Group Theory Exercise Solutions

Chapter 3: Finite Groups; Subgroups

Exercise 2: Let Q be the group of rational numbers under addition and let Q^* be the group of nonzero rational numbers under multiplication. In Q, list the elements in $\langle \frac{1}{2} \rangle$. In Q^* , list the elements in $\langle 2 \rangle$.

Solution:

In Q under addition:

$$\langle rac{1}{2}
angle = \{ n \cdot rac{1}{2} \mid n \in \mathbb{Z} \} = \{ \ldots, -1, -rac{1}{2}, 0, rac{1}{2}, 1, rac{3}{2}, 2, \ldots \}$$

In Q^* under multiplication:

$$\langle \frac{1}{2}
angle = \{ (\frac{1}{2})^n \mid n \in \mathbb{Z} \} = \{ \dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, 16, \dots \}$$

Exercise 3: Let Q and Q^* be as in Exercise 2. Find the order of each element in Q and in Q^*

Solution:

In Q (addition):

- Order of 0: |0| = 1 (identity element)
- Order of any nonzero rational r: $|r|=\infty$

Proof: If nr=0 for some positive integer n, then r=0, contradiction.

In Q^* (multiplication):

- Order of 1: |1| = 1 (identity element)
- Order of -1: |-1| = 2 (since $(-1)^2 = 1$)
- Order of any other rational r: $|r|=\infty$

Proof: For $r \neq 1, -1$, if $r^n = 1$ for some positive n, then r would be a root of unity, but the only rational roots of unity are ± 1 .

Exercise 14: How many subgroups of order 4 does D_4 have?

Solution:

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$$
 where $|D_4| = 8$.

Subgroups of order 4:

- 1. $\{R_0, R_{90}, R_{180}, R_{270}\}$ the rotation subgroup
- 2. $\{R_0,R_{180},H,V\}$ Klein 4-group structure
- 3. $\{R_0, R_{180}, D, D'\}$ Klein 4-group structure

Verification: Each has order 4 and satisfies closure, associativity, identity, and inverses.

Answer: D_4 has exactly 3 subgroups of order 4.

Exercise 15: Determine all elements of finite order in \mathbb{R}^* , the group of nonzero real numbers under multiplication.

Solution:

Let $r \in \mathbb{R}^*$ have finite order n, so $r^n = 1$.

Case 1: r > 0

- Taking logarithms: $n \ln(r) = 0$
- Since n>0, we need $\ln(r)=0$
- Therefore r=1

${\sf Case 2:} \, r < 0$

- We can write r=-s where s>0
- Then $r^n = (-s)^n = (-1)^n s^n = 1$
- If n is odd: $-s^n=1\Rightarrow s^n=-1$ (impossible for s>0)
- If n is even: $s^n=1\Rightarrow s=1\Rightarrow r=-1$

Answer: The elements of finite order in \mathbb{R}^* are exactly $\{1,-1\}$.

Exercise 27: Show that $U(14)=\langle 3\rangle=\langle 5\rangle$. Is $U(14)=\langle 11\rangle$? Show that $U(20)\neq\langle k\rangle$ for any $k\in U(20)$.

Solution:

First,
$$U(14) = \{1, 3, 5, 9, 11, 13\}$$
 and $|U(14)| = 6$.

Part 1: Show $U(14)=\langle 3 \rangle$

- $3^1 = 3$
- $3^2 = 9$
- $3^3 = 27 \equiv 13 \pmod{14}$
- $3^4 = 39 \equiv 11 \pmod{14}$
- $3^5 = 33 \equiv 5 \pmod{14}$
- $3^6 = 15 \equiv 1 \pmod{14}$

Therefore $\langle 3 \rangle = \{1, 3, 5, 9, 11, 13\} = U(14)$.

Part 2: Show
$$U(14)=\langle 5 \rangle$$

•
$$5^1 = 5$$

•
$$5^2 = 25 \equiv 11 \pmod{14}$$

•
$$5^3 = 55 \equiv 13 \pmod{14}$$

•
$$5^4 = 65 \equiv 9 \pmod{14}$$

•
$$5^5 = 45 \equiv 3 \pmod{14}$$

•
$$5^6 = 15 \equiv 1 \pmod{14}$$

Therefore
$$\langle 5 \rangle = U(14)$$
.

Part 3: Is
$$U(14) = \langle 11 \rangle$$
?

•
$$11^1 = 11$$

•
$$11^2 = 121 \equiv 9 \pmod{14}$$

•
$$11^3 = 99 \equiv 1 \pmod{14}$$

So $\langle 11 \rangle = \{1, 9, 11\}$ which has order 3, not 6.

Answer: $U(14) \neq \langle 11 \rangle$.

Part 4: Show $U(20)
eq \langle k
angle$ for any k

$$U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$
 and $|U(20)| = 8$.

Computing orders:

•
$$|1| = 1$$
, $|3| = 4$, $|7| = 4$, $|9| = 2$

•
$$|11| = 2$$
, $|13| = 4$, $|17| = 4$, $|19| = 2$

Since no element has order 8, U(20) is not cyclic.

Exercise 32: Prove that a group with two elements of order 2 that commute must have a subgroup of order 4.

Solution:

Let G be a group with elements a,b where |a|=|b|=2 and ab=ba.

Step 1: Show $H=\{e,a,b,ab\}$ has 4 distinct elements.

- Since |a|=|b|=2, we have a
 eq e and b
 eq e
- If a=b, we wouldn't have "two elements"
- If ab=e, then $b=a^{-1}=a$ (since $a^2=e$), contradiction
- If ab=a, then b=e, contradiction
- If ab=b, then a=e, contradiction

Step 2: Show H is a subgroup. It is closed under the group operation since

- $a^2 = e \in H$
- $b^2 = e \in H$
- $(ab)^2=abab=a^2b^2=e\in H$ (using commutativity)
- · All other products are already computed

Step 3: H has identity e, and every element is its own inverse. So H is not empty, closed under multiplication, and inversion.

Conclusion: H is a subgroup of order 4.

Exercise 38: If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.

Solution:

Step 1: $H\cap K
eq\emptyset$

Since $e \in H$ and $e \in K$, we have $e \in H \cap K$.

Step 2: Closure

Let $x,y\in H\cap K$. Then:

- $x,y\in H\Rightarrow xy\in H$ (since H is a subgroup)
- $x,y\in K\Rightarrow xy\in K$ (since K is a subgroup)
- Therefore $xy \in H \cap K$

Step 3: Inverse property

Let $x \in H \cap K$. Then:

•
$$x \in H \Rightarrow x^{-1} \in H$$

•
$$x \in K \Rightarrow x^{-1} \in K$$

• Therefore $x^{-1} \in H \cap K$

Conclusion: $H \cap K$ is a subgroup of G.

Extension: The same proof shows that the intersection of any collection of subgroups is a subgroup.

Exercise46(b): In the group \mathbb{Z} , find $\langle 8,13 \rangle$ and an integer k such that the subgroup equals $\langle k \rangle$.

Solution:

Method: For $\langle a,b \rangle$ in \mathbb{Z} , we have $\langle a,b \rangle = \langle \gcd(a,b) \rangle$.

Step 1: Find $\gcd(8,13)$ using Euclidean algorithm:

- $13 = 1 \cdot 8 + 5$
- $8 = 1 \cdot 5 + 3$
- $5 = 1 \cdot 3 + 2$
- $3 = 1 \cdot 2 + 1$
- $2 = 2 \cdot 1 + 0$

Therefore $\gcd(8,13)=1$.

Step 2: Express 1 as a linear combination: Working backwards:

•
$$1 = 3 - 1 \cdot 2$$

•
$$1 = 3 - 1 \cdot (5 - 1 \cdot 3) = 2 \cdot 3 - 1 \cdot 5$$

•
$$1 = 2 \cdot (8 - 1 \cdot 5) - 1 \cdot 5 = 2 \cdot 8 - 3 \cdot 5$$

•
$$1 = 2 \cdot 8 - 3 \cdot (13 - 1 \cdot 8) = 5 \cdot 8 - 3 \cdot 13$$

Answer: $\langle 8, 13 \rangle = \langle 1 \rangle = \mathbb{Z}$, so k=1.

Exercise 47: Prove Theorem 3.6.

Solution: See class notes.

Exercise 50: Suppose a belongs to a group and |a|=5. Prove that $C(a)=C(a^3)$. Find an element a from some group such that |a|=6 and $C(a)\neq C(a^3)$.

Solution:

Part 1: Prove $C(a)=C(a^3)$ when |a|=5.

Since $a^5 = e$, then $a^6 = a$.

Show $C(a) \subseteq C(a^3)$:

If $x\in C(a)$, then xa=ax, so $xa^3=xaaa=axaa=aaxa=aaxa=a^3x$.

Show $C(a^3) \subseteq C(a)$:

If $x\in C(a^3)$, then $xa^3=a^3x$, so $x(a^3)^2=(a^3)^2x$, which gives xa=ax.

Therefore $C(a) = C(a^3)$.

Part 2: Find a with |a|=6 and $C(a) \neq C(a^3)$.

Consider $a=R_{60^\circ}$ in D_6 (rotation by 60°).

- ullet |a|=6 and $a^3=R_{180}$
- $C(a)=\{R_0,R_{60^\circ},R_{120^\circ},R_{180^\circ},R_{240^\circ},R_{300^\circ}\}$ (all rotations)
- $C(a^3)=C(R_{180^\circ})=D_6$ (since R_{180° commutes with all elements)

Since $C(a) \neq D_6$, we have $C(a) \neq C(a^3)$.

Exercise 53: Consider the element $A=\begin{bmatrix}1&1\\0&1\end{bmatrix}$ in $SL(2,\mathbb{R})$. What is the order of A? If we view A as a member of $SL(2,\mathbb{Z}_p)$ (p is prime), what is the order of A?

Solution: Part 1: Order in $SL(2,\mathbb{R})$. Let's compute powers of A:

$$A = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$

$$A^2 = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$$

$$A^3 = A^2 \cdot A = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 3 \ 0 & 1 \end{bmatrix}$$

In general, $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ for any positive integer n.

Since $A^n=I$ requires n=0 in the upper right entry, and this never occurs for positive n in \mathbb{R} , we have $A^n \neq I$ for all n>0. **Answer:** $|A|=\infty$ in $SL(2,\mathbb{R})$.

Part 2: Order in $SL(2,\mathbb{Z}_p)$

In
$$\mathbb{Z}_p$$
, we have $A^n = egin{bmatrix} 1 & n \ 0 & 1 \end{bmatrix}$ where n is computed modulo p .

For $A^n = I$, we need $n \equiv 0 \pmod{p}$.

The smallest positive integer n such that $n \equiv 0 \pmod p$ is n = p.

Verification:
$$A^p = egin{bmatrix} 1 & p \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I$$
 in \mathbb{Z}_p .

Answer: |A|=p in $SL(2,\mathbb{Z}_p)$ for any prime p.

Exercise 54: Consider the elements $A=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ and $B=\begin{bmatrix}0&1\\-1&-1\end{bmatrix}$ from

 $SL(2,\mathbb{R})$. Find |A|, |B|, and |AB|. Does your answer surprise you?

Solution: Find |A|:

$$A = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$$

$$A^2 = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} = egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$$

$$A^3=A^2\cdot A=egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}=egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix}$$

$$A^4 = A^3 \cdot A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Therefore |A|=4.

Find
$$|B|$$
: $B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$

$$B^2 = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$

$$B^3 = B^2 \cdot B = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Therefore |B|=3.

Find |AB|:

$$AB = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 0 & 1 \ -1 & -1 \end{bmatrix} = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$

$$(AB)^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$(AB)^3 = (AB)^2 \cdot AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

In general,
$$(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
 for positive integers n .

Since $(AB)^n \neq I$ for any positive integer n, we have $|AB| = \infty$. Answer: |A| = 4, |B| = 3, $|AB| = \infty$.

Surprising observation: Despite both A and B having finite order, their product AB has infinite order. This demonstrates that the order of a product can behave very differently from the orders of the individual factors, even when both factors have finite order.

Exercise 60: In the group \mathbb{R}^* find elements a and b such that $|a|=\infty$, $|b|=\infty$ and |ab|=2.

Solution:

We need to find $a,b\in\mathbb{R}^*$ with infinite order such that $(ab)^2=1$.

Strategy: Let
$$ab=-1$$
, so $(ab)^2=(-1)^2=1$, giving $|ab|=2$.

Example: Let
$$a=2$$
 and $b=-rac{1}{2}$.

- $|a| = |2| = \infty$ (since $2^n \neq 1$ for any positive integer n)
- $|b|=|-rac{1}{2}|=\infty$ (since $(-rac{1}{2})^n
 eq 1$ for any positive integer n)
- $ab = 2 \cdot (-\frac{1}{2}) = -1$
- |ab| = |-1| = 2 (since $(-1)^2 = 1$)

Answer:
$$a=2$$
, $b=-rac{1}{2}$ satisfy the conditions.

Exercise 64(b): Compute |U(5)|, |U(7)|, |U(35)|.

Solution: Using Euler's totient function $\phi(n) = |U(n)|$:

$$|U(5)|$$
: Since 5 is prime: $\phi(5)=5-1=4$

Verification:
$$U(5) = \{1, 2, 3, 4\}$$
, so $|U(5)| = 4$.

$$|U(7)|$$
: Since 7 is prime: $\phi(7)=7-1=6$

Verification:
$$U(7) = \{1, 2, 3, 4, 5, 6\}$$
, so $|U(7)| = 6$.

$$|U(35)|$$
: Since $35=5 imes 7$ where $\gcd(5,7)=1$: $\phi(35)=\phi(5 imes 7)=\phi(5) imes\phi(7)=4 imes 6=24$

Answer:
$$|U(5)| = 4$$
, $|U(7)| = 6$, $|U(35)| = 24$.

Conjecture: For $\gcd(r,s)=1$, we have |U(rs)|=|U(r)| imes |U(s)|.

Exercise 77: Let $G=GL(2,\mathbb{R})$ and

$$H=\left\{egin{array}{cc} a & 0 \ 0 & b \end{bmatrix}: a ext{ and } b ext{ are nonzero integers}
ight\}$$
 under matrix multiplication. Prove or disprove that H is a subgroup of $GL(2,\mathbb{R})$.

Solution: We need to check if H satisfies the subgroup criteria.

Check 1: Non-empty
$$egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \in H$$
 since $1,1$ are nonzero integers.

Check 2: Closure Let
$$A=egin{bmatrix} a_1 & 0 \ 0 & b_1 \end{bmatrix}, B=egin{bmatrix} a_2 & 0 \ 0 & b_2 \end{bmatrix}\in H.$$

$$AB = egin{bmatrix} a_1a_2 & 0 \ 0 & b_1b_2 \end{bmatrix}$$

Since a_1,a_2,b_1,b_2 are nonzero integers, a_1a_2 and b_1b_2 are nonzero integers. Therefore $AB\in H$. \checkmark

Check 3: Inverse Let $A=egin{bmatrix} a & 0 \ 0 & b \end{bmatrix} \in H$ where a,b are nonzero integers.

$$A^{-1} = egin{bmatrix} rac{1}{a} & 0 \ 0 & rac{1}{b} \end{bmatrix}$$

Problem: $\frac{1}{a}$ and $\frac{1}{b}$ are not integers unless $a=\pm 1$ and $b=\pm 1$.

Counterexample: Let
$$A = egin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix} \in H$$
 .

Then
$$A^{-1}=\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}
otin H.$$

Conclusion: H is **not** a subgroup of $GL(2,\mathbb{R})$ because it fails the inverse property.