CH4: Cyclic Groups Selected Exercise Solutions

Exercise 1: Find all generators of \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} .

Solution: For a cyclic group \mathbb{Z}_n , an element k is a generator if and only if $\gcd(k,n)=1$.

For \mathbb{Z}_6 :

- Elements: $\{0, 1, 2, 3, 4, 5\}$
- Check: $\gcd(1,6)=1$ \(\text{, } $\gcd(2,6)=2$ \(\text{, } $\gcd(3,6)=3$ \(\text{, } $\gcd(4,6)=2$ \(\text{, } $\gcd(5,6)=1$ \(\text{ } \)
- Generators: $\{1,5\}$

For \mathbb{Z}_8 :

- Elements: $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- Check: $\gcd(1,8) = 1 \checkmark$, $\gcd(3,8) = 1 \checkmark$, $\gcd(5,8) = 1 \checkmark$, $\gcd(7,8) = 1 \checkmark$
- Generators: $\{1,3,5,7\}$

For \mathbb{Z}_{20} :

- Elements: $\{0, 1, 2, ..., 19\}$
- Since $20=2^2\cdot 5$, we need elements not divisible by 2 or 5
- Generators: $\{1, 3, 7, 9, 11, 13, 17, 19\}$

Exercise 2: Suppose that $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ are cyclic groups of orders 6, 8, and 20, respectively. Find all generators of $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$.

Solution: If $G=\langle g
angle$ with |g|=n, then g^k generates G if and only if $\gcd(k,n)=1$.

For $\langle a
angle$ with |a|=6: Generators: $\{a^1,a^5\}$

For $\langle b
angle$ with |b|=8: Generators: $\{b^1,b^3,b^5,b^7\}$

For $\langle c
angle$ with |c|=20: Generators: $\{c^1,c^3,c^7,c^9,c^{11},c^{13},c^{17},c^{19}\}$

Exercise 3: List the elements of the subgroups $\langle 20 \rangle$ and $\langle 10 \rangle$ in \mathbb{Z}_{30} . Let a be a group element of order 30. List the elements of the subgroups $\langle a^{20} \rangle$ and $\langle a^{10} \rangle$.

Solution: In \mathbb{Z}_{30} ,

- $\langle 20 \rangle = \{0,20,10\}$ (order 3)
- $\langle 10 \rangle = \{0,10,20\}$ (order 3)

Note: $\langle 20 \rangle = \langle 10 \rangle$ since $\gcd(20,30) = \gcd(10,30) = 10$

For group element a with |a| = 30:

- $\langle a^{20} \rangle = \{e, a^{20}, a^{10}\}$ (order 3)
- $\langle a^{10} \rangle = \{e, a^{10}, a^{20}\}$ (order 3)

Exercise 4: List the elements of the subgroups $\langle 3 \rangle$ and $\langle 15 \rangle$ in \mathbb{Z}_{18} . Let a be a group element of order 18. List the elements of the subgroups $\langle a^3 \rangle$ and $\langle a^{15} \rangle$.

Solution: In \mathbb{Z}_{18} ,

- $\langle 3 \rangle = \{0, 3, 6, 9, 12, 15\}$ (order 6)
- $\langle 15 \rangle = \{0, 15, 12, 9, 6, 3\}$ (order 6)

Note: $\langle 15 \rangle = \langle 3 \rangle$ since $15 \equiv -3 \pmod{18}$

For group element a with |a| = 18:

- $\langle a^3 \rangle = \{e, a^3, a^6, a^9, a^{12}, a^{15} \}$ (order 6)
- $\langle a^{15} \rangle = \{e, a^{15}, a^{12}, a^{9}, a^{6}, a^{3}\}$ (order 6)

Exercise 5: List the elements of the subgroups $\langle 3 \rangle$ and $\langle 7 \rangle$ in U(20).

Solution: $U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$

For $\langle 3 \rangle$:

- $3^1 = 3$, $3^2 = 9$, $3^3 = 27 \equiv 7 \pmod{20}$, $3^4 = 21 \equiv 1 \pmod{20}$
- $\langle 3 \rangle = \{1, 3, 9, 7\}$ (order 4)

For $\langle 7 \rangle$:

- Since $3 \cdot 7 \equiv 1 \pmod{20}$, we have $7 = 3^{-1}$
- $\langle 7 \rangle = \langle 3^{-1} \rangle = \langle 3 \rangle = \{1,7,9,3\}$ (order 4)

Exercise 6: What do Exercises 3, 4, and 5 have in common? Try to make a generalization that includes these three cases.

Solution:

Common Pattern: In each case, $\langle d_1
angle = \langle d_2
angle$ where d_1 and d_2 are related by:

- Either $d_1 \equiv -d_2 \pmod n$, or
- $\gcd(d_1,n)=\gcd(d_2,n)$

General Result: If G is a cyclic group of order n, then $\langle g^a \rangle = \langle g^b \rangle$ if and only if $\gcd(a,n) = \gcd(b,n)$.

Exercise 7: Find an example of a noncyclic group, all of whose proper subgroups are cyclic.

Solution: The Klein 4-group $V_4=\{e,a,b,ab\}$ where $a^2=b^2=e$ and ab=ba.

Verification:

- V_4 is not cyclic (no element has order 4)
- All proper subgroups are: $\{e\}$, $\langle a \rangle = \{e,a\}$, $\langle b \rangle = \{e,b\}$, $\langle ab \rangle = \{e,ab\}$
- Each proper subgroup is cyclic (order 1 or 2)

Exercise 9: How many subgroups does \mathbb{Z}_{20} have? List a generator for each of these subgroups. Suppose that $G=\langle a \rangle$ and |a|=20. How many subgroups does G have? List a generator for each of these subgroups.

Solution: The subgroups of \mathbb{Z}_{20} correspond to divisors of 20: 1, 2, 4, 5, 10, 20. So \mathbb{Z}_{20} has 6 subgroups. **Subgroups and their generators:**

- Order 1: $\langle 0 \rangle = \{0\}$
- Order 2: $\langle 10 \rangle = \{0, 10\}$
- Order 4: $\langle 5 \rangle = \{0, 5, 10, 15\}$
- Order 5: $\langle 4 \rangle = \{0, 4, 8, 12, 16\}$
- Order 10: $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18\}$
- Order 20: $\langle 1 \rangle = \mathbb{Z}_{20}$

For $G=\langle a \rangle$ with |a|=20: G has 6 subgroups with generators $a^{20},a^{10},a^5,a^4,a^2,a^1$ respectively.

Exercise 16: Let a be an element of a group.

- a. Complete the statement: $|a|=|a^2|$ if and only if |a| _____.
- b. Complete the statement: $|a^2|=|a^{12}|$ if and only if _____.

Solution:

Part (a): $|a|=|a^2|$ if and only if |a| is odd.

Proof: Let
$$|a|=n$$
. Then $|a^2|=rac{n}{\gcd(n,2)}$.

- If n is odd, then $\gcd(n,2)=1$, so $|a^2|=n=|a|$
- ullet If n is even, then $\gcd(n,2)=2$, so $|a^2|=rac{n}{2}< n=|a|$

Part (b): $|a^2|=|a^{12}|$ if and only if $\gcd(|a|,10)=\gcd(|a|,2)$.

Proof:
$$|a^k|=rac{|a|}{\gcd(|a|,k)}$$
. So $|a^2|=|a^{12}|$ iff $\gcd(|a|,2)=\gcd(|a|,12)$ iff $\gcd(|a|,10)=\gcd(|a|,2)$.

9/24/2025

Exercise 21: Prove that if G is a group with the property that the square of every element is the identity then G is Abelian.

Proof: Let $a,b \in G$. Since $(ab)^2 = e$, we have: $(ab)^2 = abab = e$. Since $a^2 = b^2 = e$. From abab = e, multiply on the left by a and on the right by b:

$$a(abab)b=aeb$$

 $a^2bab^2=ab$
 $ba=ab$ (since $a^2=b^2=e$)

Therefore, G is abelian.

Exercise 27: If a cyclic group has an element of infinite order, how many elements of finite order does it have?

Solution: If a cyclic group has an element of infinite order, then it has exactly one element of finite order.

Proof: Let $G=\langle a \rangle$ where $|a|=\infty$. The elements of G are $\{a^n:n\in\mathbb{Z}\}$. If a^k has finite order for some $k\neq 0$, then $(a^k)^m=a^{km}=e=a^0$ for some positive integer m.

This means km=0, which implies k=0 or m=0, contradicting our assumption. Hence, only $a^0=e$ has finite order (order 1).

9/24/2025

Exercise 32: For any element a in any group G, prove that $\langle a \rangle$ is a subgroup of C(a) (the centralizer of a).

Proof: We need to show that every element of $\langle a \rangle$ commutes with a. Let $x \in \langle a \rangle$. Then $x=a^k$ for some integer k. We have:

$$xa=a^k\cdot a=a^{k+1}=a\cdot a^k=ax$$

Therefore, x commutes with a, so $x \in C(a)$. Since this holds for all $x \in \langle a \rangle$, we have $\langle a \rangle \subseteq C(a)$.

Exercise 35: Prove that \mathbb{C}^* , the group of nonzero complex numbers under multiplication, has a cyclic subgroup of order n for every positive integer n.

Proof: Consider the nth roots of unity: $\omega_n=e^{2\pi i/n}$. The element ω_n has order n because:

- $(\omega_n)^n = e^{2\pi i} = 1$
- $(\omega_n)^k = e^{2\pi i k/n}
 eq 1$ for 0 < k < n

Therefore, $\langle \omega_n \rangle = \{\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}\}$ is a cyclic subgroup of order n.

9/24/2025

Exercise 43: Show that the group of positive rational numbers under multiplication is not cyclic. Why does this prove that the group of nonzero rationals under multiplication is not cyclic?

Solution: Let \mathbb{Q}^+ be the group of positive rational numbers under multiplication is not cyclic. **Proof by contradiction:** Suppose $\mathbb{Q}^+=\langle r\rangle$ for some $r\in\mathbb{Q}^+$. Write $r=\frac{m}{n}$ where m,n are positive integers. Consider a rational number $\frac{1}{p}$ where p is a prime not appearing in the factorization of neither m nor n. If $r^k=\frac{1}{p}$ for some integer k, then $k\neq 0$.

Case 1: k>0. Then $r^k=(rac{m}{n})^k=rac{m^k}{n^k}=rac{1}{p}$ implies $pm^k=n^k$. This implies p|n a contradiction.

Case 2: k<0. Then -k>0 and $r^{-k}=(\frac{m}{n})^{-k}=\frac{m^{-k}}{n^{-k}}=p$ Similarly leads to a contradiction.

Therefore, \mathbb{Q}^+ is not cyclic.

Exercise 45: Give an example of a group that has exactly 7 subgroups (including the trivial subgroup and the group itself). Generalize to exactly n subgroups for any positive integer n.

Solution: $\mathbb{Z}_{p^{n-1}}$ has exactly n subgroups for any prime p.

For exactly 7 subgroups, we need n=7, so we use \mathbb{Z}_{p^6} for any prime p.

Generalization: For exactly n subgroups, use $\mathbb{Z}_{p^{n-1}}$ for any prime p.

Exercise 51: Suppose that H is a cyclic subgroup of a group G and |H|=10. If a belongs to G and a^6 belongs to H, what are the possibilities for |a|?

Solution: Given: H is a cyclic subgroup with |H|=10, and $a^6\in H$. Since $|a^6|=\dfrac{|a|}{\gcd(|a|,6)}$ and the possible orders of elements in H are: 1, 2, 5, 10. **Case analysis:**

- If $|a^6|=1$: Then |a| divides 6, and $\gcd(|a|,6)=|a|$, so |a|=1,2,3 or 6.
- If $|a^6|=2$: Then $\dfrac{|a|}{\gcd(|a|,6)}=2$, so |a|=4 or 12.
- If $|a^6|=5$: Then $\dfrac{|a|}{\gcd(|a|,6)}=5$, so |a|=5,10,15 or 30.
- If $|a^6|=10$: Then $\dfrac{|a|}{\gcd(|a|,6)}=10$, so |a|=20,30, or 60.

Possibilities for |a|: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Exercise 61: List all the elements of \mathbb{Z}_{40} that have order 10. Let |x|=40. List all the elements of $\langle x \rangle$ that have order 10.

Solution: In \mathbb{Z}_{40} , an element k has order 10 if and only if $\dfrac{40}{\gcd(40,k)}=10$, which means $\gcd(40,k)=4$. Since $40=2^3\cdot 5$ and we need $\gcd(40,k)=4=2^2$, the element k must be divisible by 4 but not by 8, and not divisible by 5.

Elements of order 10: $\{4, 12, 28, 36\}$

For $\langle x \rangle$ with |x|=40: Elements of order 10 are x^k where $\gcd(40,k)=4$. Answer: $\{x^4,x^{12},x^{28},x^{36}\}$

Exercise 65: If G is an Abelian group and contains cyclic subgroups of orders 4 and 5, what other sizes of cyclic subgroups must G contain? Generalize.

Solution: Let $a,b\in G$ such that |a|=4 and |b|=5. Since |ab| divides |a||b|=20, then |ab|=1,2,4,5,10 or 20. Since |ab|=4 and |ab|=5. Since |ab| Direct checking shows that |ab|=20. So G contains cyclic subgroups of all sizes dividing 20.

Answer: Orders 1, 2, 4, 5, 10, 20.

Generalization: If G is abelian and contains cyclic subgroups of relatively prime orders m and n, then G contains cyclic subgroups of all orders dividing mn.

Exercise 66: If G is an Abelian group and contains cyclic subgroups of orders A and A0, what other sizes of cyclic subgroups must A0 contain? Generalize.

Solution: Let $a,b\in G$ such that |a|=4 and |b|=6. Since |ab| divides |a||b|=24, then |ab|=1,2,3,4,6,8,12 or 24. But $(ab)^{12}=a^{12}\cdot b^{12}=(a^4)^3\cdot (b^6)^2=e\cdot e=e$ and all lower powers cannot give e. So |ab|=12. Required subgroup orders: All divisors of 12: 1, 2, 3, 4, 6, 12.

Generalization: If G is abelian and contains cyclic subgroups of orders m and n, then G contains cyclic subgroups of all orders dividing $\operatorname{lcm}(m,n)$.

9/24/2025 Fahd Alshammari - math 343 22

Exercise 67: Prove that no group can have exactly two elements of order 2.

Proof: Suppose G has exactly two elements of order 2, say a and b where $a \neq b$ and $a^2 = b^2 = e$. Consider the element ab. We have $(ab)^2 = abab$.

Case 1: ab=ba (elements commute). Then $(ab)^2=abab=a^2b^2=e\cdot e=e$. So ab has order 1 or 2.

- If |ab|=1, then ab=e, so $a=b^{-1}=b$, contradicting a
 eq b.
- If |ab|=2, then we have three distinct elements of order 2: a, b, and ab.

Case 2: ab
eq ba (elements don't commute). Then $aba
ot\in \{e,a,b\}$ has order 2.

Exercise 69: Let a and b be elements of a group. If |a|=10 and |b|=21, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Proof: Let $x \in \langle a \rangle \cap \langle b \rangle$. Then $x = a^i = b^j$ for some integers i,j.

- Since $x \in \langle a \rangle$, the order of x divides |a| = 10.
- Since $x \in \langle b \rangle$, the order of x divides |b| = 21.

Therefore, |x| divides $\gcd(10,21)=1$. Thus |x|=1, which means x=e.

Therefore, $\langle a \rangle \cap \langle b \rangle = \{e\}.$

Generalization: If $\gcd(|a|,|b|)=1$, then $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Exercise 76: Suppose that |x|=n. Find a necessary and sufficient condition on r and s such that $\langle x^r \rangle \subseteq \langle x^s \rangle$.

Solution: Key Fact: $\langle x^k \rangle = \langle x^{\gcd(n,k)} \rangle$ for any integer k. Therefore: $\langle x^r \rangle \subseteq \langle x^s \rangle$ iff $\langle x^{\gcd(n,r)} \rangle \subseteq \langle x^{\gcd(n,s)} \rangle$ iff $x^{\gcd(n,r)} \in \langle x^{\gcd(n,s)} \rangle$ iff $|x^{\gcd(n,r)}|$ divides $|x^{\gcd(n,s)}|$ iff $\frac{n}{\gcd(n,r)}$ divides $\frac{n}{\gcd(n,s)}$ iff $\gcd(n,s)$ divides $\gcd(n,r)$.

9/24/2025 Fahd Alshammari - math 343 25