CLS 281

**Basic Biochemistry and Biomolecules** 



Experiment 1

### **General Color Tests for Proteins**

# **Biomolecules**



The four significant classes of Biomolecules: Lipids, Nucleic acids, Carbohydrates, and Proteins.

## Background

- **Proteins** are the most abundant and functionally diverse molecules in living systems.
- Proteins display an incredible diversity of functions, yet all share the common structural feature of being linear polymers of amino acids.
- Amino acids are covalently linked through (-CO-NH-) peptide bonds.



Peptide bonds. Amino acids in a polypeptide chain are joined through peptide bonds between the carboxyl group of one amino acid and the amino group of the next amino acid in the sequence.

## Background

- The <u>first carbon</u> following the carboxyl carbon is the **alpha carbon**. The <u>second carbon</u> following the carboxyl carbon is the **beta carbon**.
- There are 20 amino acids commonly found as constituents of mammalian proteins.
- Each amino acid has a primary amino group bonded to the αcarbon atom, except for proline, which has a secondary amino group.



R-NH<sub>2</sub>











Structural features of free amino acid.

#### **Classification of Amino Acid**



#### **Classification of Amino Acid**





### Levels of protein structure

#### There are four levels of protein structure:

- The **primary structure** (linear sequence of amino acids within the protein)
- The **secondary structure** (a regular, repeating pattern of hydrogen bonds stabilizing a particular structure)
- The **tertiary structure** (the folding of the secondary structure elements into a three-dimensional conformation)
- The **quaternary structure** (the association of subunits within a protein)



The four hierarchies of protein structure.

### Secondary protein structure



### Methods of protein detection

- Several techniques have been developed for detecting or measuring protein in a sample.
- Each technique has its own advantages, limitations, and uses.

#### General Proteins Color Tests:

- 1. Biuret Test
- 2. Ninhydrin Test
- 3. Xanthoproteic Test
- 4. Lowry
- 5. Bradford
- 6. BCA
- 7. Direct spectrophotometry at 280 nm.

#### Table.1 Methods of protein measurements.

| Method                                         | Sensitivity              | Time                  | Principle                                                                                                               | Interferences                                                           | Comments                                                                                                                                                      |
|------------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biuret                                         | Low 1–20 mg              | Moderate<br>20–30 min | Peptide bonds +<br>alkaline $Cu^{2+} \rightarrow$<br>purple complex                                                     | Zwitterionic<br>buffers, some<br>amino acids                            | Similar color with all proteins. Destructive to protein samples.                                                                                              |
| Lowry                                          | High ~5 μg               | Slow<br>40–60 min     | <ol> <li>Biuret reaction</li> <li>Reduction of<br/>phosphomolybdate-<br/>phosphotungstate<br/>by Tyr and Trp</li> </ol> | Ammonium<br>sulfate, glycine,<br>zwitterionic<br>buffers,<br>mercaptans | Time-consuming.<br>Intensity of color<br>varies with proteins.<br>Critical timing of<br>procedure.<br>Destructive to protein<br>samples.                      |
| 3radford                                       | High ~1 μg               | Rapid 15<br>min       | $\lambda_{max}$ of Coomassie<br>dye shifts from 465<br>nm to 595 nm<br>when protein-<br>bound                           | Strongly basic<br>buffers;<br>detergents Triton<br>X-100, SDS           | Stable color that<br>varies with proteins.<br>Reagents<br>commercially<br>available. Destructive<br>to protein samples.<br>Discoloration of<br>glassware.     |
| BCA                                            | High 1 μg                | Slow 60<br>min        | (1) Biuret reaction<br>(2) Copper complex<br>with BCA;<br>$\lambda_{max} = 562 \text{ nm}$                              | EDTA, DTT,<br>ammonium<br>sulfate                                       | Compatible with<br>detergents. Reagents<br>commercially<br>available. Destructive<br>to protein samples.                                                      |
| Spectro-<br>Shotometric<br>(A <sub>280</sub> ) | Moderate<br>50 — 1000 μg | Rapid<br>5–10 min     | Absorption of 280-<br>nm light by<br>aromatic residues                                                                  | Purines,<br>pyrimidines,<br>nucleic acids                               | Useful for<br>monitoring column<br>eluents. Nucleic acid<br>absorption can be<br>corrected.<br>Nondestructive to<br>protein samples.<br>Varies with proteins. |

# Type of Testing

• **Qualitative** examinations measure the <u>presence or absence</u> of a substance.

 Quantitative examinations are used for determining the <u>amount</u> of an analyte in a sample. The amount is always expressed as <u>a number with appropriate</u> <u>units</u>.

### **Biuret Test**

- The biuret procedure is the **most widely** used method for the determination of total protein.
- In this reaction, cupric ions (Cu2+) are complex with the groups involved in the peptide bond.  $\begin{bmatrix} H & R & O & H & R & O \\ H & H & H & H & H \\ N-C-C-C-N-C-C \\ H & H & H & H \\ \end{bmatrix} \xrightarrow{Copper (II)}_{(Dip)}$
- Cupric ions react with the NHCO group that occurs in the peptide bond.

 $\begin{array}{c} R & O & H & R & O \\ -C & -C & -N & -C & -C \\ H & H & H \\ \end{array} \right) \begin{array}{c} Alkaline \\ + & Cu^{2 \circledast} \longrightarrow \\ Copper (III) \\ R & (Blue) \end{array} \right) \begin{array}{c} R & O & R & O \\ -L & H & -L & H \\ -L & C & -C & -C \\ H & H & H \\ \end{array} \right) \begin{array}{c} R & O & R & O \\ -L & H & -L & H \\ -C & -C & -C & -C \\ -L & H & -H \\ -L & -C & -C \\ -L & -C &$ 

Peptide-copper complex (Deep purple)

copper co-ordinated complex.

In an alkaline medium and the presence of <u>at least two peptide</u> <u>bonds</u>, a violet-colored is formed.

#### **Biuret Test**

#### Why its called the Biuret test?

- The method was named because a substance called biuret (NH2CONHCONH2) reacted with cupric ions in the same manner as protein.
- **Biuret** is a compound formed by heating 2 molecules of urea to 180°( which results in the **condensation** of 2 molecules of urea.

• When biuret is treated with dilute copper sulfate in an alkaline medium, a purple color is obtained due to the presence of 2 peptide bonds.



### **Biuret Test**

**Does Not Detect:** 

- Amino Acid
- **Dipeptides**: a dipeptide is an organic compound derived from two amino acids

#### Detect:

- **Tripeptides:** a tripeptide is a peptide derived from three amino acids joined by two or sometimes three peptide bonds.
- Proteins
- Histidine is the only amino acid that gives a positive result in the Biuret test.



#### **Biuret Test Procedure**

| Steps | Tube No.            | Tube 1     | Tube 2    | Tube 3    | Tube 4    | Tube 5           | Tube 6  |  |  |
|-------|---------------------|------------|-----------|-----------|-----------|------------------|---------|--|--|
| 1     | Sample              | 1 %casein  | 1%glucose | 1%sucrose | 1%alanine | 1%egg<br>albumin | H2O     |  |  |
|       | Volume              | 1 ml       | 1 ml      | 1 ml      | 1 ml      | 1 ml             | 1 ml    |  |  |
| 2     | Alkaline<br>Reagent | 10% NaOH   |           |           |           |                  |         |  |  |
|       | Volume              | 1 ml       | 1 ml      | 1 ml      | 1 ml      | 1 ml             | 1 ml    |  |  |
| 3     | Reagent             | 0.1% CUSO4 |           |           |           |                  |         |  |  |
|       | Volume              | 5 drops    | 5 drops   | 5 drops   | 5 drops   | 5 drops          | 5 drops |  |  |

Mix, and describe any color change that occurred

## Ninhydrin Test

- It is a general test used for detecting the presence of **proteins** and **peptides**, and **amino acids**.
- Amino acid (that has an α-amino group) reacts with ninhydrin to form a blue colored complex.
- This color is due to liberates NH3 with ninhydrin.
- What is Alpha-amino acid?

α-Amino acids are simple molecules that are made of a central C-atom, labeled Ca (Alpha carbon), that is bound to an **alpha amine group NH2 called (the free amino group, if it is attached to a single carbon atom).** 



## **Ninhydrin Test Chemical Reaction**



Proline gives yellow color due to the <u>lack</u> of **a free (primary) amino group.** 





## Ninhydrin Test

#### **Chromatographic Techniques**

#### **Application:**

- Ninhydrin is used to locate the α-amino acid in paper chromatography as blue to purple spots.
- Also, it permits the quantitative estimation of αamino acid and peptides in column chromatography.



A chromatogram of a protein sample stained purple with ninhydrin showing 4 amino acid pieces present at different positions



## Ninhydrin Test Procedure

| Steps | Tube No. | Tube 1                        | Tube 2   | Tube 3    | Tube 4    | Tube 5    | Tube 6           | Tube 7 |
|-------|----------|-------------------------------|----------|-----------|-----------|-----------|------------------|--------|
| 1     | Sample   | Dilute<br>ammonia             | 1%casein | 1%sucrose | 1%proline | 1%alanine | 1%egg<br>albumin | H2O    |
|       | Volume   | 1 ml                          | 1 ml     | 1 ml      | 1 ml      | 1 ml      | 1 ml             | 1 ml   |
| 2     | Reagent  | 0.1% <u>aqueous</u> ninhydrin |          |           |           |           |                  |        |
|       | Volume   | 1 ml                          | 1 ml     | 1 ml      | 1 ml      | 1 ml      | 1 ml             | 1 ml   |

3- Mix, incubate in a **boiling water bath for 4 minutes**, then cool.

4- Describe the color changes that occur in each test tube.

### **Xanthoproteic Test**

- The xanthoproteic test is a method that can be used to determine the amount of protein soluble in a solution using concentrated **nitric acid**.
- The test gives a positive result in those **proteins** with amino acids carrying aromatic groups.
- Nitration of the aromatic rings in Tyrosine and Tryptophan, with concentrated HNO3 nitric acid, produces a yellow color.



## **Xanthoproteic Test Principle**

- Tyrosine or Tryptophan + con.HNO3 —--(heat )----- yellow color
- The yellow color is due to Xanthoproteic acid, which is formed due to the nitration of certain amino acids.
- Xanthoproteic acid is a non-crystallizable yellow substance derived from proteins upon treatment with nitric acid.

#### Note:

- Phenylalanine does not produce the color because the benzene ring is not activated for **nitration**. However, at alkaline pH, the color changes to orange due to the ionization of the phenolic group.
- The salts of these derivatives are orange in color.



### **Xanthoproteic Test Procedure**

| Steps | Tube No. | Tube 1              | Tube 2   | Tube 3    | Tube 4              | Tube 5    | Tube 6           | Tube 7 |
|-------|----------|---------------------|----------|-----------|---------------------|-----------|------------------|--------|
| 1     | Sample   | 0.02%<br>tryptophan | 1%phenol | 1%sucrose | 1%<br>phenylalanine | 1%alanine | 1%egg<br>albumin | H2O    |
|       | Volume   | 2 ml                | 1 ml     | 1 ml      | 1 ml                | 1 ml      | 1 ml             | 1 ml   |
| 2     | Reagent  | Con. HNO3           |          |           |                     |           |                  |        |
|       | Volume   | 1 ml                | 1 ml     | 1 ml      | 1 ml                | 1 ml      | 1 ml             | 1 ml   |

3- Incubate in **boiling water bath for 2 mins**, then Cool.

4- Describe the change in color in each test tube.

## Safety Tips





White, crystalline solid; medicinal odor. Poison! Corrosive, causes severe burns to the eyes (blindness)/skin/respiratory tract. Also causes: severe neurological effects (shock and coma), liver and kidney damage. Absorbed through the skin. Combustible.

CAS No. 108-95-2



suffocating odor. Corrosive, causes severe burns to eyes/skin/respiratory tract. Also causes: heavy exposures: lung damage. Chronic: tooth erosion, bronchitis. Strong oxidizer capable of igniting combustibles.

CAS No. 7697-37-2

| Chemical | Hazards    |
|----------|------------|
| NaOH     | Corrosive  |
| CUSO4    | Toxic      |
| HNO3     | Corrosive  |
| phenol   | Irritation |





HMIS Classification

NFPA Classification

# Summary

| Test               | Detect                                        | Principle                                           | Positive<br>Result | Negative<br>Result       |
|--------------------|-----------------------------------------------|-----------------------------------------------------|--------------------|--------------------------|
| Biuret Test        | Proteins, peptide of at least 2 peptide bond  | (Cu2+) binding to NHCO that forms the peptide bond. | Violet             | Colorless-<br>light Blue |
| Ninhydrin Test     | Alpha amino acids                             | Ninhydrin bounding to alpha-<br>amino group         | Blue               | Colorless                |
| Xanthoproteic Test | Aromatic amino acid (tyrosine and tryptophan) | HNO3 nitration to an aromatic amino acid group.     | Yellow             | Colorless                |

# Guideline for writing the lab report

#### Total: 5 marks

All the following information should be included in your report:

- a) Course # (CLS 281)
- b) Experiment title
- c) Date of the experiment
- d) Student's names and university ID#
- e) Section #

The lab report is broken down into 6 sections:

- 1. Experiment title
- 2. The aim of the experiment (objective, or what the test detects specifically) (1 mark)
- 3. Principle (chemical reaction) (1 mark)
- 4. Methodology (written in steps, not in tables)
- 5. Result (1 mark)
- 6. Interpretation or Comment (2 mark)

Deadline: Next lab Submission: Handout next lab