Group Theory Exercise Solutions

Chapter 3: Finite Groups; Subgroups



Exercise 2: Let () be the group of rational numbers under addition and let Q™ be the group

of nonzero rational numbers under multiplication. In @, list the elements in (2 ). In Q7 list

the elements in (2).

Solution:

In ¢ under addition:

1 1 1 1 3
= {n- Zy={...,—1,— 1,°,2,...
<2> {n 2|Tz"E } { Y ) 230?2? 723 ) }

In Q" under multiplication:

1 1 1 1
= " Ly = 1... 1,2,4,8,16,...
() =) IneZb={., ,,, 1,248, }



Exercise 3: Let Q and Q™ be as in Exercise 2. Find the order of each element in @ and in Q"
Solution:
In () (addition):
« Order of 0: |0 = 1 (identity element)
« Order of any nonzero rational 7: || = 00
Proof. If nr = 0 for some positive integer n, then r = 0, contradiction.
In Q" (multiplication):

e Order of 1: \1| — 1 (identity element)
e Order of —1: | — 1| — 2 (since (—1)2 = 1)

« Order of any other rational 7: |7| = 00

Proof: Forr # 1, —1, if r = 1 for some positive n, then 7 would be a root of unity, but
the only rational roots of unity are £=1.



Exercise 14: How many subgroups of order 4 does D4 have?
Solution:

D,y = {Ry, Ry, Rig0, Rovg, H,V, D, D'} where | Dy| = 8
Subgroups of order 4:

1. {Ro, Rgo, Ri1s0, R270} - the rotation subgroup
2. {Ro, Ris0, H,V'} - Klein 4-group structure
3. {Rg, Rigo, D, D'} - Klein 4-group structure

Verification: Each has order 4 and satisfies closure, associativity, identity, and inverses.

Answer: D4 has exactly 3 subgroups of order 4.



. . - . *
Exercise 15: Determine all elements of finite order in R™, the group of nonzero real numbers
under multiplication.

Solution:
Let » € R have finite ordern, sor™ = 1.
Case1l:7 > 0

» Taking logarithms: n1n(r) = 0
» Sincem > 0, we need In(r) = 0

o Thereforer = 1
Case2: 7 < (

We can write 7 = —s where s > 0
Thenr" = (—s)" = (—1)"s" =1

Ifnisodd: —s" =1 = s" = —1 (impossible for s > 0)

fniseven:s" =1=>s=1=7r=—1

Answer: The elements of finite order in R* are exactly {1, —1}.



Exercise 27: Show that U(14) = (3) = (5).1s U(14) = (11)? Show that U (20) # (k)
forany k € U(20).

Solution:

First, U(14) = {1,3,5,9,11,13} and |U(14)| = 6.
Part 1: Show U (14) = (3)

- 31 =3

- 3°=9

+ 39 =27=13 (mod 14)

. 31 =39=11 (mod 14)

- 3°=33=5 (mod 14)

- 3=15=1 (mod 14)

Therefore (3) = {1,3,5,9,11,13} = U(14).



Part 2: Show U (14) = (5)

.+ 5 =5

+ 5 =25=11 (mod 14)

. 5> =55=13 (mod 14)
5" =65=9 (mod 14)

.+ 5° =45=3 (mod 14)

+ 5°=15=1 (mod 14)

Therefore (5) = U(14).



Part 3: Is U(14) — <11>?

- 11' =11
+ 112=121=9 (mod 14)
+ 11°=99=1 (mod 14)

So (11) = 41,9, 11} which has order 3, not 6.

Answer: U (14) # (11).

Part 4: Show U (20) # (k) for any k

U(20) = {1,3,7,9,11,13,17,19} and |U(20)| = 8.
Computing orders:

1| =13/ =4 7| =4,9 =2
11 = 2,[13) = 4, |17] = 4, [19] = 2

Since no element has order 8, U (20) is not cyclic.



Exercise 32: Prove that a group with two elements of order 2 that commute must have a
subgroup of order 4.

Solution:
Let G be a group with elements a, b where |a| = |b| = 2 and ab = ba.
Step 1: Show H = {e, a, b, ab} has 4 distinct elements.

+ Since |a| = |b] = 2,wehavea # eand b # e
e If a = b, we wouldn't have "two elements"

! = a (since a* = e), contradiction

e Ifab=1¢e,thenb=a"
e Ifab = a, then b = e, contradiction

e Ifab = b, then @ = e, contradiction



Step 2: Show H is a subgroup. It is closed under the group operation since

a’* =ec H
¥ =ec H

(ab)® = abab = a’b* = e € H (using commutativity)

All other products are already computed

Step 3: H has identity e, and every element is its own inverse. So H is not empty, closed
under multiplication, and inversion.

Conclusion: H is a subgroup of order 4.



Exercise 38: If H and K are subgroups of GG, show that H M K is a subgroup of G.

Solution:

Step1: HN K # ()
Sinccee € Hande € K,wehavee € H N K.

Step 2: Closure

letxz,y € H N K. Then:

e x,y € H = xy € H (since H is a subgroup)
e,y € K = xy € K (since K is a subgroup)
» Thereforexy € H N K



Step 3: Inverse property
letx € H N K. Then:

crcH=x'cH
crxc K=z 'cK
e Thereforex ' € HN K

Conclusion: H N K is a subgroup of G.

Extension: The same proof shows that the intersection of any collection of subgroups is a
subgroup.



Ezercised6(b) : In the group Z, find (8, 13) and an integer k such that the subgroup
equals (k).

Solution:
Method: For {(a, b) in Z, we have (a, b) = (gcd(a,d)).

Step 1: Find gcd(8, 13) using Euclidean algorithm:

. 13=1-8+5
. 8=1-5+3
e 5=1-3+2
. 3=1.-2+1
. 2=2.140

Therefore ged(8,13) = 1.



Step 2: Express 1 as a linear combination: Working backwards:

. 1=3-1-2
.1=3-1-(5-1-3)=2-3-1-5
.1=2-(8—1-5)—1-5=2-8—3-5
.1=2-8-3-(13-1-8)=5-8—3-13

Answer: (8,13) = (1) = Z,sok = 1.



Exercise 47: Prove Theorem 3.6.

Solutilon: See class notes.



Exercise 50: Suppose a belongs to a group and |a| = 5. Prove that C'(a) = O(ag). Find
an element a from some group such that |a| = 6 and C(a) # C(a”).

Solution:

Part 1: Prove C’(a,) = C(a,g) when |a\ =5

6

5:tﬂz,.them,'r, = Q.

Since a

Show C(a) C C(a’):
fz € C(a), then za = az, so ra® = raaa = araa = aara = aaaTr = a’z.

show C(a®) C C(a):

fz € C(a®), then za® = a’z, so z(a’®)* = (a”)*z, which gives za = az.

Therefore C'(a) = C(a?).



Part 2: Find @ with |a| = 6 and C(a) # C(a?).
Consider a = Rgg- in Dyg (rotation by 60°).

a\ = 6 and a3 — R180°
+ C(a) = { Ry, Reo, R120°, Riso"; Ra40°, R300° } (all rotations)

.+ C(a®) = C(Rigy") = Dg (since Rygy- commutes with all elements)

Since C'(a) # Dg, we have C(a) # C(a®).



1 1
0 1

we view A as a member of SL(2, Zp) (p is prime), what is the order of A?

Exercise 53: Consider the element A = [ ] in SL(2,R). What is the order of A? If

Solution: Part 1: Order in SL(2, R). Let's compute powers of A:

R

#=loaflo )=l 3

rerah Ik

0 1,10 1 0 1
n_ (1 0n .
In general, A" = 0 1] for any positive integer n.

Since A" = I requires n = 0 in the upper right entry, and this never occurs for positive n

in R, we have A™ # I forallm > 0. Answer: |A| = 0o in SL(2,R).



Part 2: Order in SL(2,Z,)

n .
1 where 1 is computed modulo p.

In Z,, we have A" =

1
0
For A" = I,weneedn =0 (mod p).

The smallest positive integer n such thatn =0 (mod p) isn = p.

Verification: AP = i) (i) = 1inZ,.

1
0

1
0

Answer: |A| = pin SL(2, Zp) for any prime p.



Exercise 54: Consider the elements A = [(1) _01] and B = [_01

SL(2,R).Find |A|, | B|, and | AB|. Does your answer surprise you?

Solution: Find | Al:
0 —1
=l

S G R P

S [ Y

0 -1|[1 0 —1 0
0 1] [0 =1 1 0
4 _ A3 A — _ _
At = A A__10]_1 0_[0 1]_1

Therefore |A| = 4.



Find [B: B = |
T

2 __

B -1 -1

B> = B?.B =

Therefore | B| = 3.

iy

I'_k DI




Find |[AB]:
=0 o] 15 A=l
e | R

(ABP:(AB)Q-AB:E ﬂ [tl) HZB ﬂ

1 n

In general, (AB)" = [O |

] for positive integers n.

Since (AB)™ # I for any positive integer n, we have | AB| = oco. Answer: |A| = 4,
|1B| =3, |AB| = .

Surprising observation: Despite both A and B having finite order, their product AB has
infinite order. This demonstrates that the order of a product can behave very differently from

the orders of the individual factors, even when both factors have finite order.



Exercise 60: In the group R* find elements a and b such that |a| = 0o, |b| = oo and
lab| = 2.

Solution:
We need to find a, b € R* with infinite order such that (ab)2 = 1.

Strategy: Let ab = —1, so (ab)® = (—1)* = 1, giving |ab| = 2.

Example: Leta = 2and b = — ,

+ |a| = |2| = oo (since 2" # 1 for any positive integer n)
. 1
bl =] — 2| = 00 (since (—2)”’ # 1 for any positive integer n)
. 1
b=2-(—_)=-1
b=2-(-})
+ |ab| = | — 1| = 2 (since (—1)* = 1)

Answer:a = 2, b = — 0 satisfy the conditions.



Exercise 64(b): Compute |U(5)|, |U(7)|, |U(35)|.
Solution: Using Euler's totient function ¢(n) = |U(n)|:

[U(5)|: Since 5is prime: ¢p(5) =5 —1 =4

Verification: U (5) = {1, 2, 3,4}, s0 |U(5)| = 4.

[U(7)|: Since 7is prime: ¢(7) =7—1=6

Verification: U(7) = {1, 2, 3,4,5,6},s0 |U(7)| = 6.

U (35)]: bince 35 = 5 x 7 where ged(5,7) = 1.
d(35) =dp(bxT7)=¢(b) x d(7) =4 x6=24

Answer: |U(5)| =4 |U(7)| = 0, |U(35)| = 24.

Conjecture: For ged(r, s) = 1, we have |U(rs)| = |U(r)| x |U(s)|.



Exercise 77: Let G = GL(2,R) and

a 0 : . e
H = { { ] : a and b are nonzero 1ntegers} under matrix multiplication. Prove or

0 b
disprove that H is a subgroup of GL(2,R).

Solution: We need to check if H satisfies the subgroup criteria.

1 0

Check 1: Non-empty !0 1

] € H since 1, 1 are nonzero integers.

] a1 0 a2 0
Check 2: Closure Let A = {0 61] , B = [0 bJ c H.

_|a1a2 0
AB = [ 0 ble

Since a1, as, b1, by are nonzero integers, ajas and by by are nonzero integers.

Therefore AB € H.V



a 0

Check 3: 1 Let A =
ec nverse Le {0 b

b }

Problem: and ) are not integers unlessa = =1 and b = £1.
a

] € H where a, b are nonzero integers.

2 0

2 0 n

Counterexample: Let A = [

1
0
Then A ! = {2 1
3

U en

Conclusion: H is not a subgroup of GL(2, R) because it fails the inverse property.
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