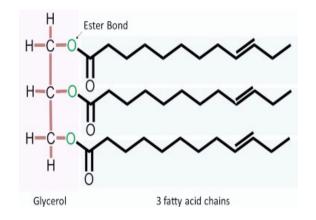
CLS 281

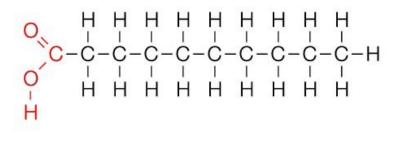
Basic Biochemistry and Biomolecules



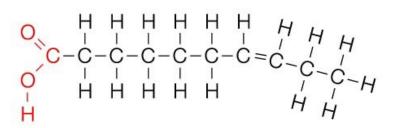
Experiment 8 Rancidity Testing Methods of Fat

Introduction

- Fats (lipids) are one of the main macronutrient groups in the human diet.
- Fat is a fuel source. It is a major storage form of energy in the body.
 - <u>Fatty Acids</u> are the building units of fat.
 - <u>A triglyceride:</u>
 - It is the major type of lipid used for energy storage.
 - It consists of glycerol and three fatty acids.



Types of fatty acid


- Saturated fatty acids
- Have hydrocarbon chains connected by single bonds only.
- Form: Solid at room temperature.

- Unsaturated fatty acids
- Have one or more double bonds.
- Form: Liquid.

Saturated

Unsaturated

Rancidification of Fat

- **Rancidity** happens when fat is exposed to heat, light, or oxygen over a period of time.
 - The atmospheric oxygen reacts with the double bound in fatty acids to form peroxide.
 - The microorganisms hydrolyze the fat with the liberation of free fatty acids and glycerol.
 - The more free fatty acids in the oil, the more acidity and age the oil is.
 - Thus, the amount of free fatty acids present gives an indication of the age and quality of the fat.
- The result of this change: the fat and oil become rancid, creating a bad smell, sour taste, and color changes.

Two tests to study the quality of fat (oil):

- **1.** Acid value of fat.
- **2.** Iodine number.

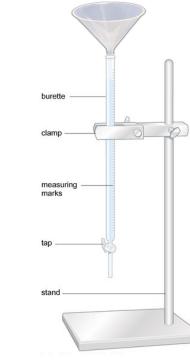
O Acid value of fat

• Aim

- To determine the age of the fat.
- To determine the quality of the fat.

Method

- Titration with a base.
 - The most common base is KOH.
 - The result of the titration is the acid value.
- **The acid value** is the number of milligrams of basic compound required to neutralize the free fatty acid present in 1 g of fat.


- 1. Balance
- 2. Funnel
- 3. Burette clamp and stand

- 1200

1000

1200

- 4. Burette
- 5. Cylinder
- 6. Flask

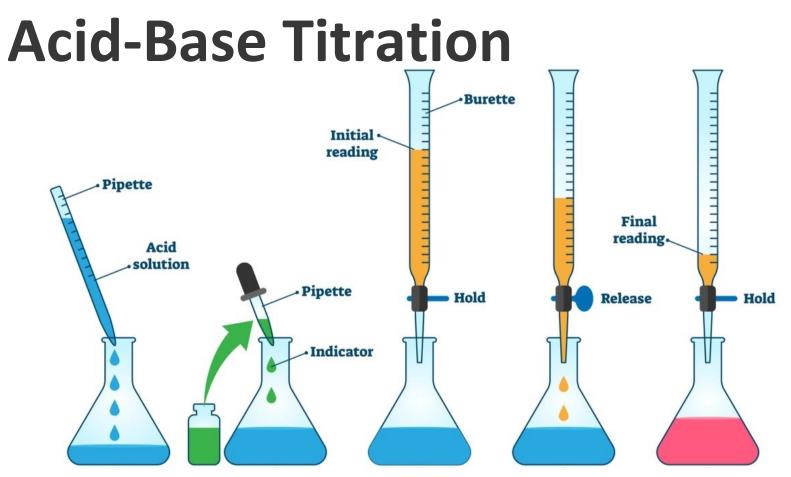
504

455

315 257

201

01 Procedure


- 1. Add 1.2 ml of oil (equivalent to 1 gm of fat) to a flask.
- 2. Add 25 ml of fat solvent to the flask.
- 3. Add 1 ml of phenolphthalein solution (pH indicator) and mix well.
- 4. Fill the Burette with 0.01 N KOH till 0.
- 5. Start the titration with 0.01N KOH.

Note: The endpoint is reached when the faint pink color persists for 30 seconds.

- 5. Once you reach the endpoint, measure the used volume (V2) of KOH in the titration process.
- 6. Calculate the acid value.

Phenolphthalein Indicator

The endpoint = faint pink color persists for 30 seconds.

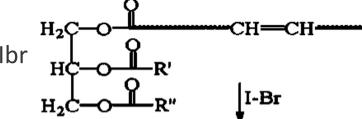
01 Calculation

To calculate the Acid value of fat, use one of the following formulae:

- Acid value = (V of кон X 0.56 mg) / Weight of fat
- Or: Mw(KOH) x N x V / W(fat)
- Range of Acid value for olive oil = 0.3-1.0
- **V of KOH** = Volume of KOH used to reach the endpoint.
- W of fat = weight of fat used in the sample
- The molecular weight of KOH is 56
- 1 liter N KOH contains 56g.
- 1 ml of N KOH contains 56 mg.
- 1 ml of 0.01N KOH contains 0.56 mg

02 The lodine Number of Fat

- Double bonds in unsaturated fatty acids are capable of breaking down and binding to halogens (iodine, bromine, and chloride).
- Aim to measure the degree of unsaturation of fat.
- The greater the degree of unsaturation in a fatty acid (i.e., the more double bonds in the fatty acid), the more vulnerable it is to lipid peroxidation (rancidity).
- What is the lodine Number of Fat?
 - The number of grams of iodine absorbed by 100 g of fat called the "iodine number."


02 The lodine Number of Fat

- Two methods are generally used to test the iodine number of fat:
- I. The Wijs method uses iodine chloride (ICL).
 - The Wijs method gives results 2 to 5 percent higher, and the iodine numbers are closer to the theoretical values.

- 2. <u>The Hanus method</u> uses iodine bromide (IBr).
 - The Hanus reagent is more stable.

02 The Hanus method Principle

- 1. I2 + Br2 \rightarrow 2 IBr (lodine Bromide)
- 2. Fat +Excess IBr \rightarrow halogenated fat+ unreacted Ibr
- 3. KI + IBr \rightarrow I2 + KBr

4. $I2 + 2 \text{ Na2 S2 O3} \rightarrow 2 \text{ Nal+ Na2 S4 O6}$ pale yellow. $H_2 - O - H - H$ 5. $2 \text{ Nal + starch} \rightarrow blue color$

- 1. Pipette 10 ml of each fat sample provided in separately labeled flasks.
- 2. Add exactly 25 ml of Hanus iodine solution from a burette to each flask.
- 3. Set up a blank (separate flask) by adding 10 ml of chloroform to 25 ml of Hanus iodine solution. Note: Only one blank flask is enough for all the students.
- 4. Close the flasks with glass stoppers, and mix well by swirling.
- 5. Incubate the flasks at room temperature for 30 mins in a dark cabinet with occasional swirling.
- 6. Add 10 ml of 15% potassium iodide solution to each flask and mix.

02 Procedure

- 6. Add about 30 ml of water, washing down any iodine solution that may be found on the wall of the flask and the stopper.
- 7. Titrate the iodine with 0.1N sodium thiosulphate from a 50 ml burette until the color of the solution is pale yellow.
- 8. Add 2 ml of 1% starch solution as an indicator. The solution in the flask turns blue.
- 9. Continue the titration until the <u>blue color disappears</u>, mixing well during the final stages of titration.
- **10.** To ensure complete removal of the iodine, stopper the flask and shake vigorously. If the blue color returns, continue the titration.
- **11.** Record the volume used for your sample and blank to reach the colorless endpoint.

• Colorless is the endpoint

02 Calculation

- Iodine Number =[(b-a)x12.69xN] / W of the sample
- **b** = the volume of titer (sodium thiosulphate) with the blank.
- a = the volume of titer (sodium thiosulphate) with the sample.
- The atomic mass of iodine =126.90447

Summary of Rancidity Testing Methods of Fat

Test	Aim	Reagent	Principle	Result
Rancidity happens when fat is exposed to heat, light, or oxygen over a period of time.				
The acid value of fat.	To determine the age of the fat. And to determine the quality of the fat.	Titration with a base. The most common base is KOH.	Acid-Base Titration	Range of Acid value for olive oil = 0.3-1.0
lodine number.	Aim to measure the degree of unsaturation of fat.	lodine bromide (IBr).	The Hanus method	lodine Number

Report Criteria

Total: 5 marks

- 1- Course # (CLS 281)
- 2- Experiment title
- 2- Date of the experiment
- 4- Student's names and university ID#
- 5- Section #
- 6- Experiment title
- 5- The aim of the experiment (objective, or what the test detects specifically) (1 mark)
- 6- Principle (chemical reaction) (1 mark)
- 7- Methodology
- 8- Result (2 mark)
- 9- Interpretation or Comment (<u>1 mark</u>)

Deadline: next lab Submission: Handout or email (docx. form only)