CLS 281
Basic Biochemistry and Biomolecules

Experiment 7 Determination of Reducing Sugars by Somogyi-Nelson Method

Reducing Sugars

• A reducing sugar is a sugar with a free or potentially free aldehydic or ketonic group.

- Oxidation is the loss of electrons
- Reduction is the gain of electrons

Review of Reducing Sugars Test

• Benedict's Test Result

Color of the Precipitate	% of Reducing Sugar				
Green	0.5%				
Yellow	1%				
Orange	1.5%	Blue	Green / vellow	Orange	Brick
Red	2% or more	solution	ppt	red ppt	red ppt
		None	Traces of reducing sugar	Moderate	Large amount of reducing sugar

Barfoed's Test Result

Blue Solution Carbohydrates absent **Red Precipitation**

Within few minutes - monosaccharides After 3 minutes- disaccharides

Qualitative

Semi-quantitative

Type of Testing

- **Qualitative** examinations measure the <u>presence or absence</u> of a substance.
- Semi-quantitative examinations provide an <u>estimate</u> (e.g. %) of how much of the measured substance is present.
- Quantitative examinations are used for determining the <u>amount</u> of an analyte in a sample. The amount is always expressed as <u>a number with appropriate</u> <u>units</u>.

Somogyi-Nelson Method

- The Nelson-Somogyi method is one of the classical and widely used methods for the **quantitative** determination of reducing sugars.
- 1. $Cu+2 + glucose \rightarrow Cu+1 + oxidation products of glucose Alkaline pH$
- 2. Cu+1 + Phosphomolybdic acid(MO+6) \rightarrow MO+4 (blue color)
- The reducing sugars, when <u>heated</u> with <u>alkaline</u> copper tartrate, reduce the copper from the <u>cupric</u> to the <u>cuprous</u> state, and thus <u>cuprous oxide</u> is formed.
- When cuprous oxide is treated with Phosphomolybdic acid, the reduction of molybdic acid to molybdenum blue takes place.
- How do we analyze this test quantitatively and measure the concentration of glucose? Using a spectrophotometer to measure the concentration of MO+4 at 520 nm.

The Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

Spectrophotometer

• If the light is sent through a solution (Io) and only some of the light passes through (I), this suggests that the rest of the light has been absorbed by the molecules in the solution.

Converting light intensity to concentration

- To convert light intensity to concentration the Beer-Lambert Law is usually applied.
- It is commonly applied to determine the concentration of various molecules in solution.

Beer's law

- States that the **absorbance is directly proportional to the concentration** of a solution.
- If you plot absorbance versus concentration, the resulting graph yields a straight line.

Molar absorptivity → L/(mol cm)

Procedure steps

Step 1: Construction of glucose standard curve:

Use beer's law to measure standards of glucose.

Step 2: Measure the unknown glucose sample:

Calculate the concentration using data obtained from the standard curve.

Materials

- Spectrophotometer
- Cuvettes
- micropipette
- Tubes
- Rack
- Water bath

Preparation of a Standard Curve

• A standard curve is generated to be used to determine the concentration of an unknown sample.

How to make a standard curve?

- 1. Create a series of solutions (4-7 tubes) in known increasing concentrations of your analyte of interest (in this case, glucose of know concentration)
- 2. Use the formula C1V1= C2V2 to measure the concentration of each standard tube.
- 3. Measure the absorbance of all your standard at 520 nm (lambda max (λ max) for glucose).
- 4. Used the values of concentration and absorbance to create a standard curve.

Now you can move to **step 2** and use the standard curve to determine the concentration of glucose in an unknown sample.

Step 1 Construction of Glucose std. Curve

Note: Accurate pipetting is very important in performing your standard curve.

Total Volume (V2) = 1 ml	Steps	Tube No.	Blank	Std.1	Std.2	Std.3	Std.4	Std.5	Unknown sample
	1	Volume of Glucose ([C1] 0.2mg/ml) (ml) [V1]	-	<mark>0.2</mark>	0.4	<mark>0.6</mark>	0.8	1	-
	2	D.W (ml)	1	0.8	0.6	0.4	0.2	-	-
		Unknown sample (ml)	-	-	-	-	-	-	1
	3	Copper reagent (ml)	1	1	1	1	1	1	1
	4	Mix and incubate in a boiling water bath for 20 mins and cool.							
	5	Arsenomolyb date reagent (ml)	1	1	1	1	1	1	1
	6	Incubation Room Temperature for 1 minute.							
	7	D.W (ml)	10	10	10	10	10	10	10
	8	Add each into a cuvette. Set the spectrophotometer and read the absorbance of standards against the blank at wavelength 520 nm.							

Step 1 Standard Curve Calculation

1- Calculate the final concentration C2 for each standard using C1× V1 = C2 × V2 :

- C1 = Concentration of standard glucose = 0.2mg/ml
- V2=total volume of glucose + D.W dilution = 1ml in all tubes
- V1 = volume of std. Glucose was added to each tube.
- C2 = ? \rightarrow The final concentration of standards. Glucose after dilution

2- Create The Result Table. Read Abs. at 520 nm.

Tube No.	Blank	Std.1	Std.2	Std.3	Std. 4	Std. 5
Gluco se (0.2m g/ml) V1	-	0.2	0.4	0.6	0.8	1
D.W	1	0.8	0.6	0.4	0.2	-
Record your result here			Abs		C2	
Blank						
Std.1						
Std.2						
Std.3						
Std.4						
Std.5						
Unknown						

Step 1 Standard Curve plot

- 3- Draw The Curve of absorbance against concentration
- Standard curves are graphs of <u>light absorbance versus solution</u> <u>concentration</u> which can be used to figure out the solute concentration in **unknown** samples.

Step 2 Finding the concentration of unknown

Definitions

- Standards: a series of tubes containing <u>increasing concentrations</u> of the substance to be assayed (glucose) are treated with the reagent.
- **Blank:** a blank is prepared <u>to contain all reagents except the compound to be</u> <u>measured (glucose),</u> and then Absorbance is measured for each of the standard tubes against the blank.
- Unknown sample: the sample to be measured of <u>unknown concentration of the</u> <u>analyte</u> under investigation.

FYI Using Excel to plot standard curve

• <u>https://www.youtube.com/watch?v=KeTFzJUG_rA</u>

- Reoxidation of cuprous ions by oxygen from the air is prevented by adding <u>Sodium Sulphate</u> in the reagent to decrease the solubility of oxygen.
- The Somogyi-Nelson method has been replaced recently using rapid colorimetric procedures like <u>O-toluidine</u> or <u>enzymes</u> (such as glucose oxidase and peroxidase).

Report Criteria Total: 5 marks

- Course # (CLS 281), Experiment title, Date of the experiment, Student's names and university ID#, Section #, Experiment title.
- The **aim** of the experiment (objective, or what the test detects specifically) (<u>1 mark)</u>.
- Principle (chemical reaction) (1 mark).
- Result (2 mark):
 - Table of standard concentration and absorbance value, write detailed calculation with <u>units</u>.
 - Standard curve do not forget the <u>units</u>.
 - The absorbance of the unknown sample.
 - The concentration of the unknown sample + explains how you obtained the concentration value.
- Interpretation or Comment (<u>1 mark</u>) Describe the observed relationship between the absorbance and the concentration.

Deadline: Next lab Submission: Handout