CLS 468 - Immunology Clinical Practice

Allergy Testing

Shaden Alharbi

Updated: Jun, 2023

Outline

- I. Overview of allergy
- II. Types of Allergy Testing

1. In vivo testing

- a. Skin Prick Test
- b. Intradermal Test

2. In vitro testing

- a. The total IgE assay
- b. Serum-specific IgE assays
- Automated testing for Allergy and Phadia system
- c. The Basophil Activation Test (BAT)

I. Overview of Allergy

- Allergies arise if the body's immune system <u>overreacts</u> to foreign substances (allergens) that are <u>usually harmless</u> for most people, such as pollen or certain foods.
- Allergic reactions most often occur on the <u>skin</u> and in the <u>airways</u> and <u>mucous</u> <u>membranes.</u>
- Immunoglobulin E (IgE) is produced in response to allergens.
- **Basophils and mast cells** are recognized as important effector cells in immediate hypersensitivity responses.

Figure 1. Development of allergy

II. Types of Allergy Testing

Allergy testing can be categorized into:

- 1. In vivo testing:
 - a. Skin Prick Test (SPT): This represents the first level of approach for the diagnosis of type I, immediate, IgE-mediated allergy.
 - b. Intradermal Test (IDT): This can be used to evaluate both immediate IgE-mediated allergy and delayed-type hypersensitivity, according to the time of read-out. It has increased sensitivity and decreased specificity compared to SPT.
 - c. **Patch test:** This is used for delayed type, <u>cell-mediated</u>, hypersensitivity reactions. It has <u>no relevance for IgE-mediated</u> allergy.

II. Types of Allergy Testing

- 2. In vitro diagnosis of IgE-mediated allergic diseases
 - a. The total IgE assay is <u>nonspecific</u> and provides only <u>gross</u> information.
 - Serum-specific IgE assays against allergen sources/molecules are the most commonly used in vitro diagnostic approach. It can be performed by a single-plexed or multiplexed strategy.
 - c. The Basophil Activation Test (BAT) is quite specific, but complex to perform, and therefore limited to selected situations.

1. In Vivo Allergy Testing

1.a. Skin Prick Test

• Skin prick testing (SPT) is the most

<u>frequently used method</u> for the detection of IgE antibodies, due to its rapidity, simplicity, and low cost.

- Skin tests should include the <u>relevant</u> <u>allergens</u> in the given geographical area and ideally be carried out only using standardized allergenic extracts.
- approximately after 25 min the wheals are interpreted, if >3 mm it indicates a positive reaction.

Figure 2. Skin prick testing procedure

1.b. Intradermal Test

• In a patient with a strong clinical suspicion of an IgE-mediated disease with negative skin prick

tests, the intradermal test (IDT) can be considered.

- Intradermal testing (IDT) is important to reveal both immediate IgE-mediated allergy and delayed-type hypersensitivity.
- Uses in assessing hypersensitivity to drugs or Hymenoptera venoms.

1.b. Intradermal Test

Technique:

• 0.02 mL of allergens are injected intradermally

with small needles to produce a small bleb,

and the outcome measure is an increase in

the size of the wheal with a flare reaction at 20

minutes.

Figure 3. Intradermal test procedure

Skin Prick Test V.S Intradermal Test

Table 1. Relative advantages/disadvantages of prick and intradermal allergy skin testing.

	Prick test	Intradermal test
Simplicity	++++	++
Speed	++++	++
Interpretation of positive and negative reactions	++++	++
Discomfort	+	+++
False-positive reactions	Possible	Likely
False-negative reactions	Possible	Rare
Reproducibility	+++	++++
Sensitivity	+++	++++
Specificity	++++	+++
Indicative of IgE antibodies	Yes	Yes
Safety	++++	++
Testing of infants	Yes	Difficult

2. In Vitro Allergy Testing

2.a. The total IgE assay

- The total IgE assay is nonspecific and provides only gross information.
- Serum IgE concentration is largely age-dependent.
- Very high IgE levels are observed in <u>parasitic</u> infections.
- Total IgE values are reported in equivalence of kU/L.

2.b. Serum-specific IgE assays

Two ways of measuring specific IgE recognizing allergenic epitopes:

- **Singleplex**: single reagents.
- Multiplex: a pre-defined panel of a number of molecules to be tested simultaneously.

Example of Specific IgE allergens assays:

- Food: Egg white, milk, fish, wheat, peanut.
- Molds and yeast: aspergillus.
- Weed pollens: insects, and mites.
- Epidermal and animal protein: grass pollens.

Testing methodologies for specific IgE

Table 2. The most commonly used systems for specific IgE detection include the following distinct components.

Producer	Solid phase	Allergens	Patient's serum	Anti-IgE	Anti-IgE Labelling	Enzyme substrate	Stop solution	Reading system
RAST	Sephadex or paper	Extract	0.05 mL/ sample	Polyclonal	¹²⁵	none	NN	Gamma-counter
Phadia	Polymer of hydrophilic, highly branched cellulose derivative enclosed in a capsule.	Extract or recombinant bound covalently to the solid phase	0.04 mL	Mouse monoclonal anti-human IgE	β- Galattosidase	4-metilumbelliferil- β-D-galattoside	Na Carbonate	Photometer
Siemens	Streptavidin- covered polystyrene ball conjugated with streptavidin-	Extract or recombinant allergens covalently to soluble biotinylated polylysine polymers.		anti-IgE antibody (mAb ? pAb?)	Alkaline phosphatase	4-methoxy-4-(3- phosphatephenyl)- spiro-(1,2- dioxetane-3,2'- adamantane)	N.S.	Light emission detector (chemiluminescence)
Hycor	Magnetic, streptavidin- coated microparticles incubated with a biotinylated allergen	Extract or recombinant	0.04 mL	A mixture of two mouse monoclonal Anti-IgE	Horseradish Peroxidase	acridin based chemiluminescent substrate	N.S.	Light emission detector (chemiluminescence)
Euroimmun	Paper	Extract or recombinant	1000 mL		Alkaline phospatase		Water	Scanner

The main reagents used in the assay

- The reaction site is a surface carrying the allergen-encapsulated hydrophilic carrier polymer to which the allergen is covalently coupled.
- The allergen-containing reagent can be represented by a solid-phase allegro-sorbent or liquid-phase conjugated allergen.
- The nature of allergens used for specific IgE: allergens can be both <u>raw extract allergens</u> or <u>single molecules (obtained by recombinant DNA technology or by biochemical purification</u> from natural extracts).
- Sample: both serum and plasma can be used.
- The anti-human IgE Fc detection reagents (ɛ heavy-chain specific): combinations of polyclonal and monoclonal (mAb) anti-human IgE and labeled human a-FcɛR170 have also been used to detect human IgE.

The main reagents used in the assay

- Antibody labeling and detection methods:
 - Anti-human anti-Ab were originally labeled with ¹²⁵I (the original Radio Allergo-Sorbent Test – RAST).
 - Other labeling techniques using enzymes have been adopted such as:
 - b-Galactosidase (b-Gal) <u>used in Phadia system.</u>
 - Alkaline phosphatase (AP).
 - Horseradish Peroxidase (HPO).
 - enzyme substrates reagent: pNPP for AP, "perox" for HPO.

Automated testing for Allergy

- The **Phadia Laboratory Systems** (formerly known as ImmunoCAP®) include the Phadia 100, Phadia 250, Phadia 1000, Phadia 2500, and Phadia 5000.
- They are all **fully automated** laboratory systems <u>designed for the testing of allergy and</u> <u>autoimmune diseases.</u>

Phadia 200 instrument

Figure 4. Phadia instruments models.

Phadia 250

instrument

Phadia 2500

Phadia 250

3

Stop solution and development solution

- Coole
- Cooled storage chamber for 180 barcode-controlled EliA and ImmunoCAP carriers

Sample diluent and dilution plates for onboard dilution of samples.

- Reagent barcode reader
- Cooled conjugate compartment

- Strip tray for calibrator strips and/or curve control strips.
- Patient and control sample racks

Figure 5. Phadia 250 instrument.

Phadia 250 ImmunoCAP Reagent

- The reagents for the allergy assays are based on the well-established **ImmunoCAP** format.
- Over 500 different allergens and allergen components are available for allergy testing, with new analytes continually being developed and released.

Figure 6. ImmunoCAP reagents.

ImmunoCAP Assay Principle

Assay Principle

- The antigen of interest, covalently bound to the ImmunoCAP well, reacts with the analyte in the patient sample.
- After washing away unbound analyte, enzyme-labeled antibodies are added to form a complex.
- After incubation, unbound enzyme label is washed away, and the bound complex is then incubated with a developing agent.
- 4. After stopping the reaction, the **fluorescence** of the eluate is measured. The higher the fluorescence, the more analyte that is present in the sample.

Figure 7. ImmunoCAP principle

ImmunoCAP Result

Result:

- Results for ImmunoCAP Allergen mixes are <u>qualitative</u> values and <u>0.35 kU/l</u> is recommended as a **cut-off value**.
- Values ≥0.35 kU/L indicate **specific IgE antibodies** to one or more of the allergens coupled to ImmunoCAP Allergen mixes.

2.c. The Basophil Activation Test (BAT)

Cellular assays - basophil activation test:

- This test assesses selected and defined functions of effector cells within the allergic cascade.
- It is particularly helpful in cases of <u>equivocal and/or negative results</u> obtained with other in vitro and in vivo tests and in cases of <u>discrepant results</u>.
- Basophils express the high-affinity IgE receptor (FcERI), and thus they carry specific IgE (sIgE) antibodies on their surface and <u>degranulate</u> when the allergen cross-links these sIgE/ FcERI complexes.
- This <u>degranulation</u> of basophils can be detected and quantified by flow cytometry.

BAT Analysis

- 1. Surface-marker combinations for the identification of basophils include:
 - CCR3þ/CD3-, or CD123þ/HLA-DR-, or IgEþ/CD203cþ.
 - The only lineage-specific basophil marker is <u>CD203c.</u>
- 2. Appearance and/or up-regulation of the desired activation/degranulation marker is investigated:
 - CD63 is a <u>degranulation marker</u> that appears during compounded degranulation of the cell.
 - CD203c serves as an <u>activation marker</u>.
 - In the resting basophil, the <u>expression of CD203c is low.</u>
 - In the activated basophil a rapid and marked <u>increase in CD203c</u> is observed.

BAT Principle

Figure 8. BAT Principle

BAT Analysis

Figure 9. BAT result analysis.

References:

- Alcocer, M. and Yman, L. (2013) 'Allergy', in *The Immunoassay Handbook*. Elsevier, pp. 857–867. https://doi.org/10.1016/B978-0-08-097037-0.00068-3.
- Ansotegui, I.J. *et al.* (2020) 'IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization Journal, 13(2), p. 100080.
 https://doi.org/10.1016/j.waojou.2019.100080.
- Gore, A., Evans, G. and Rilvën, M. (2013) 'Phadia Laboratory Systems', in *The Immunoassay Handbook*. Elsevier, pp. 617–619. <u>https://doi.org/10.1016/B978-0-08-097037-0.00052-X</u>.