Limits Definitions

Precise Definition : We say $\lim_{x \to a} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $0 < |x-a| < \delta$ then $|f(x)-L| < \varepsilon$.

"Working" Definition : We say $\lim_{x\to a} f(x) = L$ if we can make f(x) as close to L as we want by taking x sufficiently close to a (on either side of a) without letting x=a.

Right hand limit : $\lim_{x\to a^+} f(x) = L$. This has the same definition as the limit except it requires x>a.

Left hand limit : $\lim_{x \to a^-} f(x) = L$. This has the same definition as the limit except it requires x < a.

Limit at Infinity : We say $\lim_{x\to\infty}f(x)=L$ if we can make f(x) as close to L as we want by taking x large enough and positive.

There is a similar definition for $\lim_{x\to -\infty} f(x) = L$ except we require x large and negative.

Infinite Limit : We say $\lim_{x \to a} f(x) = \infty$ if we can make f(x) arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting x = a.

There is a similar definition for $\lim_{x\to a}f(x)=-\infty$ except we make f(x) arbitrarily large and negative.

Relationship between the limit and one-sided limits

$$\lim_{x \to a} f(x) = L \quad \Rightarrow \quad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \qquad \qquad \lim_{x \to a^+} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \quad \Rightarrow \quad \lim_{x \to a} f(x) = L$$

$$\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x) \quad \Rightarrow \quad \lim_{x \to a} f(x) \text{Does Not Exist}$$

Properties

Assume $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist and c is any number then,

1.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

2.
$$\lim_{x\to a}\left[f(x)\pm g(x)\right]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)$$

3.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

4.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 provided $\lim_{x \to a} g(x) \neq 0$

5.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n$$

6.
$$\lim_{x \to a} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x \to a} f(x)}$$

Basic Limit Evaluations at $\pm\infty$

1.
$$\lim_{x\to\infty} \mathbf{e}^x = \infty$$
 & $\lim_{x\to-\infty} \mathbf{e}^x = 0$

$$2. \, \lim_{x \to \infty} \ln(x) = \infty \quad \& \quad \lim_{x \to 0^+} \ln(x) = -\infty$$

3. If
$$r > 0$$
 then $\lim_{x \to \infty} \frac{b}{x^r} = 0$

4. If
$$r>0$$
 and x^r is real for negative x then $\lim_{x\to -\infty}\frac{b}{x^r}=0$

5.
$$n$$
 even : $\lim_{x \to +\infty} x^n = \infty$

6.
$$n \text{ odd}$$
 : $\lim_{x \to \infty} x^n = \infty$ & $\lim_{x \to -\infty} x^n = -\infty$

7.
$$n \text{ even}$$
 : $\lim_{x \to \pm \infty} a \, x^n + \dots + b \, x + c = \operatorname{sgn}(a) \infty$

8.
$$n$$
 odd : $\lim_{x\to\infty} a \, x^n + \dots + b \, x + c = \mathrm{sgn}(a)\infty$

9.
$$n \text{ odd}$$
: $\lim_{x \to -\infty} a x^n + \cdots + c x + d = -\operatorname{sgn}(a) \infty$

Note:
$$sgn(a) = 1$$
 if $a > 0$ and $sgn(a) = -1$ if $a < 0$.

Evaluation Techniques

Continuous Functions

If $f(x) \text{is continuous at } a \text{ then } \lim_{x \to a} f(x) = f(a)$

Continuous Functions and Composition

f(x) is continuous at b and $\lim_{x \to a} g(x) = b$ then $\lim_{x \to a} f\left(g(x)\right) = f\left(\lim_{x \to a} g(x)\right) = f\left(b\right)$

Factor and Cancel

$$\lim_{x \to 2} \frac{x^2 + 4x - 12}{x^2 - 2x} = \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x(x - 2)}$$
$$= \lim_{x \to 2} \frac{x + 6}{x} = \frac{8}{2} = 4$$

Rationalize Numerator/Denominator

$$\begin{split} &\lim_{x\to 9} \frac{3-\sqrt{x}}{x^2-81} = \lim_{x\to 9} \frac{3-\sqrt{x}}{x^2-81} \ \frac{3+\sqrt{x}}{3+\sqrt{x}} \\ &= \lim_{x\to 9} \frac{9-x}{(x^2-81)(3+\sqrt{x})} = \lim_{x\to 9} \frac{-1}{(x+9)(3+\sqrt{x})} \\ &= \frac{-1}{(18)(6)} = -\frac{1}{108} \end{split}$$

Combine Rational Expressions

$$\begin{split} &\lim_{h\to 0}\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right)=\lim_{h\to 0}\frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)\\ &=\lim_{h\to 0}\frac{1}{h}\left(\frac{-h}{x(x+h)}\right)=\lim_{h\to 0}\frac{-1}{x(x+h)}=-\frac{1}{x^2} \end{split}$$

L'Hospital's/L'Hôpital's Rule

If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$ then,
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \ a \text{ is a number, } \infty \text{ or } -\infty$$

Polynomials at Infinity

p(x) and q(x) are polynomials. To compute $\lim_{x\to\pm\infty}\frac{p(x)}{q(x)} \text{ factor largest power of } x \text{ in } q(x) \text{ out of }$

both p(x) and q(x) then compute limit. $\lim_{x \to -\infty} \frac{3x^2 - 4}{5x - 2x^2} = \lim_{x \to -\infty} \frac{x^2 \left(3 - \frac{4}{x^2}\right)}{x^2 \left(\frac{5}{x} - 2\right)}$

$$5x - 2x^{2} \quad x \to -\infty \quad x^{2} \left(\frac{3}{x} - 2\right)$$

$$= \lim_{x \to -\infty} \frac{3 - \frac{4}{x^{2}}}{\frac{5}{x} - 2} = -\frac{3}{2}$$

Piecewise Function

$$\lim_{x \to -2} g(x) \text{ where } g(x) = \left\{ \begin{array}{ll} x^2 + 5 & \text{if } x < -2 \\ 1 - 3x & \text{if } x \geq -2 \end{array} \right.$$

Compute two one sided limits,

$$\lim_{\substack{x\rightarrow -2^-\\\lim_{x\rightarrow -2^+}}}g(x)=\lim_{\substack{x\rightarrow -2^-\\x\rightarrow -2^+}}x^2+5=9$$

One sided limits are different so $\lim_{x\to -2}g(x)$ doesn't exist. If the two one sided limits had been equal then $\lim_{x\to -2}g(x)$ would have existed and had the same value.

Some Continuous Functions

Partial list of continuous functions and the values of *x* for which they are continuous.

- 1. Polynomials for all x.
- 2. Rational function, except for *x*'s that give division by zero.
- 3. $\sqrt[n]{x}$ (n odd) for all x.
- 4. $\sqrt[n]{x}$ (n even) for all x > 0.
- 5. e^x for all x.

- 6. ln(x) for x > 0.
- 7. cos(x) and sin(x) for all x.
- 8. tan(x) and sec(x) provided $x \neq \cdots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \cdots$
- 9. $\cot(x)$ and $\csc(x)$ provided $x \neq \cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots$

Intermediate Value Theorem

Suppose that f(x) is continuous on [a,b] and let M be any number between f(a) and f(b). Then there exists a number c such that a < c < b and f(c) = M.