

Course Specifications

Course Title:	Physical Chemistry of Solution
Course Code:	CHEM336
Program:	Baccalaureate
Department:	Chemistry department
College:	Science
Institution:	King Saud University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	
D. Teaching and Assessment6	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities8	
1.Learning Resources	8
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: (2 + 1)	
2. Course type	
a. University College Department Others	
b. Required Elective	
3. Level/year at which this course is offered: Junior level 3 th year	
4. Pre-requisites for this course (if any): <i>Chem 101 and Chem 102 (General Chemistry 1 and 2); Chem 231(Chemical Thermodynamic); Math 111</i>	
5. Co-requisites for this course (if any):	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	10
2	Blended	9	30
3	E-learning	9	30
4	Distance learning	9	30
5	Other	-	-

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	15
3	Tutorial	-
4	Others (specify)	-
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

CHEM336 is a program which relates to the description of solutions and the thermodynamic relations which characterize them. It deals with ideal and real solutions in all their states(gas, liquid and solids) where the phase diagrams will be presented and discussed. This course also deals with real ionic solutions and their thermodynamic properties.

2. Course Main Objective

- knowing the physical chemical properties of different mixtures and solutions,

- Knowing the phase diagrams of solutions (liquid-vapor, liquid-liquid and solid-liquid),

CLOs

- Know the different methods used in the separation of components (distillation at atmospheric

pressure, distillation at reduced pressure, solid-liquid filtration, liquid-liquid decantation, settling),

- Knowing ionic solutions and the relationships that govern them,

3. Course Learning Outcomes

Aligned-PLOs

1 Knowledge and Understanding

	CLOs	Aligned-PLOs
1.1	Define the different solutions (ideal, real, and ionic) and recognize the relationships between them	Understand,
1.2	Describe the properties of solutions (ideal and real);	resolution and application
1.3	<i>Recognize and describe the phase diagrams (liquid-vapor, liquid-liquid and solid-liquid</i>	
1		
2	Skills :	
	Cognitive Skills	
2.1	Interpret the phase diagrams and evaluate the critical points.	
2.2	<i>Calculate and analyze the thermodynamic parameter of mixtures such as the partial molar parameters (volume, free enthalpy, enthalpy and entropy)</i>	Calculate,
2.3	Estimate the changes in the enthalpy,	evaluate,
	entropy and the Gibbs energy changes.	interpret and
2.4	Estimate colligative properties of solutions.	Comment
2.5	Derive the thermodynamic function of mixture and determine the different molar parameters such as molar volume, free enthalpy expressions and calculate the partial molar volume of each constituent.	
2.6	Represent and interpret the experimental data	
	Interpersonal Skills & Responsibility	
2.7	-Work independently and as in groups including leadership responsibilities; - Act responsibly in a personal manner; -Display of ethical and high moral standards in both private and public environments.	Master, Empower, educate
2.8	-Use sta- Manage resources, time and other members of the group - Communicate results of work to other	
	Communication, Information Technology, Numerical	
2.9	- Utilizing university electronic resources of learning. -Interpretation of numerical, chemical and general scientific information	Mastery of electronic means and communication s
	Psychomotor	
2.10	Prepare solutions, manipulate the analytic instruments, draw the curves for determining different parameters such as molecular weight and critical points	Handle, analyze, criticize

C. Course Content

No	List of Topics	Contact Hours
1.	1. NON IONIC SOLUTIONS	14
1.	1. NON IONIC SOLUTIONS 1.1 Some notions on the liquid properties 1.2. The simple mixtures 1.2.1 The thermodynamic description of mixtures 1.2.2 The Partial molar quantities a) Partial molar volume Vp b) Partial molar Gibbs energies c) The wider significance of the chemical potential d) The Gibbs Duhem equation 1.3 The Chemical potential of liquids 1.3.2 Ideal-dilute solutions Exercises	14
	1.4 Ideal and non ideal solutions of non-electrolyte 1.4.1 Ideal solutions 1.4.2 Excess functions and regular solutions	
	Exercises	
	 1.5 Colligative properties 1.5.1 The commun features of colligative properties 1.5.2 The elevation of boiling point 1.5.3 The depression of freezing point 1.5.4 The solubility 1.5.5 The Osmosis <i>Exercises</i> 1.6 Activities of solvent and solute 1.6.1 Ideal-dilute solutions 1.6.2 Real solutes 1.6.3 Activities in terms of molalities 1.6.4 The biological standard state <i>Exercises</i> 1.7 Activities of regular solutions 1.7.2 Mean activity coefficients <i>Exercises</i> 	
2	Phase Diagrams	8
	 2.1 Vapor pressure diagrams 2. 1.1 The composition of the vapor 2. 1.2 The interpretation of the diagrams 2.1.3 The level rule Exercises 2.2 Liquid- vapor phase diagrams 2.2 1 The distillation of mixtures 	

	22.2 Azeotropes	
	2. 2.3 Immiscible liquids	
	Exercises	
	2.3 Liquid-liquid phase diagrams	
	2.3.1 Phase separation	
	2.3.2 Critical solution temperatures	
	2.3.3 The distillation of partially miscible liquids	
	Exercises	
	2.4 Liquid-solid phase diagrams	
	2.4.1 Eutectics	
	2.4.2 Reacting systems	
	2.4.3 Incongruent melting	
	Exercises	
4	IONIC SOLUTIONS	8
	4.1 Ideal ionic solutions	
	4.1.1 Definitions	
	4.1.2 Colligative properties	
	4.2 Chemical potential and activity coefficients	
	4.2.1 Chemical potential	
	4.2.2 Excess chemical potentials for real ionic solutions	
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	-Define the different solutions (ideal, real, and ionic) and recognize the relationships between them	Use interactive method (question-answer), Incorporation of the IT to develop the	Homework assignments, Using active
1.2	<i>-Describe the properties of solutions (ideal and real);</i>	knowledge and particularly (the smart board, internet),	learning techniques, -Major final and two
	-Recognize and describe the phase diagrams (liquid-vapor, liquid-liquid and solid-liquid	Proposing stimulation questions	segmented midterm exams
2.0	Skills		
2.1	Interpret the phase diagrams and evaluate the critical points.		
2.2	Calculate and analyze the thermodynamic parameter of mixtures such as the partial molar parameters	- Solving examples,	Following up students

6

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	(volume, free enthalpy, enthalpy and entropy)	- Class discussions, - Using modern methods of teaching	participations in class discussion activities.
2.3	<i>Estimate the changes in the enthalpy, entropy and the Gibbs energy changes</i>	such as the IT ways,	Major and final exams
2.4	<i>Estimate colligative properties of solutions.</i>		Problem solving by students on board
2.5	Derive the thermodynamic function of mixture and determine the different molar parameters such as molar volume, free enthalpy expressions and calculate the partial molar volume of each constituent.		
2.6	Represent and interpret the experimental data		
3.0	Values		
3.1	Resolution of problems	Give more exercises and problems to solve in group work.	MED: 1 and 2 Final exam Quizzes + noted interactive questions
3.2	Exploitation of results	Provide tables from experimental data and let the student draw the curves and deduce the important parameters.	Labs exam
3.3	Communication of results	Make the links between the results obtained and the translators.	MED: 1 and 2 Final exam Quizzes + noted interactive questions

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Class activities (in-class quizzes, homework)	Weekly	10%
2	Major Exam I	Week 6	25%
3	Major Exam II	Week 12	25%
4	Revision	Week 13	-
5	Final Exam	Week 16	40%
8			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Daily individual consultations of students which takes place according to a program drawn up

by the teacher according to his availability.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Physical Chemistry, 9 Ed. Peter Atkins and Julio de Paula, Publisher : W.H. Freeman and Company, 2010
Essential References Materials	N.A.
Electronic Materials	N.A.
Other Learning Materials	Software: Word, Excel, Power-Point presentations, Chemdraw, etc.

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Laboratory (10 experimentations)	
Technology Resources (AV, data show, Smart Board, software, etc.)	Using Smart board	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	N.A.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Faculty	Administrators	Feed back
Department	Administrators	Feed back
	Students	Feed back

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	