CLS 281

Basic Biochemistry and Biomolecules

Experiment 6 Color Tests for Specific Carbohydrates: Ketoses, Pentoses, and Polysaccharides.

Carbohydrate Classification

Aldose has a carbonyl group <u>at the end</u> of the carbon chain. Ketose has a carbonyl group <u>in the middle</u> of the carbon chain.

Classification of Important Sugars

	Aldoses	Ketoses
Trioses (C ₃ H ₆ O ₃)	Glycerose (glyceraldehyde)	Dihydroxyacetone
Tetroses (C ₄ H ₈ O ₄)	Erythrose	Erythrulose
Pentoses (C ₅ H ₁₀ O ₅)	Ribose	Ribulose
Hexoses (C ₆ H ₁₂ O ₆)	Glucose, galactose, mannose	Fructose
Heptoses (C ₇ H ₁₄ O ₇)	_	Sedoheptulose

Most Common Polysaccharides

Dehydration of Monosaccharides into Furfural

Condensed colored product

Today's experiments

1. Seliwanoff's Resorcinol Test.

2. Bial's Orcinol Test.

3. Iodine Test.

O Seliwanoff's Resorcinol Test

- Aim
 - This test is used to distinguish between <u>ketoses and aldoses</u> monosaccharides.
- This test gives fast, clear positive results with <u>ketohexoses</u>. Thus, it's a specific test for <u>ketohexoses</u>.
- Why ketohexoses?
 - **The Ketohexoses** are about 20 to 25 times faster than aldohexoses in producing furfural derivatives. And form considerably more furfural derivatives.
- If you end the reaction within 1 minute, you get a positive result with the fastest sugar (ketohexoses).
- Note:
 - Free or bounded ketohexoses can respond to the test. e.g. sucrose that contains fructose.

Seliwanoff's Resorcinol Test Principle

- Seliwanoff's Resorcinol Reagent
 - HCL
 - Distilled Water (D.W)
 - Phenolic compound (Resorcinol)
- Principle

Ketohexoses Hexoses + <u>HCL</u> \rightarrow <u>Hydroxymethyl</u> furfural + 3 H2O

Hydroxymethyl furfural + Resorcinol \rightarrow Red product + 3 H2O

This aldehyde undergoes condensation along with <u>Resorcinol.</u>

Ol Seliwanoff's Resorcinol Test Procedure

Note: swirl the samples and reagent bottles before use to aspirate homogonous solution.

Steps	Tube No.	Tube 1	Tube 2	Tube 3	Tube 4	Tube 5	Tube 6		
1	Sample	1% Fructose	1% Glucose	1% Sucrose	1% Sorbose	1% Xylose	D.W		
	Volume	2 drops	2 drops	2 drops	2 drops	2 drops	2 drops		
2	Resorcinol Reagent	5 ml	5 ml	5 ml	5 ml	5 ml	5 ml		
3	Mix and Incubate in a boiling water bath for 1 min. Observe the color >>> record your result as (result after 1 min)								
4	Continue incubation for 4 min. Observe the change in color. >>> record your result as (result after 4 min)								
	Result 1 min								
	Result 4 min								

Ol Seliwanoff's Resorcinol Test Result

• Positive Result

• Ketohexoses \rightarrow red complex

Interference

- 1. Aldohexoses (glucose) \rightarrow light yellow to faintly pink color
- 2. Pentose \rightarrow blue to green color
- How to solve this interference?
 - Make the concentration of HCL less than 12%.
 - Make the **incubation** period <u>shorter than 1 minute.</u>
 - If aldohexose, e.g., glucose, is present, it <u>must not be in a</u> <u>concentration greater than 2%</u>.

02 Bial's Orcinol Test

- Aim
 - It is a simple, rapid qualitative test for pentoses.
- Usage:
 - It can be used For <u>quantitative assay of pentoses</u> (e.g., Ribonucleic acid) in the absence of interfering substances.
- Bial's Reagent contains:
 - HCL
 - Phenolic compound (Orcinol)
 - Ferric chloride

(used to increase the sensitivity of the test).

02 Bial's Orcinol Test Principle

• Principle

Carbohydrate undergoes dehydration upon the introduction of concentrated <u>Hydrochloric acid</u>, resulting in the formation of **furfural**.

furfural + orcinol → Blue-green color product + 3 H2O

Furfural undergoes condensation along with orcinol.

02 Bial's Orcinol Test Procedure

Note: swirl the samples and reagent bottles before use to aspirate homogonous solution.

Steps	Tube No.	Tube 1	Tube 2	Tube 3	Tube 4	Tube 5	Tube 6		
1	Sample	1% Xylose	1% Glucose	1% Fructose	1% Lactose	1% Starch	D.W		
	Volume	1 drop	1 drop	1 drop	1 drop	1 drop	1 drop		
2	Bial's Reagent	3 ml	3 ml	3 ml	3 ml	3 ml	3 ml		
3	Incubate in a boiling water bath for 3-5 mins. Observe the change in color formed.								

02 Bial's Orcinol Test Result

- Result
 - Blue-green color product
- Interference in this test:
 - <u>Hexoses</u> generally react to form green, red, or brown products.
 - However, all of these hexoses colors are considered negative results.

03 Iodine Test for Polysaccharide

• Aim

- The iodine test is used for the detection of <u>polysaccharides</u>.
- Reagent
 - Iodine
- Principle
 - Iodine <u>forms colored adsorption complexes</u> with polysaccharides.
 - Color is due to the <u>coordination complex</u> between the helically coiled polysaccharide chains and the iodine centrally located within the helix.

(a)

03 The Starch-Iodine Complex

- In the presence of **starch**, the iodine will fit into the center of the coild polysaccharides chain and form a chain of 6 iodine molecules (I₆) inside the helix, and the color turns into an intense blue complex.
- A similar complex is formed with other polysaccharides but will show a different color.

(b) View down the starch helix, showing iodine inside the helix.

03 Iodine Test Procedure

Note: swirl the samples and reagent bottles before use to aspirate homogonous solution.

Steps	Tube No.	Tube 1	Tube 2	Tube 3	Tube 4	Tube 5		
1	Sample	1% Starch	1% Glycogen	1% Dextrin	1% Cellulose	D.W		
2	Volume	2 ml	2 ml	2 ml	2 ml	2 ml		
3	lodine Reagent	2 drops	2 drops	2 drops	2 drops	2 drops		
4	Observe the color and record the result.							

●Starch + Iodine → Blue to black color

●Dextrin + lodine → Red to violet color

●Glycogen + Iodine → **Red to brown color**

Summary of Color Tests for Specific Carbohydrates

Test	Detect	Reagent	Principle	Positive Result	Negativ e Result	Interference	Note
Seliwanoff's Resorcinol Test	Specifically for the detection of <u>Ketohexoses</u>	Seliwanoff's Resorcinol Reagent: HCL, Distilled Water (D.W), Phenolic compound (Resorcinol).	Hexoses + <u>HCL</u> → <u>Hydroxymethyl</u> furfural + 3 H2O Hydroxymethyl furfural + Resorci <u>nol</u> → Red product + 3 H2O	Red complex	Others	 1- Aldohexoses (glucose) → light yellow to faintly pink color 2-Pentose → blue to green color. 	This test is used to distinguish between <u>ketoses</u> <u>and aldoses</u> monosaccharides. This test gives fast , clear positive results with <u>ketohexoses</u> .
Bial's Orcinol Test	Pentoses	Bial's Reagent contains: HCL, Phenolic compound (Orcinol), Ferric chloride (used to increase the sensitivity of the test).	Pentose + <u>HCL</u> → furfural + 3 H2O furfural + orci <u>nol</u> → Blue-green color product + 3 H2O	Blue-green color product	Others	Hexoses generally react to form green, red, or brown products. However, all are considered negative.	It can be used For <u>quantitative assay</u> <u>of pentoses (e.g.,</u> <u>Ribonucleic acid)</u> in the absence of interfering substances

Summary of Color Tests for Specific Carbohydrates

Test	Detect	Reagent	Principle	Positive Result	Negative Result
lodine Test	Polysaccharide	lodine	 Iodine forms colored adsorption complexes with polysaccharides. Color is due to the coordination complex between the helically coiled polysaccharide chains and the iodine centrally located within the helix. 	 Starch → Blue to black color Dextrin → Red to violet color Glycogen → Red to brown color 	Others

Guideline for writing the lab report

Total: 5 marks

All the following information should be included in your report:

- a) Course # (CLS 281)
- b) Experiment title
- c) Date of the experiment
- d) Student's names and university ID#
- e) Section #

The lab report is broken down into 6 sections:

- 1. Experiment title
- 2. The aim of the experiment (objective, or what the test detects specifically) (1 mark)
- 3. Principle (chemical reaction) (1 mark)
- 4. Methodology (written in steps, not in tables)
- 5. Result (1 mark)
- 6. Interpretation or Comment (2 mark)

Deadline: Next lab Submission: via email