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Abstract
Exposure to alkaline stress is common in aquatic practices. The present research investi-
gated the detrimental impacts of rearing Nile tilapia under alkaline water stress by investi-
gating the liver function indices and transcriptomic profile. A 30-day study was conducted 
on 160 fish (16.02 ± 0.14 g) split into four groups, each with four replicates. Group 1 (G1) 
and G2 were fed on a basal diet fortified with 0 and 75 g/kg diet camel whey protein hydro-
lysates (CWP) and reared in freshwater (carbonate alkalinity = 1.4 mmol/L, pH = 7.19). 
Moreover, G3 and G4 were fed on a basal diet enriched with 0 and 75 g/kg diet CWP and 
reared in alkaline water (carbonate alkalinity = 23.8 mmol/L; pH = 8.65). The outcomes 
revealed elevated lipid indices (triglycerides, cholesterol, low- and high-density lipopro-
teins) and liver enzymes (alanine and aspartate aminotransferase, alkaline phosphatase, 
and gamma-glutamyltransferase) with lowered protein indices (total protein, albumin, and 
globulin) in alkaline-reared fish. Moreover, oxidative stress was initiated through lowered 
antioxidant enzymes (superoxide dismutase, catalase, and reduced glutathione) and higher 
malondialdehyde in the alkaline-exposed fish. Alkaline stress induced the activation of the 
mechanistic target of rapamycin and MAPK pathway (mitogen-activated protein kinase, 
c-Jun NH terminal kinase, and MAPK-1) with down-regulation of the autophagy-related 
genes (ATG-5, ATG-7, and ATG-13) and cathepsin B expression. Feeding on a CWP-sup-
plemented diet resulted in significant modulation of the lipid profile, liver enzyme activity, 
and improvement in protein indices and antioxidant enzyme activity. Furthermore, modu-
lation of the transcriptomic profile of the hepatic tissue of the alkaline-exposed fish was 
noticed due to feeding on a CWP-supplemented diet. Overall, CWP dietary addition at a 
level of 75 g/kg diet can alleviate the alkaline stress exposure in Nile tilapia. These out-
comes could contribute to understanding the physiological circumstances of Nile tilapia 
when reared in alkaline water as well as provide a novel dietary additive for mitigating the 
bad consequences due to alkaline-stress exposure.
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Introduction

Aquaculture contributes significantly to the security of the world’s food supply and gives humans 
vital nutritional support (Zhang et al. 2022). Nonetheless, aquaculture’s growth has been severely 
hampered by a lack of water (Dawood et al. 2021). Alkaline land represents one-third of the 
world’s total land area, is found in more than 100 countries, and is formed by prolonged evapora-
tion, droughts, or little rain (Zhang et al. 2023a, 2023b). Therefore, creating alkaline water would 
be a useful strategy to advance the expansion of aquaculture (Ondrasek and Rengel 2021), and it 
is imperative to maintain the sustainable development of aquaculture (Zhao et al. 2020).

However, alkaline stress has been investigated to induce detrimental sequences on fish 
well-being and productivity (Liu et  al. 2023; Fan et  al. 2021). Alkalinity is the primary 
stress aquatic animals suffer, which impedes the growth of aquaculture (Song et al. 2021). 
Stress due to alkalinity raises the blood bicarbonate (HCO3–) concentration and throws 
off the equilibrium of ammonia (NH3) and ammonium  (NH4+) as a result of a hydrogen 
 (H+) deficit, which ultimately leads to ammonia toxicity (Yao et al. 2010). Alkalosis causes 
abnormal metabolism of amino acids, which primarily explains why aquatic animals in 
saline-alkaline water have poor protein utilization and slowed growth (Fan et al. 2021).

The liver is one of the largest and most researched internal organs in fish (Long et al. 2022). 
In addition to metabolizing and detoxifying numerous xenobiotics and excreting toxins, it can 
also break down and eliminate nutrients taken in by the digestive system (Roques et al. 2020). 
Additionally, it is a crucial tissue during times of environmental stress and contributes a crucial 
role in detoxification and metabolism (Roychowdhury et al. 2021). Alkaline stress badly affects 
the liver tissue through elevation of the serum acid phosphatase, alkaline phosphatase, and ala-
nine transaminase activity and initiates inflammatory responses (Zhou et al. 2024).

Excellent biological values and functional characteristics of whey proteins include their abil-
ity to bind fatty acids, minerals, and vitamins, as well as their abundance of essential amino 
acids (Guo 2019). One potential source of nutritive proteins in large quantities is camel whey 
proteins. Enzymatic hydrolysis is a common technique to produce bioactive peptides from 
different sources of proteins (Osman et al. 2021b; Saad et al. 2020; El-Sanatawy et al. 2021). 
Hydrolyzed proteins found in camel milk can produce a mixture of bioactive peptides. These 
peptides have functional characteristics, such as antioxidant, anti-hypertensive, antidiabetic, and 
antimicrobial properties (Abdel-Hamid et al. 2016, 2020; Osman et al. 2021a). These protein 
fractions are α-lactalbumin (α-LA) (> 50%), immunoglobulins, lactoferrin, and camel serum 
albumin (CSA) (Momen et al. 2019). Bioactive peptides found in camel whey protein hydro-
lysates (CWP) have anti-inflammatory and antioxidant characteristics (Behrouz et  al. 2022). 
CWP reduced heat stress–induced liver damage when tested in normal Rattus norvegicus 
hepatocyte cell culture by a concentration of 10, 30, and 50 µg/mL (Du et al. 2021) and pre-
vented heat stress–related oxidative damage, inflammatory processes, and lymphocyte apop-
tosis in mice orally administered CWP at a dose of 100 mg/kg body weight (Badr et al. 2018).

Because of their high nutritional value and benefits to the economy, tilapias are widely 
used aquaculture species and are farmed in 127 countries (Wu et al. 2023). The main tilapia 
species raised for food is the Nile tilapia (Oreochromis niloticus), due to its capacity to with-
stand stress (Dawood et al. 2020).

This paper aims to utilize Nile tilapia as a valuable model species for examining the 
impact of alkalinity stress on various physiological aspects, including hepatic func-
tioning enzymes, lipid metabolism, oxidative stress, inflammatory conditions, and the 
expression of genes associated with autophagy and inflammasome pathways. Addition-
ally, we will explore the tissue microarchitecture alterations induced by alkalinity stress 
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on hepatic tissue. Furthermore, we seek to investigate the potential of dietary CWP in 
enhancing tolerance to alkalinity stress. Specifically, our focus will be on assessing the 
effects of CWP diets on hepatic function and structure.

Materials and methods

CWP preparation

Camel milk samples were obtained from a modern farm in Bilbies City (Sharkia Governorate, 
Egypt). We added 1 M HCl at pH 4.6 to precipitate the caseins (CNs) and then centrifuged 
(Jouan C4-22 Benchtop Centrifuge, France) the mixture (6000 × g, 1 h at 4  °C). After the 
whey was obtained, it was lyophilized, dialyzed against a 50 mM phosphate buffer (pH 7.8), 
and refrigerated until required. Enzymatic hydrolysis of camel whey protein was conducted 
using trypsin from porcine pancreas (EC3.4.21.4) (Merck, KGaA, Darmstadt, Germany). 
Under the following conditions, buffer, 0.1  M  Na2HPO4-NaH2PO4; pH, 8.8; temperature, 
37 °C; enzyme/substrate ratio, 1/200 E/S (w/w), we fully mixed the substrate and enzyme 
and then incubated them for 4 h at 37 °C with constant stirring. To inactivate the enzyme, we 
boiled the mixture in a bath for 10 min at 100 °C. Next, we centrifuged the CWP for 10 min 
at 5000 × g and 4 °C. Finally, the supernatant was lyophilized and stored at − 20 °C until use 
(Abdel-Hamid et  al. 2017). The trichloroacetic acid (TCA) method was used to determine 
the degree of hydrolysis (DH) (Hoyle and Merritt 1994). Following hydrolysis, 20 mL of 
CWP and an equivalent volume of TCA (20%; w/v) were mixed until the final concentration 
of TCA was 10%. After the mixture was allowed to stand for 30 min, it was centrifuged at 
8000 × g for 10 min. The DH was then calculated using the following formula after the super-
natant’s protein level was evaluated using the Kjeldahl method:

DH (%) = (soluble nitrogen in TCA 10% / total nitrogen in sample) × 100.

Antioxidant activity of CWP evaluation

Using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, the antioxi-
dant capacity of CWP was evaluated at 0, 1, 2, 3, and 4 h. With minor modifications, the 
DPPH radical scavenging activity was ascertained (Göçer and Gülçin 2011; Ramadan 
et al. 2008). Each sample was diluted with 1 to 4 mL of 0.15 mM DPPH (in 95% etha-
nol) and vortexed vigorously. Before determining the absorbance at 517 nm, the reac-
tion mixture was kept at room temperature for 30 min in the dark. The reduction in the 
absorbance of the DPPH radicals was used to compute the samples’ radical scavenging 
capacity, which was determined using the formula:

Radical scavenging activity (%) = [(A control − A sample)/A control] × 100. 
A = absorbance at 517 nm.

Fish and rearing condition

Nile tilapia fish (16.02 ± 0.14 g) was gained from the Fish Research Unit at Zagazig Uni-
versity in Egypt and housed in 100-L glass aquaria. The fish were clinically examined for 
health status and then were adapted to the laboratory settings for 2 weeks during which 
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they were fed on a basal diet to apparent satiation three times daily. The aquaria were sup-
plied with artificial aeration through air stones and pumps. Daily removal of the waste 
materials from the aquarium by siphoning with complete removal of the water 2 times/
week was carried out. By the APHA (1998), the water parameters were assessed. The dis-
solved oxygen (DO) and water temperature were evaluated using an oxygen meter (970 
portable DO meter, Jenway, London, UK). The pH was evaluated using a pH meter (Digital 
Mini-pH Meter, model 55, Fisher Scientific, Denver, CO, USA). The ammonia level was 
evaluated using the Ammonia MR checker (HANA Instruments Co., Egypt). The water 
parameters were as follows: (DO) (6.8 ± 0.4 mg/L), water temperature, pH (6.9 ± 0.4) 
(26.4 ± 1.5 °C), and ammonia (0.02 ± 0.001 mg/L).

Selection of the dietary level of CWP and carbonate alkalinity

A preliminary study was conducted using 225 Nile tilapia for the determination of the opti-
mum dietary level of CWP for 30 days (Supplementary Material 1). The fish were divided 
into five groups in triplicates (45 fish/group; 15 fish/replicate) and were fed on five grading 
levels of CWP 0, 25, 50, 75, and 100 g  kg−1 diet. The growth metrics (final body weight 
(FBW), total weight gain (TWG), specific growth rate (SGR), and average daily weight 
gain (ADWG)) were significantly improved by the CWP diets (25–100 g  kg−1 diet) with 
the improvement of the feed conversion ratio (FCR) relative to the control. According to 
the broken-line regression model, CWP75 was the best dietary level based on the data of 
TWG and FCR, so a dietary level of 75 g  kg−1 diet CWP was used for our experimental 
study. In addition, we used the carbonate alkalinity level of 23.8 mmol/L according to the 
previous study (Cheng et al. 2022) in Nile tilapia.

Diet preparation and experimental setup

Two diets were developed to meet the dietary needs of Nile tilapia (NRC 2011). The con-
trol diet was a basal diet (Table 1) with no dietary supplements, while the CWP diet was a 
basal diet that contained 75 g/kg of CWP. Using a meat mincer, the diet components were 
machinely combined and then formed into 1.5-mm pellets. After that, they were air-dried 
at 25 °C for 24 h with frequent rotation. Finally, the pellets were packed in a refrigerator at 
4 °C until they were needed. A total of 160 fish were split into four groups, with four repli-
cates for each group (10 fish per replicate; 40 fish total). The first control group (C) and the 
second (CWP) were raised in freshwater (pH of 7.19 and carbonate alkalinity of 1.4 mmol/L) 
and fed basal diets enriched with 0 and 75 g CWP/kg diet, respectively. The third (ALK) 
and the fourth (CWP + ALK) groups were given the basal diet and the CWP-supplemented 
diet, respectively, and they were kept in alkaline water (pH = 8.65; carbonate alkalinity = 23.8 
mmol/L). For 30 days, the fish were kept in experimental settings and fed prepared diets. The 
diets were introduced 3 times/day (10 a.m., 1 p.m., and 4 p.m.) until apparent satiation during 
the trial period. Every day, fish deaths and clinical signs were noted.
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Sampling

Fish (12/group) were fasted for 24 h at the termination of the experiment before blood 
sampling. The average size of the fish at the end of the experiment was 31.69 ± 2.83 g. The 
fish were sedated using a 100 mg/L benzocaine solution following the Neiffer and Stamper 
(2009) method. The caudal blood vessels were pierced to collect blood samples. To extract 
the serum, the samples were centrifuged for 10 min at 1075 × g. The serum was then kept 
at − 20 °C to evaluate the biochemical parameters. The fish were killed using benzocaine 
solution (400 mg/L) (Tran-Duy et al. 2008) to obtain the tissue samples. Fifty milligrams 
of liver tissue (12/group) was sampled and preserved in 1 mL of QIAzol (Qiagen, Ger-
many). After that, the tissue was stored at − 80 °C in an RNAlater (Sigma-Aldrich, Poole, 
UK) until an assay for gene expression was conducted. Furthermore, liver tissue (12 sam-
ples/group) was taken and kept for histological analysis in 10% neutral buffered formalin 
(El Gomhouria Co. Egypt).

Table 1  Formulation and 
proximal chemical composition 
of the basal diet (g/kg on a dry 
basis)

* NFE “Nitrogen free extract” = 1000 − (g/kg crude pro-
tein + fat + ash + crude fiber)
** Digestible energy (DE) was calculated by applying the coefficient of 
0.75 to convert gross energy to digestible energy
# Premix: Each 1 kg of premix contains vitamin A 550,000 IU, vitamin 
D 110,000  IU, vitamin E 11,000  mg, vitamin K 484  mg, vitamin C 
50 g, vitamin B1 440 mg, vitamin B2 660 mg, vitamin B3 13,200 mg, 
vitamin B5 1100 mg, vitamin B6 1045 mg, vitamin B9 55 mg, cho-
line 110,000 mg, biotin 6.6 mg, iron 6.6 g, copper 330 mg, manganese 
1320 mg, zinc 6.6 g, selenium 44 mg, and iodine 110 mg

Basal diet

Ingredients
Fish meal 180
CWP 0
Fish oil 60
Ground yellow corn 243
 Soybean meal 44% 255

Corn gluten 60% CP 110
Wheat 50
Wheat bran 90
Premix# 12
Calculated chemical analysis
Crude protein, CP 336.2
Fat 94.6
NFE* 385.6
Crude fiber 37.4
Calcium 10.4
Lysine 18.3
Methionine 7.1
Available phosphorus 9.1
DE (Kcal/kg)** 2907.3
CP/DE (mg/Kcal) 115.6
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Biochemical indices

The technique of Fossati and Prencipe (1982) was applied to measure the serum triglyc-
erides (TG) using the TG quantification kit. TGs were broken down into glycerol and free 
fatty acids. Following its release, the glycerol underwent oxidation to yield a product that 
reacted with a probe to produce a color that was detected at 570 nm by a spectrophotom-
eter (APEL, PD-303 UV, Kawaguchi, Japan). As per Allain et  al. (1974), the measure-
ment of cholesterol (CHO) was conducted using the cholesteryl ester enzyme assays. The 
techniques outlined by Henry (1964) and Doumas et al. (1971) were applied to determine 
serum total protein (TP) and albumin (ALB), respectively. ALB’s value was subtracted 
from the TP value to determine serum globulin (GLO). Using commercial kits (Biodiag-
nostic Co., Giza, Egypt), serum alanine (ALT) and aspartate aminotransferase (AST) lev-
els were assessed in compliance with Reitman and Frankel (1957) recommendations. By 
mixing 0.25 mL of buffered l-alanine with 50 mL of supernatant, the amount of ALT was 
determined. The mixture was then incubated for 30 min at 37 °C. This mixture was mixed 
with 0.25 mL of 2,4-dinitrophenylhydrazone (2,4-DNPH) and allowed to stand at room 
temperature for 20 min. Next, 2.5 mL of sodium hydroxide (0.4 (N) NaOH) was added, 
well combined, and allowed to stand for 10 min. At 505 nm, the OD was measured in a UV 
spectrophotometer. To determine the AST level, a 50-mL sample was mixed with 0.25 mL 
of buffered aspartate, and the mixture was then incubated for 60 min at 37 °C. Following 
the addition of 0.25 mL of 2,4-DNPH, the mixture was allowed to stand for 20 min at room 
temperature. Next, 2.5 mL of 0.4 (N) NaOH was added, well combined, and allowed to 
stand for 10 min. At 505 nm, the OD was measured using a UV spectrophotometer (Tong-
fang, Inc., China). According to Molina et al. (2005), acid phosphatase (ACP) was used as 
a marker enzyme to measure the ALP at 400 nm OD. Gamma-glutamyltransferase (GGT) 
activity was determined using the kit (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China) following the manufacturer’s instructions for spectrophotometry at 450 nm. 
Total bilirubin (T-BLR) was assessed according to Ngashangva et al. (2019) which relies 
on the reaction of bilirubin with diazotized sulfanilic acid (DSA) producing a red color. 
The absorbance value was measured at 546 nm wavelength. Serum high-density lipopro-
tein (HDL) and low-density lipoprotein (LDL) were assessed with the kits using an auto-
matic biochemistry analyzer (CHEMIX-800, Sysmex Corporation, Kobe, Japan) following 
the manufacturer’s instructions.

Hepatic oxidant/antioxidant indices

The oxidant/antioxidant parameters were estimated spectrophotometrically in the hepatic 
homogenate. Utilizing the kits (Bio-Diagnostic, Cairo, Egypt), the superoxide dismutase 
(SOD) (catalog no. SD2521), catalase (CAT) (catalog no. CA2517), reduced glutathione 
(GSH) (catalog no. TA2511), and malondialdehyde (MDA) (catalog No. MD2529) were 
assessed. SOD was assessed based on the ability of the enzyme to prevent the phenazine 
methosulphate–mediated reduction of nitroblue tetrazolium dye at 560 nm wavelength. The 
enzymatic reaction mixture, which contained samples, potassium phosphate (pH 7.0), and 
hydrogen peroxide  (H2O2), was used to calculate CAT. The molar attenuation coefficient 
of  H2O2 was determined using a UV–VIS spectrophotometer set at 240 nm. The basis for 
determining GSH was the reduction of 5,5′dithiobis (2-nitrobenzoic acid, DTNB), dis-
solved in 25 mM PBS, pH 7.0, by the GSH to produce a yellow product measured at 405 
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nm. The MDA level was assessed using thiobarbituric acid method. At 535 nm, the reac-
tive components of thiobarbituric acid were measured and then expressed in terms of MDA 
generated.

Real‑time quantitative polymerase chain reaction (RT‑qPCR) analysis

RNA was obtained from frozen liver specimens utilizing the QIAzol (Qiagen, Germany). 
Using the Quantitect® Reverse Transcription kit (Qiagen, Germany), the extracted RNA 
was utilized to obtain the first strand of cDNA. The autophagy-related gene 5 (ATG-5), 
autophagy-related gene 7 (ATG-7), autophagy-related gene 13 (ATG-13), mitogen-acti-
vated protein kinase (P38), c-Jun NH terminal kinase (JNK), mitogen-activated protein 
kinase (MAPK-1), mechanistic target of rapamycin (mTOR), and cathepsin B with ubiq-
uitin-conjugating enzyme (ubce2) as a housekeeping gene were assessed (Table 2). Using 
a QuantiTect® SYBR® Green PCR kit (Qiagen, Germany), the qPCR analysis was car-
ried out in a Rotor-Gene Q instrument with thermocycler conditions: 95 °C for 10 min, 
followed by 40 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s. The relative 
mRNA expression pattern of every gene was calculated following the comparative  2−ΔΔCt 
protocol (Schmittgen and Livak 2008).

Table 2  Primer list

TM melting temperature, ubce2 ubiquitin-conjugating enzyme, ATG-5 autophagy-related gene 5, ATG-7 
autophagy-related gene 7, ATG-13 autophagy-related gene 13, P38 mitogen-activated protein kinase, JNK 
c-Jun NH terminal kinase, MAPK-1 mitogen-activated protein kinase, mTOR mechanistic target of rapamy-
cin

Gene Sequence TM Primer efficiency Size Accession no

ubce2 CTC TCA AAT CAA TGC CAC TTCC 57.63 102.5 130 XM_003460024.5
CCC TGG TGG AGG TTC CTT GT 61.43

ATG-5 TTA TGT GCC ACT GGG AGC AG 60.04 98.51 152 XM_003450274.5
CTC ACC CTG GGT AAC AGC AG 60.04

ATG-7 ACC CTG TTT CCG TAC GGT TC 59.97 99.5 156 XM_025907253.1
ACG TAC CGT CAG TTT TCG CT 59.97

ATG-13 TAC AGG GCT CCC GAT GAA GA 60.03 98.42 112 XM_003455882.5
TGG AGG CGT ACA GCT GAG A 60.3

P38 GTT TCC CGG CAC TGA CCA TA 60.04 100.5 98 XM_003448218.5
CCT CAT AGC TGG GCA TCC TG 59.96

JNK AAA GCG TGG TGG AGT CTC TG 59.97 102.52 104 XM_005455390.4
CTC CCT CTC AGC CTC TTC CT 60.03

MAPK-1 CTT TGG TTT GGC TCG TGT GG 59.97 98.45 171 XM_003444474.5
TTG GAC AGC ATC TCA GCC AG 60.04

mTOR CGA ATA GCA ATT AGG CCG TCCA 60.81 94.68 75 XM_003449131.5
GTC CAC TGA CAA ACT GCT GC 59.69

Cathepsin B AAA TGG CAC TCC CTA CTG GC 60.03 94.85 92 MF422074.1
AGT GAT CTG AAC CAC GCA GG 60.04
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Histopathological analysis

Liver samples (12/group) were taken following the procedures detailed by Meyers (2009). 
Promptly, these specimens were subjected to formalin fixation and paraffin embedding, 
sectioning at 5 µm thick, and hematoxylin and eosin staining as stated by Suvarna et al. 
(2018). Next, a comprehensive histological assessment of the liver tissue sections was car-
ried out to calculate the frequencies of the histological alterations (alt), if any, and precisely 
determine the liver index for each group following the protocol designed by Bernet et al. 
(1999). The alt were recorded in 10 high-power fields (40 ×) chosen randomly for each fish 
(100 fields for each group). The lesion frequencies were calculated using the for-
mula:frequency (F) = N(alt)

N(total)
× 100 , where N (alt) is the number of times of appearance of 

the alteration and N (total) is the total number of 40 × microscopic fields in the group (100). 
The liver index for each group (the higher the liver index, the worse the pathological condi-
tion) was calculated from the formula: Liver index = Σrp Σalt (arp alt × wrp alt). A light micro-
scope was used to examine the stained slides, and any changes to the histology were noted. 
The AmScope ToupView v4.8.15934 software (AmScope, Irvine, CA, USA) was used for 
all of the microscopic morphometric measurements.

Statistical analysis

To make sure that the results obtained were regularly distributed, the Shapiro–Wilk test 
was applied. The experimental results were statistically examined using a one-way analy-
sis of variance (ANOVA) utilizing IBM’s SPSS version 17. When comparing the means 
of various groups, Duncan’s post hoc test was used, and the statistical significance was 
acceptably P < 0.05. The results of the analysis were shown as means ± standard error (SE).

Results

Characterization of CWP

Trypsin hydrolyzed CWP at a 1:200 E/S ratio (E/S) under ideal conditions for 4 h. We 
estimated the DH and the antioxidant activity in CWP at varying intervals (1–4 h) and pre-
sented the results in Fig. 1. The DH gradually increased from 13 after 1 h to 32% after 4 h 
(Fig. 1A). There was a parallel increase in antioxidant capacity from 48% at 1 h to 80% at 4 
h (Fig. 1B). The tryptic hydrolysates of CWP-4h (highest antioxidant activity) were chosen 
for the feeding experiment.

Lipid profile results

As shown in Table  3, TG and CHO levels were substantially higher (P < 0.05) in the 
ALK group than the CWP + ALK group relative to the C group (control), with no sub-
stantial variation between the C and CWP groups. A substantial rise (P < 0.05) in the 
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HDL with a substantial decrease (P < 0.05) in the LDL was noted in the CWP group 
relative to the C group. On the contrary, the ALK group showed a substantial decrease 
in the level of HDL and a substantial rise in the LDL followed by the CWP + ALK 
group relative to the C group.
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Fig. 1  Degree of hydrolysis (DH %) of CWPs (E/S = 1:200) during 4 h at 37 °C and pH 8 (A), and DPPH 
free radical scavenging activity of CWPs hydrolysates) 500 µg/mL) produced by trypsin (E/S = 1:200) at 
37 °C and pH 8 at different time intervals (B). Different small letters indicate significant differences follow-
ing Duncan’s post hoc test (P < 0.05)

Table 3  Effect of dietary supplementation of camel whey protein hydrolysates (CWP) on the biochemical 
parameters of Nile tilapia exposed to alkaline stress for 30 days

Variation in the data was expressed as means ± SE
TG triglycerides, CHO cholesterol, HDL high-density lipoprotein, LDL low-density lipoprotein, TP total 
protein, ALB albumin, GLB globulin, ALT serum alanine aminotransferase, AST serum aspartate ami-
notransferase, ALP alkaline phosphatase, GGT  gamma-glutamyltransferase, T-BLR total bilirubin, C control 
group was fed basal diet and reared in freshwater, CWP group was fed basal diet supplemented with 75 g/kg 
diet CWP and reared in freshwater, ALK and CWP + ALK fish groups fed basal diets supplemented with 0 
and 75 g/kg diet CWP, respectively, and reared in alkaline water
a,b,c Mean values in the same row with different superscripts differ significantly P < 0.05 (one-way ANOVA; 
Duncan’s post hoc test) (n = 12/group)

Parameters C CWP ALK CWP + ALK P-value

TG (mg/dL) 114.11 ± 4.04a 113.99 ± 2.24a 146.77 ± 4.38b 136.637 ± 3.79c  < 0.001
CHO (mg/dL) 130.84 ± 5.00a 132.19 ± 1.90a 176.84 ± 5.27b 150.85 ± 5.57c 0.04
HDL (mg/dL) 54.21 ± 0.71a 63.36 ± 0.64b 42.65 ± 0.84c 48.20 ± 1.07d 0.01
LDL (mg/dL) 76.63 ± 5.21a 68.83 ± 5.48b 134.19 ± 0.81c 102.65 ± 0.5.08d 0.04
TP (g/ dL) 3.33 ± 0.07a 3.76 ± 0.04b 2.12 ± 0.06c 2.86 ± 0.05d  < 0.001
ALB (g/ dL) 1.72 ± 0.02a 1.81 ± 0.06b 1.33 ± 0.02c 1.78 ± 0.05d  < 0.001
GLB (g/ dL) 1.61 ± 0.04a 1.95 ± 0.02b 0.79 ± 0.11c 1.08 ± 0.02d  < 0.001
ALT (U/L) 9.61 ± 0.36a 9.81 ± 0.61a 15.11 ± 0.63b 12.74 ± 0.53c  < 0.001
AST (U/L) 37.87 ± 4.54a 35.37 ± 3.31a 84.43 ± 1.87b 62.74 ± 3.27c  < 0.001
ALP (U/L) 130.55 ± 3.32a 133.64 ± 4.84a 181.32 ± 1.85b 165.43 ± 4.36c  < 0.001
GGT (U/L) 2.90 ± 0.08a 2.89 ± 0.13a 4.94 ± 0.32b 3.41 ± 0.36c 0.001
T-BLR (mg/dL) 0.50 ± 0.01a 0.53 ± 0.02a 0.65 ± 0.01b 0.58 ± 0.01c 0.001
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Protein profile results

A substantial rise (P < 0.05) in the TP, ALB, and GLB was noted in the CWP group relative 
to the C group. On the contrary, these variables considerably declined in the ALK group 
comparable to the C group, which were modulated in the CWP + ALK group (Table 3).

Liver function indices results

No significant alteration was noticed in the ALT, AST, ALP, GGT, and T-BLR between the 
C and CWP groups (Table 3). These indices were significantly (P < 0.05) increased in the 
ALK group relative to the C group, which were modulated in the CWP + ALK group.

Oxidant‑antioxidant results

The SOD, CAT, and GSH activities were considerably increased (P < 0.05) in the CWP 
group comparable to the C group. The activity of these enzymes was considerably lowered 
in the ALK group comparable to the C group, which was modulated in the CWP + ALK 
group. There was no considerable variation in the MDA level between the C and CWP 
groups, while the level of MDA (P < 0.05) was considerably higher in the ALK group rela-
tive to the C group, which was modulated in the CWP + ALK group (Table 4).

Gene expression results

The ATG-5 and ATG-13 expression was considerably (P < 0.05) down-regulated in the 
ALK group relative to the C group, with no considerable variation between the C and CWP 
groups. Moreover, the ATG-7 expression was up-regulated (P < 0.05) in the CWP group 

Table 4  Effect of dietary supplementation of camel whey protein hydrolysates (CWP) on the oxidant/anti-
oxidant functions of Nile tilapia exposed to alkaline stress for 30 days

Variation in the data was expressed as means ± SE
SOD superoxide dismutase, CAT  catalase, GSH reduced glutathione, MDA malondialdehyde, C control 
group was fed basal diet and reared in freshwater, CWP group was fed basal diet supplemented with 75 g/kg 
diet CWP and reared in freshwater, ALK and CWP + ALK fish groups fed basal diets supplemented with 0 
and 75 g/kg diet CWP, respectively, and reared in alkaline water
a,b,c Mean values in the same row with different superscripts differ significantly P < 0.05 (one-way ANOVA; 
Duncan’s post hoc test) (n = 12/group)

Parameters C CWP ALK CWP + ALK P-value

SOD (U  g−1) 146.34 ± 5.32a 199.18 ± 5.24b 69.19 ± 1.78c 109.86 ± 5.22d  < 0.001
CAT (U  g−1) 7.17 ± 0.60a 10.18 ± 0.54b 1.88 ± 0.14c 3.91 ± 0.18d  < 0.001
GSH (U  g−1) 152.40 ± 3.76a 184.43 ± 6.34b 68.97 ± 2.75c 103.65 ± 6.49d  < 0.001
MDA (nmol  mg−1) 0.68 ± 0.05a 0.79 ± 0.07a 3.03 ± 0.09b 2.99 ± 0.09c  < 0.001
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and down-regulated in the ALK group comparable to the C group. The ATG-5, ATG-7, 
and ATG-13 expressions were considerably modulated in the CWP + ALK group relative 
to the ALK group (Fig. 2). Figure 3 shows a considerable rise (P < 0.05) in the expression 
of P38, JNK, and MAPK-1 in the ALK group followed by the CWP + ALK group relative 
to the C group, with no considerable variation between the C and CWP group in the P38 
expression. The expression of mTOR (Fig. 4) was substantially up-regulated (P < 0.05) in 
the ALK group, and then the CWP + ALK group relative to the C group, with no consider-
able variation between the C and CWP group. The expression of cathepsin B was increased 
(P < 0.05) in the CWP group relative to the C group (Fig. 4), and cathepsin B expression 
was decreased in the ALK group comparable to the C group, which modulated in the 
CWP + ALK group.

Histopathological results

The C and CWP groups showed normal histology of the tilapia’s hepatopancreas without 
any histological alterations (Fig. 5 (A) and (B)). The ALK group exhibited numerous alter-
ations, primarily of a degenerative and inflammatory nature. The most encountered lesions 
included acute cellular swelling, single-cell necrosis, focal lytic necrosis, tiny multifo-
cal lipidosis (Fig. 5 (C1)), vascular congestion with inflammatory cell infiltrates particu-
larly with the wandering granular eosinophilic cells (Fig. 5 (C2)), and hyperplasia of the 
melanomacrophage centers (Fig. 5 (C3)). CWP showed moderate hepatoprotective effects 
against the hepatopathy induced by the alkaline water stress. Although similar lesions were 
present in the tissue sections of the CWP + ALK group (Fig. 5 (D1), (D2), and (D3)) com-
pared to the ALK group, they were less frequent and less severe. The statistical analysis 
for the hepatopathic alterations in all groups and the liver indices was presented in Table 5.

Fig. 2  mRNA expression of autophagy-related genes (ATG-5, ATG-7, and ATG-13) of Nile tilapia exposed 
to alkaline stress for 30 days and fed on camel whey protein (CWP) diet. Values are represented as the 
mean ± SE. The means within the same bar carrying different superscripts are significant at P < 0.05 (one-
way ANOVA; Duncan’s post hoc test) (n = 12/group). C, control group was fed basal diet and reared in 
freshwater; CWP, group was fed basal diet supplemented with 75 g/kg diet CWP and reared in freshwater; 
ALK and CWP + ALK were fish groups fed basal diets supplemented with 0 and 75 g/kg diet CWP, respec-
tively, and reared in alkaline water
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Discussion

A wide area of the world’s water resources is made up of alkaline water, which has an 
impact on the physiological functions of aquatic species, including tissue water content, 

Fig. 3  mRNA expression of mitogen-activated protein kinase (P38), c-Jun NH terminal kinase (JNK), and 
mitogen-activated protein kinase (MAPK-1) of Nile tilapia exposed to alkaline stress for 30 days and fed 
on camel whey protein (CWP) diet. Values are represented as the mean ± SE. The means within the same 
bar carrying different superscripts are significant at P < 0.05 (one-way ANOVA; Duncan’s post hoc test) 
(n = 12/group). C, control group was fed basal diet and reared in freshwater; CWP, group was fed basal diet 
supplemented with 75 g/kg diet CWP and reared in freshwater; ALK and CWP + ALK were fish groups fed 
basal diets supplemented with 0 and 75 g/kg diet CWP, respectively, and reared in alkaline water

Fig. 4  mRNA expression of mechanistic target of rapamycin (mTOR) and cathepsin B of Nile tilapia 
exposed to alkaline stress for 30 days and fed on camel whey protein (CWP) diet. Values are represented 
as the mean ± SE. The means within the same bar carrying different superscripts are significant at P < 0.05 
(one-way ANOVA; Duncan’s post hoc test) (n = 12/group). C, control group was fed basal diet and reared in 
freshwater; CWP, group was fed basal diet supplemented with 75 g/kg diet CWP and reared in freshwater; 
ALK and CWP + ALK were fish groups fed basal diets supplemented with 0 and 75 g/kg diet CWP, respec-
tively, and reared in alkaline water
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hemolymph osmolality pressure, and survival (Su et al. 2020). One of the main stresses on 
fish is alkaline water (Shang et al. 2021). In this research, we looked at the impact of car-
bonate alkalinity on the liver tissue as a main organ of metabolism and detoxification, as 
well as the potential role of CWP in mitigating this alkaline stress. Our results showed that 
alkaline stress elevated the serum TG, CHO, and LDL levels in Nile tilapia. Alkaline stress 
was reported to activate the super pathway of cholesterol biosynthesis in Amur ide (Leu-
ciscus waleckii) (Xu et al. 2013) and serum triglycerides level in Amur minnow (Phoxinus 
lagowskii) (Zhou et al. 2024). Elevated cholesterol and triglycerides in fish are regarded as 
indicators of poor health (Kikuchi et al. 2009; Rahimnejad et al. 2021). Increased TG, CHO, 
and LDL levels are attributed to the mobilization of lipids via oxidation or a process of 
lipid molecules being gradually reconstituted from the synthesis site for use later on. These 
lipid molecules are typically employed to combat stress. An elevated lipid profile can result 
from a disruption in lipid metabolism or from poor blood clearance, which can support liver 
dysfunction. Membrane alterations or damage lead to a subsequent change in the lipid pro-
file (Javed and Usmani 2015). Noteworthy, the CWP diet improved the lipid profile of Nile 
tilapia reared under alkaline stress by lowering the TG, CHO, and LDL levels and increas-
ing the HDL level. These outcomes could related to the hypolipidemic effect of CWP active 
peptides (Kilari et al. 2021). In addition, CWP peptides may influence lipid metabolism by 
inhibiting pancreatic lipase and CHO esterase enzyme activity (Baba et al. 2021).

Fish nutritional and physiological status is frequently correlated with blood protein lev-
els (Maita 2007). During times of malnutrition or stress, blood protein levels diminish as 
a result of proteolysis or oxidation of amino acids (Peres et al. 2014). In this study, alka-
line stress reduced the blood protein profile (TP, ALB, and GLB). This reduction could be 
brought on by impaired synthesis and nonspecific proteolysis of serum proteins to meet 
increased energy demands during stress, as well as vascular leakage of serum proteins 
(Kumar et  al. 2018; Singh et  al. 2019). The protein profile of the fish exposed to alka-
line conditions was enhanced in this study by the CWP diet. These outcomes could be 
explained by the CWP richness of amino acids like tryptophan, phenylalanine, tyrosine, 
histidine, and cysteine (Osman et al. 2021a; Salami et al. 2010; Elias et al. 2005).

ALT and AST are indicators of a shift in physiological state or stress which func-
tion on the link between proteins and carbohydrates in metabolism. These enzymes 
have been utilized to demonstrate damage to fish and liver tissues (Asztalos and Nemc-
sok 1985). ALP is involved in the production and release of specific enzymes, cell dif-
ferentiation, growth, metabolism of carbohydrates, and protein synthesis. It has been 
observed that fish that are stressed or injured have higher levels of this enzyme (Al-
Khshali and Al Hilali 2019). GGT is a liver enzyme that has an extensive distribution 
in cells that are involved in bile secretion and absorption. It is produced by the micro-
somes. It serves as a useful indicator in the laboratory for any damage to the liver cells 
(Ovie et al. 2012). Heme, a substance derived from red blood cell hemoglobin or other 
hemoproteins, is broken down to produce bilirubin. Bilirubin is eliminated through 
urine and feces after being secreted through the bile. Damage to liver function results 
in elevated blood bilirubin (Hastuti et al. 2019). In this study, the alkaline-exposed fish 
showed an elevation of ALT, AST, ALP, GGT, and T-BLR. The results of elevated liver 
enzymes were confirmed by the histopathological investigation of the hepatic tissue 
of the alkaline-exposed fish in this study. The liver of alkaline-exposed fish revealed 
numerous alterations, primarily of a degenerative and inflammatory nature. In addition, 
An increase in metabolic transport may be the cause of elevated hepatic enzyme levels, 
which could ultimately cause a change in the alkaline-exposed fish’s energy metabolism 
and biosynthesis pathway (Oyeniran et al. 2021). Elevated liver function enzymes (ALT, 
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AST, and ALP) were previously reported in Chinese mitten crab (Eriocheir sinensis) 
as a result of alkaline stress (Li et al. 2022). Noteworthy, the CWP diet modulated the 
liver function enzymes of alkaline-exposed fish and improved the hepatic histological 
picture. These outcomes could be attributed to the hepatoprotective effect of CWP due 
to its amino acid content with powerful antioxidant activity (Osman et  al. 2021a). In 
addition, Kilari et al. (2021) reported that CWP has a hepatoprotective effect as a result 
of its active peptides which ameliorate liver damage in rats.

Reactive oxygen species (ROS) are produced in excess when antioxidant enzyme 
activity is low, leading to oxidative stress (Chowdhury and Saikia 2020). Lipid per-
oxidation results in the generation of MDA (Özok 2020). In this research, alkaline 
stress exhibited higher MDA levels and lower antioxidant enzymes (SOD, CAT, and 
GSH). Similar oxidative stress was noted in the hybrid tilapia (O. niloticus × O. aureus) 
under alkaline stress (Han et  al. 2016). CWP diet significantly improved the antioxi-
dant enzyme activity and lowered the MDA level in the liver of alkaline-exposed fish. 
The antioxidant properties of CWP were confirmed in this study through high DPPH 
radical scavenging activity (80%). Similar results were obtained by Alsaloom (2024) 
who reported that CWP has antioxidant capacity through high DPPH radical scaveng-
ing activity (70%). The antioxidant properties of CWP could be related to the availabil-
ity of the bioactive peptides; these peptide fractions have scavenging behavior through 
their ability to act as electrons or hydrogen donors in free radical reactions (Alsaloom 
2024; Al-Shamsi et  al. 2018). Furthermore, Abd and Rahim (2020) stated that CWP 
has some electron-donating molecules which interact with free radicals and prevent the 

Fig. 5  Representative H&E-stained light photomicrographs of the hepatic tissue sections showing normal 
hepatopancreas in the C (A) and CWP (B) groups. The hepatic tissue of the ALK group shows single-cell 
necrosis (black arrowhead), focal lytic necrosis (black arrow), tiny multifocal lipidosis (black ellipses) (C1), 
vascular congestion (red arrow) with inflammatory cell infiltrates particularly with the wandering granular 
eosinophilic cells (blue arrowheads) (C2), and hyperplasia of the melanomacrophage centers (red ellipse) 
(C3). Noticeable reductions in the severity of the lesions were seen in the hepatic tissue sections of the 
CWP + ALK group which shows mild lipidosis (black ellipse) (D1), few wandering granular eosinophilic 
cells (blue arrowhead) (D2), and mild hyperplasia of the melanomacrophage centers (red ellipse) (D3). C, 
control group was fed basal diet and reared in freshwater; CWP, group was fed basal diet supplemented 
with 75 g/kg diet CWP and reared in freshwater; ALK and CWP + ALK were fish groups fed basal diets 
supplemented with 0 and 75 g/kg diet CWP, respectively, and reared in alkaline water
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radical chain reaction. In addition, CWP has cysteine, tyrosine, histidine, phenylalanine, 
and tryptophan in their structure, which can scavenge oxygen-free radicals (Osman et al. 
2021a; Salami et al. 2010; Elias et al. 2005).

In this study, we analyzed various gene expressions associated with key pathways such as 
autophagy and inflammation. We aimed to elucidate the mechanisms by which alkaline stress 
may influence the hepatic microenvironment. In eukaryotes, autophagy functions as an intra-
cellular degradation system, a non-lethal response to preserve cellular homeostasis, and a 
stress adaptation mechanism that averts cell death in the event of shifting internal and external 
circumstances (Tang et al. 2018). Autophagy also contributes to the clearance of intracellular 
proteins and organs, anti-aging processes, cell death, and tumor suppression. Numerous ill-
nesses can be brought on by abnormal levels of autophagy (Tanida 2011). Autophagy path-
ways are controlled by intracellular signal transduction pathways, such as the mTOR signal-
ing pathway (Xia et al. 2019). Among the autophagy genes are ATG-5, ATG-7, and ATG-13. 
MAPK superfamily is a member of serine/threonine protein kinase and has crucial roles in the 
way that cells react to external stimuli (Qu et al. 2020). The key players in signal transduc-
tion pathways, P38 and JNK, are primarily activated by inflammatory cytokines and environ-
mental stress (Xu et al. 2020). P38 can regulate stress responses and is essential for shielding 
organisms from environmental dangers (Zhang et al. 2019). JNKs are essential for controlling 
inflammatory reactions, cell death, and stress response (Roy et al. 2008). mTOR is a serine-
threonine protein kinase which considered an important component in determining cellular 
nutrition and energy status (Jiang et al. 2013). mTOR signaling pathway is essential for con-
trolling the production of autophagy and apoptosis (Liang et al. 2020). One of the common 
members of the cysteine protease family is cathepsin B. It possesses both endopeptidase and 
exopeptidase activity. It is crucial for the presentation of antigens, their degradation, apop-
tosis, the inflammatory response, and the physiological processes involved in many diseases 
(Shen et al. 2021). In this study, alkaline stress up-regulated mTOR and MAPK-related genes 
(P38, JNK, and MAPK-1) expression and down-regulated the autophagy-related genes (ATG-
5, ATG-7, and ATG-13) and cathepsin B expression. Alkaline stress–induced up-regulation of 
mTOR expression may help preserve energy and increase survival during protracted stressful 
situations (Teets et al. 2012). Activation of the mTOR expression was previously reported as a 
result of alkaline stress in Amur ide (Leuciscus waleckii) (Xu et al. 2013). In addition, activa-
tion of the MAPK pathway was previously reported as a result of alkaline stress in the Chinese 
mitten crab (Eriocheir sinensis) (Wang et  al. 2023). Numerous cellular processes linked to 
pathological conditions, including apoptosis, the inflammatory response, and immunological 
disorders, are mediated by the expression of cathepsin B (Shen et al. 2021). Noteworthy, the 
CWP diet in this study modulated the detrimental effect of alkaline stress through modula-
tion of the autophagy, MAPK, mTOR, and cathepsin B expression in the alkaline-exposed fish. 
These results confirmed the anti-stress properties of CWP. Overall, CWP can be applied as a 
feed additive in the Nile tilapia diet for mitigating the alkaline stress, which gives a novel pro-
scriptive for rearing this species in alkaline water.

Conclusion

Alkaline stress disrupted the metabolism in the Nile tilapia liver through elevation of the 
lipid profile and function enzymes by lowering the protein profile. In addition, there is 
the activation of the mTOR and MAPK pathway with down-regulation of the autophagy 
and cathepsin B expression in the hepatic tissue. Dietary supplementation with 75  g/kg 
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diet CWP modulated the liver function enzymes and lipid profile with improvement of the 
protein profile of the alkaline exposed fish, as well as the modulation of the hepatic tran-
scriptomic profile of Nile tilapia during alkalinity exposure. We proposed a new dietary 
addition (75 g CWP/kg diet) for ameliorating the stress consequences in Nile tilapia reared 
under alkaline conditions.
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