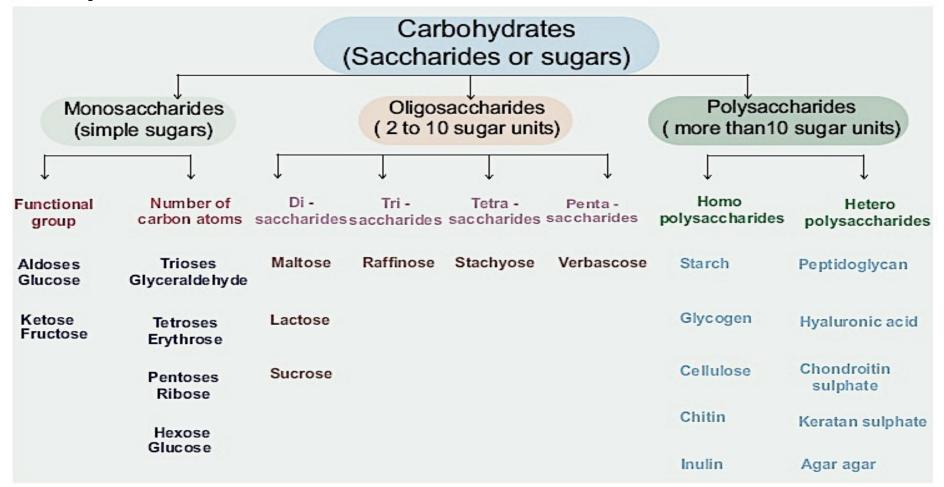
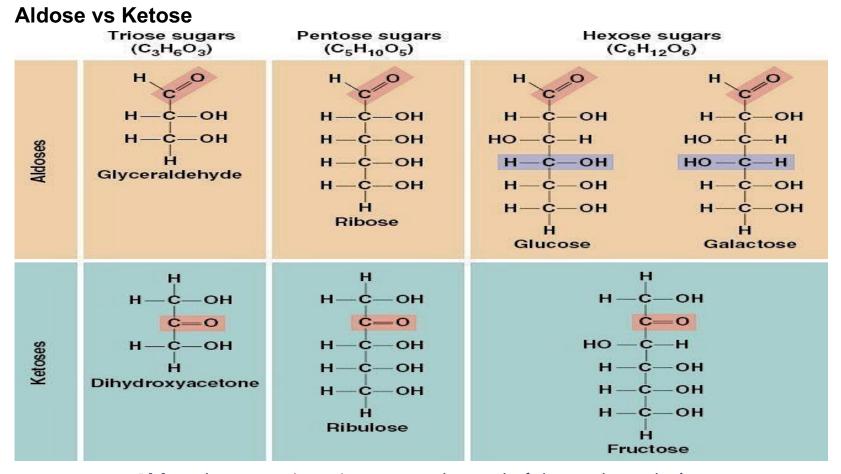
CLS 281

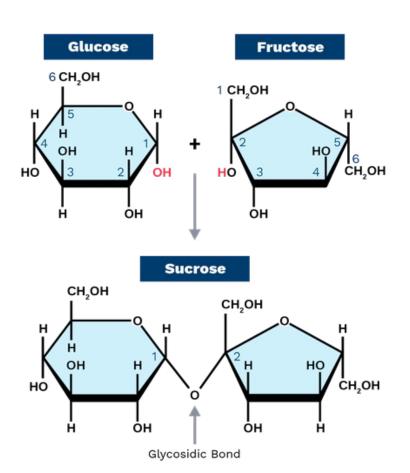

Basic Biochemistry and Biomolecules



Experiment 4

General Color Tests for Carbohydrates

Carbohydrate Classification



Aldose has a carbonyl group <u>at the end</u> of the carbon chain. **Ketose** has a carbonyl group <u>in the middle</u> of the carbon chain.

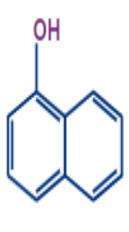
Two monosaccharides are joined together by a

Glycosidic Bond

formed by the loss of water molecule.

General Color Tests for Carbohydrates

1. Molisch Test


2. Anthrone Test

Molisch Test

• It is a general test used to detect the presence of carbohydrates in a given sample.

Molisch's Reagent

- concentrated <u>sulphuric acid</u> H2SO4
- Phenol-type molecules (such as α -naphthol or thymol).
 - \circ α -Naphthol.
 - o Thymol:
 - \circ It can be used as a reagent instead of α-Naphthol.
 - O Thymol is more <u>stable</u> than α-Naphthol and <u>can be</u> applied to insoluble carbohydrates like cellulose or wood.

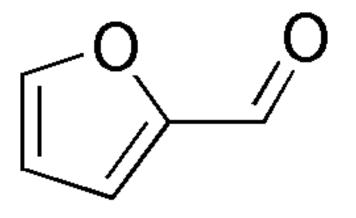
α-naphthol

Molisch Test Principle

Aldehyde

Principle

Heat


Monosaccharides + H2SO4 → furfrual (of furfural derivatives)
+ 3 H2O

furfrual (of furfural derivatives) + α -Naphthol (2 phenol groups) \rightarrow purple ring at the interface.

- Carbohydrate undergoes dehydration upon the introduction of concentrated <u>sulphuric acid</u>, resulting in the formation of an aldehyde.
- This aldehyde undergoes condensation along with two α -naphthol, resulting in the formation of a purple or reddish-purple-colored complex.
- The **purple ring color** is due to condensation products of furfural or its derivatives with α -Naphthol.

purple-colored dye

Furfural

- Furfural is an organic compound derived from a variety of agricultural byproducts, including corncobs, oat, and wheat bran.
- The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source.
- It is not a carbohydrate.

01 Molisch Test

- It is effective for any compound which can be dehydrated to furfural or substituted furfural (such as hydroxymethyl furfural) by concentrated sulfuric acid.
- If the carbohydrate is an oligosaccharide (e.g., disaccharide, trisaccharide ...etc.) or a polysaccharide, the hydrolysis of the carbohydrate acetal linkage occurs simultaneously with the dehydration reaction (in polysaccharide, the color develops slower).

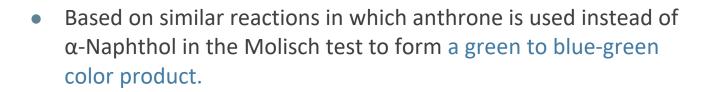
Molisch Test Procedure

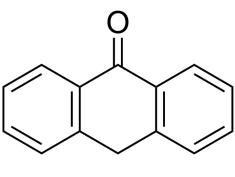
Note: swirl the samples and reagent bottles before use to aspirate homogonous solution.

Steps	Tube No.	Tube 1	Tube 2	Tube 3		
1	Sample	2 ml of 0.5% starch	2 ml of 0.5% sucrose	2 ml of 0.5% glucose		
2	α-Naphthol Reagent	2 drops	2 drops	2 drops		
3	Mix					
4	Con. H2SO4	2 ml	2 ml	2 ml		
	Reagent					

Positive result >>> purple ring at the interface indicate the presence of carbohydrate.

 Incline the test tube slowly and carefully add 2 ml of concentrated sulfuric acid (H2SO4) down the side of the tube to form a layer below the sugar solution.


01 Molisch Test Result


- All carbohydrates are detected using this test.
- Monosaccharides give a <u>rapid</u> positive test.
- <u>Disaccharides and polysaccharides</u> react <u>slower</u>.
- A negative result by this reaction is very good evidence of the absence of carbohydrates, <u>but a</u> <u>positive test is an indication of the probable</u> <u>presence of carbohydrates.</u>

O2 Anthrone Test

- It is another general test for carbohydrates.
- Aim: To detect the presence of carbohydrates in a given solution.
- Reagent
 - Concentrated <u>sulphuric acid</u> H2SO4
 - Phenol-type molecules (anthrone)

Anthrone

Anthrone Test Principle

- Hydrolysis of sugar to monosaccharides.
- Dehydration of monosaccharides by H2SO4 producing furfural (of furfural derivatives).
- The reaction of furfural with Anthrone reagent resulted in a Blue-green complex.

O2 Anthrone Test Procedure

Steps	Tube No.	Tube 1	Tube 2	Tube 3	Tube 4	Tube 5
1	Sample	Small piece of Filter paper	1 drop 0.5%starch	1 drop of 0.5%sucrose	1 drop 0.5%glucose	1 drop Blank
2	Water As a Diluent	1ml	1ml	1ml	1ml	1ml
3	Anthrone reagent	3ml	3ml	3ml	3ml	3ml

4. Heat in boiling water bath for 3 mins.

02 Anthrone Test

- It is very sensitive.
- It will give a positive reaction with filter paper (cellulose).

Uses:

- It can be used for the quantitative determination of glycogen and sugar in the blood.
- It can be used as a qualitative test since different sugars dehydrate at different rates and produce a variety of colors.

Summary of General Color Tests for Carbohydrates

Test	Detect	Reagent	Principle	Positive Result	Negative Result	Note
Molisch Test	Detect the presence of carbohydrates in a given sample.	- concentrated sulphuric acid H2SO4 Phenol-type molecules (α-Naphthol).	 1- Hydrolysis of sugar to monosaccharides. 2-Monosaccharides + H2SO4 → furfrual (of furfural derivatives) + 3 H2O (dehydration reaction) 3- furfrual (of furfural derivatives) + α-Naphthol (2 phenol groups) → purple ring at the interface. (condensation reaction) 	purple ring color	Colorless	Monosaccharides give a rapid positive test. Disaccharides and polysaccharides react slower.
Anthrone Test	Detect the presence of carbohydrates in a given sample.	- concentrated sulphuric acid H2SO4 Phenol-type molecules (anthrone)	 1- Hydrolysis of sugar to monosaccharides. 2-Monosaccharides + H2SO4 → furfrual (of furfural derivatives) + 3 H2O (dehydration reaction) 3-The reaction of furfural with Anthrone reagent resulted in a Blue-green complex. 	Blue-green complex.	Reagent color	It is very sensitive. It will give a positive reaction with filter paper (cellulose).

Guideline for writing the lab report

Total: 5 marks

All the following information should be included in your report:

- a) Course # (CLS 281)
- b) Experiment title
- c) Date of the experiment
- d) Student's names and university ID#
- e) Section #

The lab report is broken down into 6 sections:

- 1. Experiment title
- 2. The **aim** of the experiment (objective, or what the test detects specifically) (1 mark)
- 3. Principle (chemical reaction) (1 mark)
- 4. Methodology (written in steps, not in tables)
- 5. Result (1 mark)
- 6. Interpretation or Comment (2 mark)

Deadline: Next lab Submission: via email