CH4: Cyclic Groups Selected Exercise
Solutions
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Exercise 1: Find all generators of Zg, Zg, and Zsy.

Solution: For a cyclic group Z,, an element k is a generator if and only if gcd(k, n) = 1.
For Zg:

* Elements: {0,1,2,3,4,5}

+ Check: gcd(1,6) =1V, ged(2,6) =2 X, ged(3,6) = 3 X, ged(4,6) = 2 X,
ged(5,6) =1V

+ Generators: {1,5}
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For Zg:

+ Elements: {0,1,2,3,4,5,6,7}
+ Check: ged(1,8) =1, ged(3,8) =1V, ged(5,8) =1v,ged(7,8) =1V
+ Generators: {1,3,5,7}

For Zsy:

+ Elements: {0,1,2,...,19}
« Since 20 = 22 - 5, we need elements not divisible by 2 or 5

+ Generators: {1,3,7,9,11,13,17,19}
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Exercise 2: Suppose that <a>, <b> and <c> are cyclic groups of orders 6, 8, and 20,
respectively. Find all generators of (a), (b), and {(¢).

Solution: If G = (g) with |g| = n, then g* generates G if and only if gcd(k, n) = 1.
For (a) with |a| = 6: Generators: {a', a”}
For (b) with |b| = 8: Generators: {bl, b3, b°, b7}

For <c> with |c| = 20: Generators: {cl, (33, c7, Cg, CH, 013, 017; Clg}
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Exercise 3: List the elements of the subgroups <20> and (10) in Zs3p. Let a be a group
element of order 30. List the elements of the subgroups <a20> and (a,w).

Solution: In Zs,

. (20) = {0,20,10} (order 3)
. (10) ={0,10,20} (order 3)

Note: (20) = (10) since gcd (20, 30) = ged(10,30) = 10
For group element a with |a| = 30:

. <a20> = {e, a®, a,lo} (order 3)

. <a10> = {e, a'’, a20} (order 3)



Exercise 4: List the elements of the subgroups (3) and (15) in Z1g. Let a be a group
element of order 18. List the elements of the subgroups ((13) and <a,15>.

Solution: In Z3g,

.« (3) =40,3,6,9,12,15} (order 6)
. (15) = {0,15,12,9,6, 3} (order 6)

Note: (15) = (3) since 15 = —3 (mod 18)
For group element a with |a| = 18:

- (a®) = {e,a’,a’ a’,a"?, a™} (order 6)

. (a®) = {e,a",a'?,a’,a" a’} (order 6)
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Exercise 5: List the elements of the subgroups (3) and (7) in U(20).
Solution: U (20) = {1,3,7,9,11,13,17,19}
For (3):

+ 31=332=93=27=7 (mod20),3*=21=1 (mod 20)
.+ (3) =41,3,9,7} (order 4)

For (7):

+ Since3-7=1 (mod 20), we have 7 = 37*
« (7) = (371 = (3) = {1,7,9, 3} (order 4)
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Exercise 6: What do Exercises 3, 4, and 5 have in common? Try to make a generalization that

includes these three cases.
Solution:
Common Pattern: In each case, (d1) = (dz) where dy and d are related by:

+ Eitherd; = —ds (mod n), or
. ged(dy,n) = ged(ds, n)

General Result: If G is a cyclic group of order n, then <ga’> — (gb> If and only if
gcd(a,n) = ged(b, n).

9/24/2025 Fahd Alshammari - math 343 8



Exercise 7: Find an example of a noncyclic group, all of whose proper subgroups are cyclic.
Solution: The Klein 4-group V4 = {e, a, b, ab} where a* =b* = e and ab = ba.
Verification:

« V4 is not cyclic (no element has order 4)

« All proper subgroups are: {e}, (a) = {e,a}, (b) = {e, b}, (ab) = {e, ab}

« Each proper subgroup is cyclic (order 1 or 2)
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Exercise 9: How many subgroups does Zsg have? List a generator for each of these
subgroups. Suppose that G = (a) and |a| = 20. How many subgroups does G have? List
a generator for each of these subgroups.

Solution: The subgroups of Zsyg correspond to divisors of 20: 1, 2,4, 5, 10, 20. So Zsq has
6 subgroups. Subgroups and their generators:

Order 1: (0) = {0}

Order 2: (10) = 40,10}

Order 4: (5) = {0, 5,10, 15}

Order 5: (4) = {0,4,8,12,16}

Order 10: (2) = {0,2,4,6,8,10,12,14,16, 18}

Order 20: (1) = Zsgy

For G = (a) with |a| = 20: G has 6 subgroups with generators a® o' a’ a’ a®, al

respectively.



Exercise 16: Let a be an element of a group.

a. Complete the statement: |a| = |a2| if and only if |al
b. Complete the statement: \a,2| = |a,12| if and only if
Solution:
Part (a): |a| = |a,2| if and only if |a| is odd.
Proof: Let |a,| — n. Then |a,2| — "

| | ged(n, 2)

+ If nis odd, then ged(n, 2) = 1, so |a,2| =n = |a

* If nis even, then gcd(n, 2) = 2, so |a2| _ "

<n=|al



Part (b): |a*| = |a'?| if and only if ged(|a|, 10) = ged(|al, 2).

al
gcd(|al, k)
gcd(|al, 10) = ged(|al, 2).

Proof: |a®| = so |a®| = |a'?|iff ged(|al,2) = ged(|al, 12) iff
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Exercise 21: Prove that if GG is a group with the property that the square of every element is
the identity then G is Abelian.

Proof: Let a, b € G. Since (ab)® = e, we have: (ab)® = abab = e. Since a* = b* = e.
From abab = e, multiply on the left by a and on the right by b:

a(abab)b = aeb
a’bab® = ab

ba = ab (since a®* = b% = e)

Therefore, (G is abelian.
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Exercise 27: If a cyclic group has an element of infinite order, how many elements of finite
order does it have?

Solution: If a cyclic group has an element of infinite order, then it has exactly one element of
finite order.

Proof: Let G = (a) where |a| = 00. The elements of G are {a" : n € Z}. If a* has finite
order for some k # 0, then (a®)™ = a*™ = e = a° for some positive integer m.

This means km = 0, which implies kK = 0 or m = 0, contradicting our assumption. Hence,

0

only @~ = e has finite order (order 1).
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Exercise 32: For any element a in any group G, prove that (a) Is a subgroup of C’(a,) (the

centralizer of a).

Proof: We need to show that every element of <a> commutes with a. Let & € <a>. Then

z = a” for some integer k. We have:

ma:ak-a:akﬂza-ak:aaz

Therefore, & commutes with a, so & € C(a). Since this holds for all x & (a),. we have

(a) C Cla).
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Exercise 35: Prove that C*, the group of nonzero complex numbers under multiplication,

has a cyclic subgroup of order n for every positive integer n.

2mi/n

Proof: Consider the nth roots of unity: w,, = e . The element w,, has order n because:

. (wn)n — eZm’ — 1

eX™FM L 1for0 < k < n

]
~~
&
S
S
I
|

1

oy e ,wg_l} s a cyclic subgroup of order n.

Therefore, (wy) = {wg,w
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Exercise 43: Show that the group of positive rational numbers under multiplication is not
cyclic. Why does this prove that the group of nonzero rationals under multiplication is not
cyclic?

Solution: Let Q™ be the group of positive rational numbers under multiplication is not

m
cyclic. Proof by contradiction: Suppose Q" = (r) for some r € Qf Write r = where
n

m, n are positive integers. Consider a rational number  where p is a prime not appearing

p
in the factorization of neither m nor n. If #* = = for some integer k, then k #£ 0.
p
Case k> 0.Thenr" = ( )" = ., = _ implies pm® = n". This implies p|n a
n n
contradiction.
k m., m " .

Case2:k < 0.Then —k >0andr “=( ) "=~ =p Similarly leads to a

n n

contradiction.
Therefore, @+ is not cyclic.

or2a202 « Q* = Q \ {0} is not cyclic, since if it were, its subgroup Q™ would also be cyclic. 17



Exercise 45: Give an example of a group that has exactly 7 subgroups (including the trivial
subgroup and the group itself). Generalize to exactly n subgroups for any positive integer n.

Solution: an—l has exactly m subgroups for any prime p.
For exactly 7 subgroups, we need n = 7, so we use Zpﬁ for any prime p.

Generalization: For exactly n subgroups, use an—l for any prime p.
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Exercise 51: Suppose that H is a cyclic subgroup of a group GG and |H| = 10. If a belongs
to G and a® belongs to H, what are the possibilities for |a|?

Solution: Given: H is a cyclic subgroup with \H| =10, and a® € H. Since
6| _ ‘a'l
ged([al, 6)

]a and the possible orders of elements in H are: 1, 2, 5, 10. Case analysis:

f |a®| = 1: Then |a| divides 6, and gcd(|al,6) = |a|, so |a| = 1,2, 3 or 6.

. al
f |a®| = 2: Then = 2 so0|la|l =4or12.
ged(jal,6) ~ >
- al
f |a®| = 5: Then = 9, so |a| = H,10,15 or 30.
! ged(lal,6) ~ > 1
- al
f |a®| = 10: Then = 10, so |a| = 20, 30, or 60.
o ged(lal,6) ~ 017

Possibilities for |al: 1, 2, 3, 4,5, 6, 10, 12, 15, 20, 30, 60.



Exercise 61: List all the elements of Z4q that have order 10. Let |z| = 40. List all the
elements of (a:) that have order 10.

40
Solution: In Zyg, an element k has order 10 if and only if gcd(40, k) = 10, which means
gcd (40, k) = 4. Since 40 = 2% - 5 and we need ged (40, k) = 4 = 22, the element k

must be divisible by 4 but not by 8, and not divisible by 5.
Elements of order 10: {4, 12, 28, 36}

For (z) with |z| = 40: Elements of order 10 are " where gcd (40, k) = 4.
Answer: {.134, :1312, :1:28, 5836}

9/24/2025 Fahd Alshammari - math 343 20



Exercise 65: If G is an Abelian group and contains cyclic subgroups of orders 4 and 5, what

other sizes of cyclic subgroups must G contain? Generalize.

Solution: Let a, b € G such that |a| = 4 and |b| = 5. Since |ab| divides |a||b| = 20, then
lab| =1,2,4,5,10 or 20. Since < @ > N < b >= {e} Direct checking shows that
lab| = 20. So G contains cyclic subgroups of all sizes dividing 20.

Answer: Orders 1, 2,4, 5, 10, 20.

Generalization: If GG is abelian and contains cyclic subgroups of relatively prime orders m
and n, then GG contains cyclic subgroups of all orders dividing mn.
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Exercise 66: If GG is an Abelian group and contains cyclic subgroups of orders 4 and 6, what
other sizes of cyclic subgroups must GG contain? Generalize.

Solution: Leta,b € G such that |a| = 4 and |b| = 6. Since |ab| divides |al||b| = 24,
then |ab| = 1,2, 3,4,6, 8,12 or 24. But

(ab)* = a'? - b = (a*)? - (b°)? = e - e = e and all lower powers cannot give e. So
|ab| = 12. Required subgroup orders: All divisors of 12: 1, 2, 3, 4, 6, 12.

Generalization: If (G is abelian and contains cyclic subgroups of orders m and n, then G
contains cyclic subgroups of all orders dividing lem(m, n).
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Exercise 67: Prove that no group can have exactly two elements of order 2.

Proof: Suppose GG has exactly two elements of order 2, say @ and b where a = b and

a’ = b?> = e. Consider the element ab. We have (ab)2 — abab.

Case 1: ab = ba (elements commute). Then (ab)2 —abab=a’b* —e-e=e.

So ab has order 1 or 2.

e If lab
e If lab

— 1 thenab=¢e,soa=b'=0p contradicting @ # b.

— 2. then we have three distinct elements of order 2: a, b, and ab.

Case 2: ab # ba (elements don't commute). Then aba ¢ {e, a, b} has order 2.

9/24/2025 Fahd Alshammari - math 343



Exercise 69: Let a and b be elements of a group. If |a| = 10 and |b| = 21, show that

(@) N (b) = {e}.
Proof: Let z € (a) N (b). Then & = a' = b for some integers 3, j.

e Sincex € <a,>,. the order of x divides |a| — 10.

+ Since ¢ € (b), the order of z divides |b| = 21.
Therefore, |z | divides ged(10,21) = 1. Thus || = 1, which means = = e.
Therefore, (a) N (b) = {e}.

Generalization: If gcd(|al, [b|) = 1, then (a) N (b) = {e}.
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Exercise 76: Suppose that |m| — n. Find a necessary and sufficient condition on 7 and s
such that (") C (z*).

Solution: Key Fact: <;Bk> = <$ng(n’k)> for any integer k. Therefore:
(z") C () iff (g8dm)) C (g8ed(ms)y iff geednr) o (geed(ms)y i | peedmr)) giviges

28<d(m) | y d& j) dvides de ;) eed(n,s) diides ged(n, )
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