checkmark
- Inverses: Each element is its own inverse ✓

Check it's noncyclic: Every non-identity element has order 2. So no element of order 4.