
CHEM336 (Physical Chemistry of solutions) 

1. GENERALTY 

1.1 The phase equilibrium 

1.1.1 Equilibrium 

Thermodynamic definition: a system is in equilibrium if its free energy is at the 

minimum. 

- The characteristics of the system do not change with time, i.e., the system 

is stable 

- If you change the temperature, pressure, or composition, the free energy 

will change the specific phase(s) present may (or may not) change but the 

phase assemblage 

Definition: Transformation = state change    

A) The transformation of matter from solid state to liquid state = fusion 

B) Transformation of matter from liquid state to solid state = 

solidification 

C) Transformation of matter from liquid state to vapor state = 

vaporization 

D) Transformation of matter from vapor state to liquid state = 

condensation 

E) Transformation of matter directly from solid state to vapor state = 

sublimation 

1.1.2 Triple points of substance 

 

Gas–liquid–solid triple point 

 

http://en.wikipedia.org/wiki/File:Phase-diag2.svg


A typical phase diagram. The solid green line applies to most substances; the 

dotted green line gives the anomalous behaviour of water 

The single combination of pressure and temperature at which liquid as water, 

solid as ice and  water vapor can coexist in a stable equilibrium occurs at exactly 

273.16 K (0.01°C) and a partial vapor pressure of 611.73 pa  (0.0060373 atm). At 

that point, it is possible to change all of the substance to ice, water, or vapor by 

making arbitrarily small changes in pressure and temperature. Even if the total 

pressure of a system is well above triple point of water, provided the partial 

pressure of the water vapor is 611.73 Pa then the system can still be brought to 

the triple point of water. Strictly speaking, the surfaces separating the different 

phases should also be perfectly flat, to negate the effects of surface tensions. 

The gas–liquid–solid triple point of water corresponds to the minimum pressure 

at which liquid water can exist. At pressures below the triple point, solid ice 

when heated at constant pressure is converted directly into water vapor in a 

process known as sublimation. Above the triple point, solid ice when heated at 

constant pressure first melts to form liquid water, and then evaporates or boils 

to form vapor at a higher temperature. 

For most substances the gas–liquid–solid triple point is also the minimum 

temperature at which the liquid can exist. For water, however, this is not true 

because the melting point of ordinary ice decreases as a function of pressure, as 

shown by the dotted green line in the phase diagram. At temperatures just 

below the triple point, compression at constant temperature transforms water 

vapor first to solid and then to liquid (water ice has lower density than liquid 

water, so increasing pressure leads to a liquefaction). 

1.1.3 The Clapeyron relationship 

The slopes of the lines on a one-component pressure-temperature phase 

diagram may be derived from the Clapeyron equation. 

For any two phases we can write: 

For state α     dGα = VαdP -SαdT 

For state β     dGβ = VβdP -SβdT 

Where Vα is the molar volume of phase α and Sβ is the molar entropy of phase. 

At equilibrium            dGα = dGβ   and    VαdP -SαdT = VβdP -SβdT 

If  Vα-Vβ = ΔV and Sα-Sβ =ΔS we can write     ΔVdP=ΔSdT 

or           
V

S

dT

dP




  
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but also at equilibrium  ΔG = ΔH-TΔS = 0 and ΔG = Gα-Gβ 

and therefore  
T

H
S


  

by this way we have  
VT

H

dT

dP




  this expression, the Clapeyron equation, is 

entirely general and applies to any phase change in a one-component system. 

We can write  
T
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In case of vaporization of sublimation we can assume that since the volume of 

the gas formed is so much greather than that of the solid or liquid, respectively 

 For sublimation ΔV= Vg-Vs≈ Vg   and for vaporization ΔV = Vg- VL ≈ Vg 

Furthermore, if we assume that the vapor is considered as ideal and work only 

with molar quantities, we can write 

P
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Which is the differential form of the Clausius-Clapeyron equation. Rearranging 

gives 
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The equation relates the values of any pair of points (p1, T1) and (p2, T2) on the 

vaporisation or sublimation line. By measuring experimentally the gradient of a 

pressure-temperature line we may therefore determine an average value for the 

enthalpy of vaporisation or sublimation over that temperature range. 

Example 1. The densities of ice and of liquid water vary little with temperature 

and pressure. We can therefore use these values to calculate the change in 

volume ΔfusV on melting and, with a value for the enthalpy of fusion ΔHofus, 

determine the melting temperature of ice at different pressures from a 

rearranged form the integrated form of the Clapeyron equation 



 

Given the density of a substance ρ, we can calculate its molar volume V 

 

where M is the molar mass. The densities of ice and liquid water are 0.917 g dm-3 and 

1.000 g dm-3 and the molar mass, M = 18.02 g, so that the molar volumes of ice and liquid 

water are 

Vice = 18.02 g / 0.917 g dm-3 = 19.58 dm3 

and 

Vwater = 18.02 g / 1.000 g dm-3 = 18.02 cm3 

respectively. The volume change on melting is therefore 

ΔfusV = Vwater - Vice =18.02 - 19.58 = -1.56 cm3. 

We must remember to convert this value into units of m3 

ΔfusV = -1.56 cm3 = -1.56 × 10-6 m3 

before substituting it into the Clapeyron equation. 

We already know one point on the solid-liquid equilibrium line since we know that ice 

melts at a temperature of T1 = 273.15 K and pressure of p1 = 101325 Pa. The enthalpy of 

fusion of ice ΔfusHo = 6.030 kJ mol-1. 

Thus at a pressure of 70 bar ( 7093000 Pa, which is typical of the pressure exerted by an ice 

skater 

 

and so 

 

 



Thus at a pressure of 70 bar, the melting point of ice is T2 = 272.66 K, a decrease of 0.49 K. 

The melting temperature of ice is therefore lowered by the effect of increased pressure. 

The application of pressure to a block of ice held at a constant temperature may therefore 

cause melting. This is unusual; for most substances, the melting point increases with 

pressure. The peculiar behaviour of water arises because the density of liquid water is 

greater than that of ice. The contraction on melting causes results in a negative value for 

ΔfusV and so the solid-liquid line on the pressure-temperature phase diagram of water has 

a negative gradient. 

Example 2. Given the normal boiling temperature and enthalpy of vaporisation of a 

substance, we can use the Clausius-Clapeyron equation to predict the vapour pressure at a 

range of different temperatures. 

For example, the normal boiling temperature of benzene is 353.25 K, with a standard 

enthalpy of vaporisation ΔvapHo = 30.8 kJ mol-1. If we assume that the enthalpy of 

vaporisation varies little with temperature and pressure, we may use the integrated form 

of the Clausius-Clapeyron equation 

 

to determine the vapour pressure of benzene at another temperature, such as 298.15 K. 

The normal boiling temperature is the temperature at which the vapour pressure of 

benzene is 101325 Pa. We may therefore take T1 = 353.25 K andp1 = 101325 Pa and 

substitute into the Clausius-Clapeyron equation. This will allow us to determine a value 

for the vapour pressure p2 at a temperature of T2 = 298.15. 

 

giving p2 = 14600 Pa. 

Note that we must assume that the enthalpy of vaporisation remains constant over the 

entire temperature and pressure range. In theory, the value quoted is only appropriate for 

a temperature of 353.25 K and a pressure of 105 Pa. Significant variation in the enthalpy of 

vaporisation with temperature and pressure would be observed as a curve in the liquid-

vapour equilibrium line on the benzene phase diagram. 

 

 



2. THE SIMPLE MIXTURES 

Solute/solvent = solution 

Real solution :  interaction between solvent and solute 

A) Ideal solution: No interaction between solvent and solute 

Example: 10 L of A   + 5 L of B  = 15 L (A+B)    (Ideal solution) 

 

 

 

B) Real solution  

2 cases:  There are attractions or repulsion between molecules of A and molecules of B 

Example:  : 10 L of A   + 5 L of B  < 15 L (A+B)    (Real solution , Attraction) 

 

 

Example: 10 L of A   + 5 L of B  >  15 L (A+B)    (Real solution , Repulsion) 

 

 

 

2.1 The thermodynamic description of mixtures 

2.1.1 Partial molar quantities 

Definition 

a) The partial molar volume of a substance is the contribution to the volume that a 

substance makes when it is part of a mixture. 

b) The chemical potential is the partial molar Gibbs energy and enables us to express 

the dependence of the Gibbs energy on the composition of a mixture. 

c) The chemical potential  μ also shows how, under a variety of different conditions, the 

thermodynamic functions vary with composition. 

+ → 
 

A B 
 

A B 

+ → 
 

A B 
 

A B 

+ → 
 

A B 
 

A B 



d) The Gibbs-Duhem equation shows how the changes in chemical potential of the 

components of a mixture are related. 

 

A- Partial molar volume Vp  

The partial molar volumes of the components of a mixture vary with composition 

because the environnement of each type of molecule changes as the composition 

changes from pure A to pure B. 
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Where n is the amounts of all other substances present are constant. 

The definition in equation 5.1 implies that, when the composition of the mixture is 

changed by the addition of nA of A and nB of B, then the total volume of the mixture 

changes by: 

𝑉𝐴 = (
𝜕𝑉𝑡

𝜕𝑛𝐴
)

𝑇,𝑃,𝑛𝐵

     ;      𝑉𝐵 = (
𝜕𝑉𝑡

𝜕𝑛𝐵
)

𝑇,𝑃,𝑛𝐵

 

 𝑉𝑡 =  (
𝜕𝑉𝑡

𝜕𝑛𝐴
)

𝑇,𝑃,𝑛𝐵

𝑑𝑛𝐴 +  (
𝜕𝑉𝑡

𝜕𝑛𝐵
)

𝑇,𝑃,𝑛𝐴

𝑑𝑛𝐵        

𝑉𝑡 =   𝑉𝐴𝑑𝑛𝐴 + 𝑉𝐵𝑑𝑛𝐵 

Exemple:  A liquid mixture of ethanol and water. Calculate the partial molar 

volume ethanol and the partial molar volume of water, if its total volume is Vt is 

expressed as VT =  18   + 2.3 neth  + 0.67 nEth2    and the mole number of ethanol is 

0.23 mol and the mole number water is 1.22 mol 

Solution 

a) Partial molar volume of ethanol 

A B 

Mixing 

nA + nB 

nB 
nA 



𝑉𝐸𝑡ℎ = (
𝜕𝑉𝑡

𝜕𝑛𝐸𝑡ℎ
)

𝑛𝑤𝑎𝑡𝑒𝑟,𝑇,𝑃

 

b) Partial molar volume of water  

𝑉𝑤𝑎𝑡𝑒𝑟 = (
𝜕𝑉𝑡

𝜕𝑛𝑤𝑎𝑡𝑒𝑟
)

𝑛𝑒𝑡ℎ,𝑇,𝑃

 

Exercise:  A solution containing 150 g of ethanol/water mixture, what are the 

partial molar volume of ethanol and the partial molar volume of water if the 

total volume of this solution is expressed as function of the mole number of 

ethanol by the following equation: 

Vt =  0.23  +  2.32 neth+  0.36 neth2 

and the mole number of ethanol is 0.23 mol 

mT = meth + mWat = 150 g          neth  = meth/Meth = 0.23 mol  →  m eth = 0.23 x46 = 10.58 g            

mw = 150 – 10.58 = 139.42 g            nw = 139.42/18 = 7.7 moles 

Solution 

𝑉𝑒𝑡ℎ =
𝜕𝑉𝑡

𝜕𝑛𝑒𝑡ℎ
= 0 + 2.32 + 2 × 0.36𝑛𝑒𝑡ℎ 

Veth = 2.32 + 2x0.36x0.23 = 2.485 ml/mol 

Vwater ?  

Vt = Veth neth  + Vwater x nwater 

0.23 + 2.32 neth + 0.36 neth2 =2.485 x 0.23 + Vwater x nwater 

mt  =  meth  +  mwater  = 150 g 

neth = 0.23 mole  = meth/Meth 

Meth = C2H5OH =  2x12 + 6 + 16 = 46 g/mol 

meth = 46 x 0.23 = 10.58 g             mwater  = 150 g  -10.58 g =    139.42 g 

nwater = 139.42/18 = 7.746 moles 

0.23 + 2.32 x0.23 + 0.36 x(0.23)2 = 2.485x0.23 + Vwater x7.746 

0.782 = 0.571 + 7.746 Vwater         Vwater = 0.211/7.746 =0.027 ml/mol  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

B) Partial molar Gibbs energies 

The concept of a partial molar quantity can be extended to any extensive state function. 

For a substance in a mixture, the chemical potential is defined as the partial molar Gibbs 

energy: 

nTPj
j

n

G

,,














     (2,4) 

The total Gibbs energy of a binary mixture constituted of A and B components is 

BBAA nnG        (2.5) 

where μA and μB are the chemical potentials at the composition of the mixture. 

Gt = a’ + b’nA + c’nA
2
 =nA 𝜇𝐴 +nB 𝜇𝐵 

𝜇𝐴 =
𝜕𝐺𝑡

𝜕𝑛𝐴
= 0 + 𝑏′ + 2𝑐′𝑛𝐴 

a’+b’nA +c’nA
2
 = nA(b’+2c’nA) +nB 𝜇𝐵 

𝜇𝐵 =
𝜕𝐺𝑡

𝜕𝑛𝐵
 

The Gibbs energy of a mixture may change when these variables change, and, for a 

system of components A, B, etc.  
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the equation dG = Vdp –SdT becomes 

dG= Vdp-SdT + μAdnA + μBdnB + ….      (2.6) 

This expression is the fundamental equation of chemical thermodynamics. Its 

implication and consequences are explored and developed in this and the next chapters. 

At constant pressure and temperature equation 5.6 simplifies to 

dG = μAdnA + μBdnB + …          (2.7) 

We saw in section 3.5e that under the same conditions dG = dwadd,max . Therefore, at 

constant temperature and pressure,   

dw add,max = μAdnA + μBdnB + …         (2.8) 

That is, additional (non-expansion) work can arise from the changing composition of a 

system. 

𝑋𝑖 = (
𝜕𝑋𝑡

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝐵

 

Xt = ni Xi + njXj  

X = V, H, S, G 

C) The wider significance of the chemical potential 

The chemical potential does not more than show G varies with composition.  

Because G = U + PV-TS, and therefore U = -PV + TS + G, we can write a general 

infinitesimal change in U for a system of variable composition as 

dU = -PdV – VdP + SdT +TdS + dG 

dU = -PdV-VdP +SdT + TdS + (VdP –SdT +μAdnA +μBdnB +…) 

dU = -PdV + SdT + μAdnA +μBdnB +… 

This expression is the generalization of equation 3.46 (that dU = TdS –PdV) to systems 

in which the composition may change. It follows that, at constant volume and entropy, 

dU = μAdnA + μBdnB + …          (2.9) 

and hence that      
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Therefore, not only does the chemical potential show G changes when the composition 

changes, it also shows how the internal energy changes too ( but under a different set of 

conditions). In the same way it is easy to deduce that 
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Thus we see that the μj shows how all the extensive thermodynamic properties U, H, A, 

and G depend on the composition. This is why the chemical potential is so central to 

chemistry. 

𝑋𝑖 =
𝜕𝑋𝑇

𝜕𝑛𝑖
 

Xt = niXi   + njXj 

X : V, G, H, S, U and A 

D) The Gibbs Duhem equation 

dG = μAdnA + μBdnB + nAdμA + nBdμB         (2.11) 

at constant temperature and pressure 

nAdμA  +   nBdμB = 0 

Σ njdμj = 0 

nA dμA = -nBdμB 

dμA = -nBdμB/nA 

∫ dμA
𝜇𝐴

𝜇0𝐴

= 𝑛𝐵/𝑛𝐴 ∫ 𝑑𝜇𝐵
𝜇0𝐵

 

𝜇𝐴 − 𝜇𝐴
𝑜 =

𝑛𝐵

𝑛𝐴
∫ 𝑑𝜇𝐵

𝜇𝐵

𝜇0𝐵

 

This equation is special case of the Gibbs-Duhem equation 

The significance of the Gibbs-Duhem equation is that the chemical potential of one 

component of a mixture cannot change independently of the chemical potentials of the 

other components. 

If one partial molar quantity increases, then the other must decrease, with the two 

changes related by: 

A
B

A
B d

n

n
d  

         (2.12)

 

Example 

The experimental values of the partial molar volume of K2SO4(aq) at 298 K are found to 

fit the expression 

μB = 32.280 + 18.216 x
1/2

 



where x is the numerical value of the mole number of K2SO4 . Use the Gibbs-Duhem 

equation to derive an equation for the molar volume of water in the solution. The molar 

volume of pure water at 298K is 18.079 cm
3
.mol

-1
. 

Solution 

Method 

Let A denote H2O the solvent, and B denote K2SO4, the solute. 

The Gibbs-Duhem equation for the partial molar volumes of two components is: 

nAdμA  +   nBdμB = 0. This relation implies that dμA =- (nB/nA)dμB, and therefore that  μA 

can be found by integration:  

𝜇𝐴 = ∫
nB

nA
dμB

μB

0

 

Exercise  

Repeat the calculation for a solution containing A and B components for which: 

VB/(cm
3
.mol

-1
) = 6.218 + 5.146 n -7.147n

2
 

n is the mole number of A. 

2.2 The thermodynamic of mixing 

Definition 

a) The Gibbs energy of mixing is calculated by forming the difference of the Gibbs 

energies before and after mixing: the quantity is negative for perfect gases at the same 

pressure.  

b) The entropy of mixing of perfect gases initially at the same pressure is positive and 

the enthalpy of mixing is zero. 

(A) The Gibbs energy of mixing of perfect gases 

 

 

 

 

 

 

                       Initial stage                                              Final stage 

Butane 

nBut 
O2 

nO2 

Butane 

+ 

O2 

Butane 

+ 

O2 



Determination of ∆GM, ∆HM   and ∆SM    

∆GM  = Gf – Gi 

∆HM  = Hf – Hi 

∆SM  = Sf – Si 

∆GM  = ∆HM  - T∆SM   ( 3th thermodynamic’s law) 

Two perfect gases (ideal) A and B in two containers have a chemical potential of A (nA ) 

and a chemical potential of B (nB); both are at a temperature T and a pressure p. At this 

stage, the chemical potentials μA and μB have their pure values, which are obtained by 

applying the definition μ = Gm  to: 

o

o

p

p
RT ln   

where μ
o
 is the standard chemical potential, the chemical potential of the pure gas at 1 

bar. It will be much simpler notationally if we agree to let p denote the pressure relative 

to p
o
; that is, to replace p/p

o
 by p, for then we can write: 

pRTo ln 
            

We can write the Gi by: 

Initial 

GA(i)= μA = μ
o

A +nARTLnPA(i) 

GB(i) =μB = μ
o

B +nBRTLnPB(i) 

Final 

GA(f)= μA = μ
o

A +nARTLnPA(f) 

GB(f) =μB = μ
o

B +nBRTLnPB(f) 

According to the Dalton’s Law 

PA = xA PT           xA = PA/PT 

PB=xBPT        xB = PB/PT 

∆GM   = nTRT[(xA LnxA+ xBLn xB)] 

∆GM ,  ∆HM  ,  ∆SM   

∆GM   = nTRT[(xA LnxA+ xBLn xB) 



Because there is no attractions or repulsions between molecules A and molecules B 

(Ideal gases) 

This leads to ∆HM  = 0       

∆GM= ∆HM-T∆SM 

∆GM= 0-T∆SM 

∆SM= -∆GM/T 

∆SM   = -nTR [(xA LnxA+ xBLn xB)] 

Gi = nAμA + nBμB = nA( pRTo
A ln ) + nB( )ln pRTo

B   

After mixing 

)ln()ln( B
o
BBA

o
AAf pRTnpRTnG  

 

Ln x –Lny = Lnx/y
 

The difference Gf  - Gi , the Gibbs energy of mixing, ∆mixG, is therefore: 

p

p
RTn

p

p
RTnG B

B
A

Amix lnln   

nT = (nA + nB) 

∆𝐺𝑚𝑖𝑥 =
𝑛𝐴

𝑛𝑇
× 𝑛𝑇𝑅𝑇𝑙𝑛

𝑃𝐴

𝑃
+

𝑛𝐵

𝑛𝑇
× 𝑛𝑇𝑅𝑇𝐿𝑛

𝑃𝐵

𝑃
 

xA = nA/nT    ; xB = nB/nT 

∆𝐺𝑚𝑖𝑥 = 𝑥𝐴 × 𝑛𝑇𝑅𝑇𝑙𝑛
𝑃𝐴

𝑃
+ 𝑥𝐵 × 𝑛𝑇𝑅𝑇𝑙𝑛

𝑃𝐵

𝑃
 

Dalton’s Law ( gas mixture)     PA = xAP          xA = PA/P     xB = PB/P 

At this point we may replace nj by xj, where n is the total amount of A and B, and use the 

relation between partial pressure and mole fraction to write pj/p = xj for each component, 

which gives: 

)lnln( BBAATmix xxxxRTnG 
 

Because mole fractions are never greater than 1, the logarithms in this equation are 

negative, and 0 mixG . 

Example 

Calculating a Gibbs energy of mixing 



A container is divided into two equal compartments. One contains 3.0 mol of H2(g) at 

25
o
C; the other contains 1.0 mol of N2(g) at 25

o
C. Calculate the Gibbs energy of mixing 

when the partition is removed. Assume perfect behaviour. 

Answer 

 

 

 

Initial state 

P(H2)V=3 RT; P(N2)V=1 RT 

P(H2) = 3(RT/V); P(N2) = 1(RT/V) 

If   P = RT/V       P(H2) = 3P;  P(N2) =P 

Final state 

P(H2) = 3(RT/2V) =3/2(RT/V) =3P/2 

P(N2) = 1 (RT/2V) =1P/2  

∆GM   =  RT[(nA Ln(PA(f)/PA(i))+ nBLnPB(f))/PB(i)] 

∆GM   =  8.314 x 298 [(3 Ln(3P/2/3P)+ 1Ln P/2)/P] 

∆GM   =  8.314 x 298 [(3 Ln(1/2)+ 1Ln (1/2)] 

∆GM   =  8.314 x 298 [(3 Ln(1/2)+ 1Ln (1/2)] 

2477.57 x - 4 .0.693=6868 J =- 6.868 KJ 

∆GM < 0 

∆HM =0 

∆SM = -∆GM/T =  6.868/298 = 0.023 KJ/K= 23 J/K 

∆SM > 0 

Given that the pressure of N2 is p, the pressure of H2 is 3p; therefore, the initial Gibbs 

energy is: 

   pRTNmolpRTHmolG oo
i ln)()0.1(3ln)()0.3( 22    

When the partition is removed and each gas occupies twice the original volume, the 

partial pressure of N2 falls to 1/2p and that H2 falls to 3/2p. Therefore, the Gibbs energy 

changes to: 

3.0 mol  

H2, 3p 

1.0 mol  N2, p 
3.0 mol  H2,  1.0 mol N2 ,   2p 

P(H2)=3/2p    , p(N2) =1/2p 
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The Gibbs energy of mixing is the difference of these two quantities: 

p

p
Rtmol

p

p
RTmolGmix 2

ln)0.1(
3

2/3
ln)0.3(   

2ln)0.1(2ln)0.3( RTmolRTmolGmix   

= -6.9kJ 

B) Other thermodynamic mixing functions 

Because S
T

G
np 




,)( , for a mixture of perfect gas initially at the same pressure, the 

entropy of mixing,  

)lnln(
,,

BBAA
nnp

mix
mix xxxxnR
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Because lnx ˂ 0, it follows that ∆Smix˃ 0  

We can calculate the isothermal (constant temperature), isobaric (constant pressure) 

enthalpy of mixing, ∆Hmix, the enthalpy change accompanying mixing, of two perfect 

gases from ∆G = ∆H-T∆S 

∆Hmix = 0 

II.3 The chemical potential of liquids 

Definition 

a) Raoult's law provides a relation between the vapour pressure of a substance and its 

mole fraction in a mixture; it is the basis of the definition of an ideal solution. 

b) Henry's law provides a relation between the vapour pressure of a solute and its mole 

fraction in a mixture; it is the basis of the definition of an ideal-dilute solution. 

To discuss the equilibrium properties of liquid mixtures we need to know how the Gibbs 

energy of a liquid varies with composition. To calculate its value, we use the fact that, at 

equilibrium, the chemical potential of a substance present as a vapour must be equal to 

its chemical potential in the liquid. 

(a) Ideal solutions 

We shall denote quantities relating to pure substances by a superscript *, so the chemical 

potential of pure A is written 
*
A  and as 

*
A (l) when we need to emphasizs that A is a 

liquid. Because the vapour pressure of the pure liquid is 
*
Ap it follows from 



o

o

p

p
RT ln   that the chemical potential of A in the vapour ( perfect gas) is 

*ln A
o

A pRTA   . These two chemical potentials are equal at equilibrium, so we 

can write: 

A
o

A pRTA ln   

Next, we combine these two equations to eliminate the standard chemical potential of 

the gas. 

*

*** lnlnln

A

A
AAAA

P

P
RTpRTpRTA    

According to the Raoult's law 

*
AAA pxp   

When we write equations that are valid only for ideal solutions, we shall label them with 

a superscript 
*
 

For an ideal solution 

Raoult’s law 

 

Gi = (μA
o 
  + nART Ln PA

o
) + (μB

o 
  + nBRT Ln PB

o
) 

Gf = (μA
o 
  + nART Ln PA) + (μB

o 
  + nBRT Ln PB) 

∆GM =  Gf –Gi = (μA
o 

  + nART Ln PA) + (μB
o 

  + nBRT Ln PB) – (μA
o 

  - nART Ln PA
o
) -

(μB
o 
  - nBRT Ln PB

o
)] 

∆GM = nART Ln PA - nART Ln PA
o
 + nBRT Ln PB  - nBRT Ln PB

o
 

∆GM = [nART[( LnPA –LnPA
o
)] + nBRT( LnPB- LnP

o
B)] 

Ln x – Ln y = Ln (x/y) 

∆GM = nART[( Ln(PA/P
o

A) +nBRT Ln(PB/P
o
B)] 

XA = PA/P
o

A   ;    XB = PB/P
o
B 

∆GM = nART LnxA +nBRT LnxB  =  RT[ nALnxA + nBLnxB] 

nT = nA + nB   

∆GM = RT[ nALnxA + nBLnxB] = RT (nT)/(nT)[ nALnxA + nBLnxB]  

=nTRT[(nA/nT)Ln xA + (nB/nT)LnxB              xA =  nA/nT ;    xB = nB/nT 

PA = XAP
o

A  ;   PB= XBP
o

B  ;          PT = PA   + PB 



∆GM = nTRT[xALn xA + xBLnxB] 

 xA < 1  ;          xB < 1   

  ∆GM     <  0 

∆HM = 0 

∆GM  = ∆HM - T∆SM 

∆GM  = 0 - T∆SM     ∆SM  = -∆GM /T = nTR [xALn xA + xBLnxB] 

∆SM  = nTR[xALn xA + xBLnxB] 

Boltzman’s Law           S = -K ln Ω 

AA xRTA ln*    

 

 

 

 

 

 

   

 

 

 

 

 

 

Raoult’s  Law  for real solutions 

PA = aA P
o

A  ;  PB = aB P
o
A               aA = γA xA           aB = γB xB 

γ = activity coefficient      

If  γ  > 1    repulsion between A and B;          If γ  < 1    attraction between A and B 

If γ  =1     ideal  no interaction between A and B   
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Benzene 

Toluene 

Fig. 1 Two similar liquids, in this 

case benzene and 

methylbenzene (toluene), 

behave almost ideally, and the 

variation of their vapour 

pressures with composition 

resembles that for an ideal 

solution. 

 Total pressure 



 

A) Real solution ( Repulsion forces) 

 

 

 

 

 

 

 

 

 

 

 

B) Real solution (Attraction forces) 

 

 

 

 

 

 

 

 

 

 

 

 

A deviation from the ideality is observed in this previous diagram due to the interaction 

between CS2 and Acetone. This interaction can be attraction or repulsion:  

- A positive deviation indicating  a repulsion between the different molecules 

- A negative deviation indicating an attraction between the different molecules 
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Carbon disulfide 

Acetone Fig. 2 Strong positive deviations 

from ideality are shown by 

dissimilar liquids. 

 Total pressure 
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Mole fraction of Carbon disulfide, x(A)  

P
re

ss
u

re
, p

(t
o

rr
)

 

A 

B 

Fig. 2 Strong negative deviations 

from ideality are shown by 

dissimilar liquids. 

 Total pressure 



In this case, the partial pressure of acetone becomes:  

*
acetoneacetoneacetone PaP    and         

*
222 CSCSCS PaP   

where ai is called activity of  the constituent (i ) in solution  with iii xa    

222 CSCS xa
CS

          and     acetoneacetoneacetone xa    

 

 

 

 

 

 

 

 

 

 

 

This important equation can be used as the definition of an ideal solution (so that it 

implies Raoult's law rather than stemming from it).  

The molecular origin of Raoult's law is the effect of the solute on the entropy of the 

solution. In the pure solvent, the molecules have a certain disorder and corresponding 

entropy; the vapour pressure then represents the tendency of the system and its 

surroundings to reach ahigher entropy. When a solute is present, the solution has a 

greater disorder than the pure solvent because we cannot be sure that a molecule chosen 

at random will be a solvent molecule. Because the entropy of the solution is higher than 

that of the pure solvent, the solution has a lower tendency to acquire an even higher 

entropy by the solvent vaporizing. In other words, the vapour pressure of the solvent in 

the solution is lower than that of the pure solvent. 

(b) Ideal-dilute solutions 

In ideal solutions the solute, as well as the solvent, obeys Raoult's law. However, Henry 

found experimentally that, for real solutions at low concentrations, although the vapour 

pressure of the solute is proportional to its mole fraction, the constant of proportionality 

is not the vapour pressure of the pure substance (Fig.3). 

Henry's law is: 

pB = xb KB 
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Real  

solution 

Ideal 
solution 
(Raoult) 

Fig. 3 When a component (the 

solvent) is nearly pure, it has a 

vapour pressure that is 

proportional to its mole fraction 

with a slope pB* (raoult's law). 

When it is the minor component 

(the solute) its vapour pressure 

fraction, but the constant of 

proportionality is now KB 

(Henry's law). 

 Ideal-dilute 

solution (Henry) 

KB 

P*A 



Henry’ law        PA = xAKA        K = Henry’s constant 

In this expression xB is the mole fraction of the solute and KB is an empirical constant 

chosen so that the plot of the vapour pressure of B against its mole fraction is tangent to 

the experimental curve at xB = 0. 

Table 1. Henry's law constants for gases in water at 298K 

 

Substance (gas) 

 

K/kPa.kg.mol
-1

 

CO2 3.01x10
3
 

H2 1.28x10
5
 

N2 1.56x10
5
 

O2 7.92x10
4
 

 

Example 

The vapour pressures of each compound in a mixture of propanone (acetone, A) and 

trichloromethane (chloroforme, C) were measured at 35
o
C with the following results: 

xC 0 0.20 0.40 0.60 0.80 1.00 

pC/kPa 0 4.7 11 18.9 26.7 36.4 

pA/kPA 46.3 33.3 23.3 12.3 4.9 0 

 

Confirm that the mixture conforms to Raoult's law for the component in large excess and 

to Henry's law for the minor component. Find the Henry's law constants. 

 

 

 

 

 

 

 

 

 



Answer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Figure 4. 

The data are plotted in Fig 4 toghether with the Raoult's law lines Henry's law requires 

K = 23.3 kPa for propanone and K = 22.0 kPa for trichloromethane. 

2.3 The properties of solutions 

In this section we consider the thermodynamics of mixing of liquids. First, we consider 

the simple case of mixtures of liquids that mix to form an ideal solution. 

5.3.1 Liquid mixtures 

a) The Gibbs energy of mixting of two liquids to form an ideal solution is calculated in 

the same way as for two perfect gases. The enthalpy of mixing is zero and the Gibbs 

energy is due entirely to the entropy of mixing. 

b) A regular solution is one in which the entropy of mixing is the same as for an ideal 

solution but the enthalpy of mixing is non-zero. 

Ideal solutions 

The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in 

exactly the same way as for two gases. The total Gibbs energy before liquids are mixed 

is: 

**
BBAAi nnG    
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Fig. 4 The experimental partial 

vapour pressures of a mixture of 

chloroform and acetone. The 

values of K are obtained by 

extrapolating the dilute solution 

vapour pressures. 
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When they are mixed, the individual chemical potentials are given by  

AAA xRT ln*    and the total Gibbs energy of mixing, the difference of these 

two quantities, is: 

]ln[]ln[ **
BBBAAAi xRTnxRTnG    

]lnln[ BBAAmix xxxxnRTG   

Where n = nA  +  nB . As for gases, it follows that the ideal entropy of mixing of two 

liquids is: 

]lnln[ BBAAmix xxxxnRS   

Because 0 mixmixmix STGH , the ideal enthalpy of mixing is zero. 

The ideal volume of mixing, the change in volume on mixing, is also zero because it 

follows from  VpG T  )/(  that Tmixmix pGV )/(   but ∆Gmix in 

]lnln[ BBAAmix xxxxnRTG   is independent of pressure, so the derivative 

with respect to pressure is zero. 

c) Excess functions and regular solutions 

The thermodynamic properties of real solutions are expressed in terms of the excess 

functions, X
E
, the difference between the observed thermodynamic function of mixing 

and the function for an ideal solution. The excess entropy, S
E
, for example, is defined as: 

S
E
 = ∆Smix - ∆Smix (ideal) 

The deviation of the excess energies from zero indicates the extent to which the 

solutions are nonideal. In this connection a useful model system is regular solution, a 

solution for which H
E
 ≠ 0,  but S

E
 = 0. We can think of a regular solution as one in 

which the two kinds of molecules are distributed randomly (an in an ideal solution) but 

have different energies of interactions with each other. To express this concept more 

quantitatively we can suppose that the excess enthalpy depends on composition as: 

BA
E xRTxnH   

where ξ (xi) is a dimentionless parameter that is a measure of the energy of AB 

interactions relative to that of the AA and BB interactions. If ξ ˂ 0, mixing is exothermic 

and the solute-solvent interactions are more favorable than the solvent-solvent and 

solute-solute interactions. If ξ ˃ 0, then the mixing is endothermic. Because the entropy 

of mixing has its ideal value for a regular solution, the excess Gibbs energy is equal to 

the excess enthalpy, and the Gibbs energy of mixing is: 

]lnln[ BABBAAmix xxxxxxnRTG 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)The elevation of boiling point 

The heterogeneous equilibrium of interest when considering boiling is between the 

solvent vapour and the solvent in solution at 1 atm. We denote the solvent by A and the 

solute by B. The equilibrium is established at a temperature for which  

AAA xRTlg ln)()( **    

We show in the following justification that this equation implies that the presence of a 

solute at a mole fraction xB causes an increase in normal boiling point from T* to T* + 

∆T, where 

BKxT     = Teq-Ti            

vapH

RT
K




2*

 

xA = nA/(nA + nB)= nA/nB 

∆T = K nsolute/m(kg)solvent 

𝑇𝑒𝑞 − 𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝐾𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ×
𝑛𝑠𝑜𝑙𝑢𝑡𝑒

𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑘𝑔)
 

H
E /n

R
T

 

0 

+0.5 

  0                                0.5                               1 

xA 

2 

1 

0 

-1 

-2 

-0.2 

-0.1 

-0.3 

-

0.4 

0.0 

+0.1 

  0                               0.5                               1 

xA 

3 

2.5 

2 

1.5 

1 

Fig. 5 The excess enthalpy according to a 

model in which it is proportional to ξxAxB, 

for different values f the parameter ξ. 

Fig. 6 The Gibbs energy of mixing for  

different values f the parameter ξ. 



𝑇𝑒𝑞 − 𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝐾𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ×
𝑛𝑠𝑜𝑙𝑢𝑡𝑒

𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑔)103
 

𝑇𝑒𝑞 − 𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝐾𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ×
𝑚𝑠𝑜𝑙𝑢𝑡𝑒(𝑔)

𝑀(𝑠𝑜𝑙𝑢𝑡𝑒)(𝑔) × 𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑔)103
 

B) The depression of freezing point 

The heterogeneous equilibrium of interest is between pure solid solvent A and the 

solution with solute present at a mole fraction xB. At the freezing point, the chemical 

potentials of A in the two phases are equal:  

AAA xRTls ln)()( **    

The only difference between this calculation and the last is the appearance of the solid's 

chemical potential in place of the vapour's. Therefore we can write the result directly 

from equation  

BxKT '                     

fusH

RT
K




2*

'      

Where ∆T is the freezing point depression, T*-T, ∆Hfus is the enthalpy of fusion of the 

solvent. When the solution is diluted, the mole fraction is proportional to the molality of 

the solute, b, and it is common to write the last equation as  

∆T = Kf x b 

𝑇𝑒𝑞 − 𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝐾′𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ×
𝑚𝑠𝑜𝑙𝑢𝑡𝑒(𝑔)

𝑀(𝑠𝑜𝑙𝑢𝑡𝑒)(𝑔) × 𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑔)103
 

C) The solubility 

In a saturated solution the chemical potential of pure solid solute, μB*(s), and the 

chemical potential of B in solution, μB, are equal. Because the latter is 

BBB xRTl ln)(*    we can write BBB xRTls ln)()( **    

This expression is the same as the starting equation of the last section, except that the 

quantities refer to the solute B, not the solvent A. We now show in the following 

justification that: 

)
11

(ln
TTR

H
x

f

fus
B 


  

D) The Osmosis 

The thermodynamic treatment of osmosis depends on noting that, at equilibrium, the 

chemical potential of the solvent must be the same on each side of the membrane. The 

chemical potential of the solvent is lowered by the solute, but is restored to its pure 



value by the application of pressure. This equality implies that for dilute solutions the 

osmotic pressure is given by the Van't'Hoff equation: 

 

 

 

 

 

 

 

 

 

Osmosis equation:  This equation is applicable only when the solution used is infinite 

diluted  ( mSolute >> m Solvent ) 

𝜋𝑉 = 𝑛𝑅𝑇       (Osmose) 

𝜋 = 𝑚𝑅𝑇

𝑀𝑉
        

𝜋 = ℎ × 𝑔 × 𝜌 

h: high in the capillary tube (cm) 

g: gravitational force= 981 cm/s2
 

ρ: density of solution (g/cm
3
) 

𝜋 = 𝑚(𝑠𝑜𝑙𝑢𝑡𝑒)𝑅𝑇

𝑀𝑉
=

𝐶

𝑀
𝑅𝑇              

C:  concentration of solute (g/cm
3
) 

T: temperature (K) 

R: gas constant= 8.314 J/K.mol = 8.314 kg⋅m2
/s

2
K⋅mol 

 

 

 

Solvent Solution 

h 

Capillary tube Osmotic 

Membrane 

https://en.wikipedia.org/wiki/Kilogram
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Mole_(unit)


 

 

 

 

 

 

 

 

 

Pa = Kg/m
2
 

𝑀(
𝑔

𝑚𝑜𝑙
) =

𝐶 (
𝑔

𝑐𝑚3)
) × 𝑅 (

𝑔
𝑐𝑚2 × 𝐾 × 𝑚𝑜𝑙

) 𝑇(𝑘)

ℎ(𝑐𝑚) × 𝑔(
𝑔

𝑐𝑚2) × 𝑑(
𝑔

𝑐𝑚3)
 

Example 

The osmotic pressures of solutions of poly(vinylchloride), PVC, in cyclohexanone at 

298K are given below. The pressures are expressed in terms of the heights of solution 

(of mass density ῥ = 0.980 g.cm
-3

) in balance with the osmotic pressure. 

Determine the molar mass of the polymer. 

c/(g.dm
-3

) 1.00 2.00 4.00 7.00 9.00 

h/cm 0.28 0.71 2.01 5.10 8.00 

 

 

 

 

π 

C 

RT/M = Slope 



Answer 

c/(g.dm
-3

) 1.00 2.00 4.00 7.00 9.00 

h/cm 0.28 0.71 2.01 5.10 8.00 

(h/c)/(cm.g
-1

.dm
3
 0.28 0.36 0.503 0.729 0.889 

 

 

 

 

 

 

 

 

 

 

 

𝐶

𝑀
𝑅𝑇 = ℎ × 𝑔 × 𝑑 

h/c = RT/g x d x M 

The points are plotted in figure 7. The intercept is at 0.21. Therefore, 
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Fig. 7 The plot involved in the 

determination of molar mass by 

osmometry. The molar mass is 

calculated from the intercept at 

c = 0. 
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3. PHASE DIAGRAMS OF BINARY SYSTMS 

 3.1 Vapour pressure diagrams 

Raoult's law is used to calculate the total vapour pressure of a binary system of two 

volatile liquids. 

a) The composition of the vapor in equilibrium with a binary mixture is calculated 

by using Dalton's law. 

b) The compositions of the vapour and the liquid phase in equilibrium are located at 

each end of a tie line. 

c) The lever rule is used to deduce the relative abundances of each phase in 

equilibrium. 

The partial pressures of the components of an ideal solution of two volatile liquids are 

related to the composition of the liquid mixture by Raoult's law 

*
AAA pxp      and    

*
BBB pxp     (5.6.1) 

where 
*
Ap  is the vapour pressure of pure A and 

*
Bp  that of pure B. The total vapor 

pressure p of the mixture is therefore 

ABABBBAABA xpppPxPxppp )( *****      (5.6.2) 

This expression shows that the total vapour pressure (at some fixed temperature) 

changes linearly with the composition from *
Bp  to

*
Ap  as xA changes from 0 to 1. 

3.1.1 The composition of the vapor 

The composition of the liquid and vapour that are in mutual equilibrium are not 

necessarily the same. Common sense suggests that the vapour should be richer in the 

more volatile component. This expectation can be confirmed as follows. The partial 

pressures of the components are given by the Daton's equation.  

p

p
y A

A     ;     
p

p
y B

B         (5.6.3)    PA = xA PT              PB = xB PT 

yA and yB are the mole fractions in the gas. 

Provided the mixture is ideal, the partial pressures and the total pressure may be 

expressed in terms of the mole fractions in the liquid by using: 
*
AAA pxp   and 

*
BBB pxp   and ABABBBAABA xpppPxPxppp )( *****   which 

gives: 

ABAB
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     and   BA yy 1      (5.6.4) 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also relate the total vapour pressure to the composition of the vapour: 
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The mole fraction of A in the vapour of binary 

ideal solution expressed in terms of its mole 

fraction in the liquid, calculated using eqn 

(5.6.4) for various values of PA*/pB* with A more 

volatile than B. In all cases tha vapour is richer 

than the liquid in A. 

The dependence of the vapour pressure of the 

same system as in the side figure, but expressed 

in terms of the mole fraction of A in the vapour 

by using eqn (5.6.5). Individual curves are 

labeled with the value of PA*/PB* 
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The dependence of the total 

vapour pressure of an ideal 

solution on the mole fraction of A 

in the entire system. 

A point between the two lines 

corresponds to both liquid and 

vapour being present; outside that 

region there is only one phase 

present. The mole fraction of A is 

denoted zA, as explained below. 
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This expression is plotted in the middle figure. 

3.1.2 Temperature-composition diagrams 

a) a phase diagram can be used to discuss the process of fractional distillation. 

b) Depending on the relative strengths of the intermolecular forces, high- or low-boiling 

azeotropes may be formed. 

c) The vapour pressure of a system composed of immiscible liquids is the sum of the 

vapour pressures of the pure liquids. 

d) A phase diagram may be used to discuss the distillation of partially miscible liquids. 

To discuss distillation we need a temperature-composition diagram, a phase diagram in 

which the boundaries show the composition of the phases that are in equilibrium at 

various temperatures (and a given pressure, typically 1 atm).  An exemple is shown in 

this figure.  

Xethanol  1 0.80 0.60 0.50  0.30 0.20 0 

Tboiling 87  67 60 70 80 90 100 

Tvaporization 87 70 80 90 95 97 100 

 

 

 

 

 

 

 



A) Liquid-Vapor binary diagram 

Phase diagram Liq-Vap using the reduction of pressure  

 

 

 

 

 

 

 

 

(a) Azeotropes  

Although many liquids have temperature-composition phase diagrams resembling 

the ideal version in the precedent figure, in a number of important cases there are 

marked deviations. A maximum in the phase diagram (figure below) may occur 

when the favourable interactions between A and B molecules reduce the vapour 

pressure of the mixture below the ideal value: in effect, the A-B interactions stabilize 

the liquid. In such cases the excess Gibbs energy, G
E
, is negative (more favourable 

to mixing than ideal). Examples of this behaviuor include 

trichloromethane/propanone and nitric acid/water mixtures. Phase diagrams showing 

a minimum (figure) indicate that the mixture is destabilized relative to the ideal 

solution, A-B interactions then being unfavourable. For such mixtures G
E
 is positive 

(less favourable to mixing than ideal), and there may be contributions from both 

enthalpy and entropy effects. Examples include dioxane/water and ethanol/water 

mixtures. 
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The system shown in the figure below is also azeotropic, but shows its azeotropy in a 

different way. Suppose we start with a mixture of composition a1, and follow the 

changes in the composition of the vapour that raises trough a fractionatimg column. 

The mixture boils at a2 to give a vapour of composition a'2. This vapour condenses in 

the column to a liquid of the same composition (a3). That liquid reaches equilibrium 

with its vapour at a3', which condenses higher up the tube to give a liquid of the same 

composition, which we now call a4. The fractionation therefore shifts the vapour 

towards the azeotropic composition at b, but not beyond, and the azeotropic vapour 

emerges from the top of the column. An example is ethanol/water, which boils 

unchanged when the water content is 4 per cent by mass and the temperature is 78
o
C. 

 

 

 

 

 

 

 

 

 

B)  Liquid-liquid phase diagrams 

a) Phase separation of partially miscible liquids may occurs when the 

temperature is below the upper critical solution temperature or above the 

lower critical solution temperature. 

b) The upper critical solution temperature is the highest temperature at which 

phase separation occurs. 

c)  The outcome of a distillation of a low-boiling azeotrope depends on 

whether the liquids become fully miscible before they boil or boiling occurs 

before mixing is complete. 
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Suppose a small amount of a liquid B is added to a sample of another liquid A at a 

temperature T'. Liquid B dissolves completely, and the binary system remains a single 

phase. As more B is added, a stage comes at which no more dissolves. The sample now 

consists of two phases in equilibrium with each other, the most abundant one consisting 

of A saturated with B, the minor one a trace of B saturated with A. In the temperature-

composition diagram drawn below, the composition of the former is represented by the 

point a' and that of the latter by the point a". The relative abundances of the two phases 

are given by the level rule. 

 

 

 

 

 

 

 

 

 

 

C)  Liquid-Solid phase diagrams 

a) A phase diagram summarizes the temperature-composition properties of a 

binary system with solid and liquid phases; at the eutectic composition the 

liquid phase solidifies without change of composition. 

b)  The phase equilibria of binary systems in which the components react may 

also be summarized by a phase diagram. 

c) In some cases, a solid compound does not survive melting. 
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Eutectic ( X, Temperature) point  

Eutectics 

At certain temperature called “eutectic temperature” the two components in certain 

composition called also “euthectic composition” in the mixture has the same melting 

temperature.  

A ternary mixture A, B and C can also contain two euthectic points in which at certain 

composition the three component have the same melting temperature. 
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𝐿𝑛 𝑥𝐴 =
∆𝐻𝑓𝑢𝑠𝑖𝑜𝑛

𝑅
[

1

𝑇1
−

1

𝑇2
] 

 

Exercise 1 

What is the boiling temperature of pure ethanol in the ethanol/water liquid-

vapor system. What is are the azeotropic temperature and composition of this 

system.  What is the temperature proposed to separate this mixture when the 

composition is 0.5?   

PT = PA + PB =  PoA XA + PoB XB 

Poethanol  ? 

Azeotropic composition? 

Te
m
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Solid A     +    Solid  B +  Solid C   

Liquid A     +    Liquid  B   + liquid 

C 

Liquid   + C  
Liquid   + A  

Composition 

C A 

TmC 

TmA 

Eutectic 

B 

Eutectic 

Solid A     +    Solid  B   + Solid C 

Liq  + Solid  



Pressure to separate the mixture ? 

Liquid-liquid diagram 

Exercise. Put the different zones in the liquid-liquid diagram. What is the 

necessary temperature used to separate this mixture at 0.5 composition? 

 

 

 

 

 

 

 

 

4. The ionic solutions (electrolytes) 

AX    →A-  + X+ 

Li+   Na+  K+ ….. Column  I  (alkaline) 

Ca 2+ , Mn 2+,…….. Column II ( earth alkaline) 

F- , Cl-, Br- , ……..  Column VII ( halogene) 

Alectrolyte  CaCl2    →  Ca2+  +  2Cl-  

SO42-  anion sulfate;  CO32-  carbonate  

Na2SO4    →  2Na
+
 + SO4

2- 
 

NH4
+ 

 Cl
-
     

NH4Cl(s) + H2O → NH4Cl(aqueous) → NH
4+ 

(aq) + Cl
-
(aq) 

The ionic or electrolyte solutions when they are in polar solvents like water or 

sometimes alcohols dissociate giving ions (cations and anions). 

A strong electrolyte will dissociate completely as sodium chloride (NaCl). 
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H2O : amphotere ( acid, base) 

 

NaCl(solid)  + H2O  →  Na+(aqueous) + Cl-(aqueous) 

 

A weak electrolyte will only dissociate partially as acetic acid (CH3COOH). 

 

CH3COOH  + H2O   →  CH3COO- (aqueous) + H3O+ (aqueous) 

The presence of the charged ions causes the electrolyte solution to deviate much 

more from ideal solution behavior than a non-electrolyte solution does.  

This is the case even at very low electrolyte concentrations. The reason is that 

the ions interact with electrostatic forces which are of much longer range than 

those involved in the interaction of neutral molecules. This effect is stronger the 

greater the charge on the ions. 

For a proper description of electrolyte solutions not only the short range 

energetic interactions but also the long range electrostatic interactions have to be 

considered. Another basic difference between electrolyte and non-electrolyte 

solutions is the constraint of electro-neutrality on electrolyte solutions. Because 

of this constraint, a system consisting of water and two ions is a binary system: 

The concentrations of the two ions cannot be chosen independently so the 

system has two independent components. 

Consider a salt, S, which dissociates in water giving cations,νC, and anions ,νA, 

with ionic charges ZC and ZA, respectively. 

 

𝑆 = 𝜈𝐶𝐶𝑍𝐶 + 𝜈𝐴𝐴𝑍𝐴      (1) 

Table 1. Salt dissociation 

S C ZC 𝜈 C A ZA 𝜈 A 

NaCl Na+ 1 1 Cl- -1 1 

Na2SO4 Na+ 1 2 SO42- -2 1 

CaCl2 Ca2+ 2 1 Cl- -1 2 

The eletro-neutrality requirement gives for salt S: 

0 = 𝜈𝐶𝑍𝐶 + 𝜈𝐴𝑍𝐴         (2) 

 



In general the electro-neutrality of a multi components solution containing ni moles of 

ion i with the charge Zi relative to a hydrogen ion can be expressed as:  

∑ 𝑛𝑖 × 𝑍𝑖𝑖 = 0           (3) 

Sodium chloride is often described as a 1-1 salt, sodium sulfate as a 1-2 salt, 

calcium chloride as a 2-1 salt, and calcium sulfate as a 2-2 salt, based on the 

values of the ionic charges. 

Solubility:  

Na Cl(solid) + H2O → NaCl(aqueous)   →Na+ (aqueous)   +    Cl- (aqueous) 

Ks = [Na+][Cl-]                              Ks:  Solubility constant 

[Na+] : solubility of Na+ = s ;  [Cl-]: solubility of Cl- = s 

Solubility : concentration of ion in water at saturation (equilibrium) 

Ks = s2              𝑠 = √𝐾𝑠                            (mol/L) 

CaSO4 (solid)  + H2O  → CaSO4(aqueous) → Ca2+ (aq) +SO42- 

Na2SO4 (solid)   + H2O            →   Na2SO4 (aq)  → 2Na+ + SO42- 

Ks = [Na+]2[SO42+] = (2s)2(s) = 4 x s3                        𝑠 = √
𝐾𝑠

4

3
  

Ks = A exp(-∆G/RT)  

Concentration 

For the description of electrolyte solutions the most common concentration unit 

is the molality. The molality unit is very often used in the presentation of 

experimental data, while the mole fraction unit most often is used in 

thermodynamic models for electrolytes. The molarity unit is also often used, but 

is dependent on temperature and to a certain extent also on pressure. It is not a 

practical unit because the density needs to be known in order to convert 

molarity units to molality units or mole fraction units.  

 

The molality mi of an ion i is the number of moles ni, of the ion per kg water in 

the liquid phase: 

𝑚𝑖 =
𝑛𝑖

𝑛𝑤×𝑀𝑤
(

𝑚𝑜𝑙

𝑘𝑔.𝑤𝑎𝑡𝑒𝑟
)              (4)    n = m/M 

The amount of water in the solution is here calculated as the product of nw, the 

number of moles of water and Mw, the molar mass of water in kg/mol.  



The molarity Ci of an ion i is the number of moles of the ion per liter solution: 

𝐶𝑖 =
𝑛𝑖

𝑉𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 (

𝑚𝑜𝑙

𝑙𝑖𝑡𝑒𝑟(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
 )           (5) 

If the volume of solute is negligible          𝐶𝑖 ≈
𝑛𝑖

𝑉𝑠𝑜𝑙𝑣𝑎𝑛𝑡
 (

𝑚𝑜𝑙

𝑙𝑖𝑡𝑒𝑟(𝑠𝑜𝑙𝑣𝑒𝑛𝑡)
 

The volume of the solution, Vsolution, is related to its mass and its density: 

𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑛𝑤𝑀𝑤+∑ 𝑛𝑖𝑀𝑖

𝑉𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
             (6) 

If the density of the solution dsolution is given in kg/liter and the molar masses of 

water and ions are given in kg/mol, the volume of the solution will be calculated 

in liter. 

From equation (4), it can be seen that the molality concentration unit is only 

dependent on the amount of the relevant solute and the amount of solvent. The 

mole fraction unit and the molarity units on the other hand are also dependent 

on the amount of other solutes present. In addition, the molarity unit is also 

dependent on temperature and pressure because the density of the solution 

depends on temperature and pressure. 

  

Example 1: A solution containing 6 mol of sodium chloride and one kg of water 

is a 6 molal solution of sodium chloride. The molality of the sodium ion in the 

solution is 6. The molar mass of water is 18.02 gram/mol, and the number of mol 

water in one kg water can therefore be calculated as 1000/18.02. The molality of 

the chloride ion in the solution is also 6. What is the mole fraction of the sodium 

ion? 

Solution 

𝑥𝑁𝑎+ =
𝑛𝑁𝑎+

𝑛𝑁𝑎+ + 𝑛𝐶𝑙− + 𝐻2𝑂
=

6

6 + 6 +
1000
18.02

= 0.0889 

The mole fraction of the chloride ion is also 0.0889. The mole fraction of water is:  

𝑥𝑤 =
1000/18.02

6 + 6 + 1000/18.02
= 0.8222 

Sometimes the composition of an electrolyte solution is given in terms of the 

amounts of water and salts instead of water and ions. If this approach is used, 

the composition of the same solution can be described by the mole fraction of 

sodium chloride: 

𝑥𝑁𝑎𝐶𝑙 =
𝑛𝑁𝑎𝐶𝑙

𝑛𝑁𝑎𝐶𝑙 + 𝑛𝐻2𝑂
=

6

6 + 1000/18.02
= 0.0975 



The mole fraction of water is 1 – 0.0975 = 0.9025 when this approach is used.  

The density of this solution is 1.1942 kg/liter at 25 °C and 1 bar. 

 The volume of the solution can be calculated from equation (6): 

𝑉𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑛𝑤𝑀𝑤 + 𝑛𝑁𝑎+ + 𝑛𝐶𝑙−𝑀𝐶𝑙−

1.1942
= 

1.000+6.0×0.02299+6.0×0.035453

1.1942
=1.1310 Liter 

The molarity of the sodium ion, the chloride ion and of sodium chloride in the solution 

is: 

𝐶𝑁𝑎+ = 𝐶𝐶𝑙− = 𝐶𝑁𝑎𝐶𝑙 =
6

1.1310
= 5.305 𝑚𝑜𝑙/𝐿𝑖𝑡𝑒𝑟 

At 100 °C and 1 bar, the density of the same sodium chloride solution is 1.1490 kg/liter. 

The volume of the solution is 1.1755 liter and the molarity of solution chloride is 5.104 

mol/Liter. 

For a salt S the molarity is: 

𝑚𝑆 =
𝑛𝑆

𝑛𝑆𝑀𝑤
        (7) 

If the salt dissociates into νC cations and νA anions the molality of the cation C is:  

𝑚𝐶 =
𝛾𝐶𝑛𝑆

𝑛𝑤𝑀𝑤
= 𝛾𝐶𝑚𝑆       (8) 

 

The molality of the anion A is: 

𝑚𝐴 =
𝛾𝐴𝑛𝑆

𝑛𝑤𝑀𝑤
= 𝛾𝐴𝑚𝑆      (9) 

 

The molality of the salt can therefore be expressed either in terms of 

the cation molality or in terms of the anion molality: 

 

𝑚𝑆 =
𝑚𝐶

𝛾𝐶
        or    𝑚𝑆 =

𝑚𝐴

𝛾𝐴
          (10) 

Most thermodynamic models use the traditional mole fraction 

scale: 

𝑥𝑖 =
𝑛𝑖

∑ 𝑛𝑗
         (11) 

The summation in the denominator is over all solute and solvent 

species. A relation between the molality unit and the mole fraction 

unit can be derived as follows: 

𝑥𝑖 =
𝑛𝑖

∑ 𝑛𝑗
=

𝑛𝑖

∑ 𝑛𝑗
×

𝑚𝑤𝑀𝑤

𝑛𝑤𝑀𝑤
= 𝑚𝑖 × 𝑥𝑤 × 𝑀𝑤     (12) 

Mw is the molar mass of water given in kg/mol. 

The molarity unit is related to the mole fraction unit by:  

𝑥𝑖 =
𝑛𝑖

∑ 𝑛𝑗
=

𝑛𝑖

∑ 𝑛𝑗
×

𝑉𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑉𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

𝑐𝑖𝑉𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

∑ 𝑛𝑗
           (13) 

A large number of different concentration units are used to present 

experimental data for electrolytes. These include:  
 



1. Mass percent  

2. Molality  

3. Mole fraction (water, ions, and non electrolytes)  

4. Mass of salt per mass of H2O  

5. Mass of salt per volume solution  

6. Mole salt per volume of solution  

7. Mole salt per mass of solution  

8. Jänecke coordinates (Charge fraction + gram H2O per mole salts)  

9. Mass percent solvent (salt free) + molality of salt  

10. Mass percent solvent(salt free) + mass of salt per mass of mixed solvent  

11. Mole percent solvent(salt free) + molality salt  

 

One reason why molality is a popular unit for salt solutions is that the 

concentrations in molality units practical numbers, often between 0 and 20 for 

most salts, for most salts, while the concentrations in mole fraction units are 

very small as indicated in figure 2.1: The figures show the phase diagram of the 

ternary system NaCl-KCl-H2O using these two different concentration units. 

The lines in the phase diagrams mark concentrations saturated with either NaCl 

or KCl. At 25°C, the solubility of NaCl is 6.15 mol/kg water, 0.0997 salt mole 

fraction, or 26.4 mass percent. The corresponding numbers for KCl are 4.79 

mol/kg water, 0.0795 salt mole fraction, or 20.7 mass percent. 

 

 

  
4.1 Ideal ionic solutions  

4.1.1 Definition  
 



An ideal solution can be defined as a solution in which the molar Gibbs energy of 

species i is calculated as: 

  

𝐺𝑖
𝑖𝑑 = 𝐺𝑖

𝑜 + 𝑅𝑇𝐿𝑛𝑥𝑖       (14)   

 

R is the gas constant, T is the absolute temperature in Kelvin, and xi is the mole 

fraction of component i. Based on the definition of the ideal solution, the 

properties of real solutions can be calculated by the sum of two terms: an ideal 

term and an excess term. Equation (14) defines the ideal term of the Gibbs 

energy and is therefore given the superscript id. is the molar standard state 

Gibbs energy and is a function of temperature and pressure.  

If there is only one component, the mole fraction xi of component i is equal to 

one. The term RTLnxi then becomes zero, and the Gibbs energy of i is equal to 

the standard state Gibbs energy of i at the temperature and pressure. Therefore 

this standard state is often called the “pure component standard state”.  

An alternative definition of the ideal solution is based on the 

molality scale:  

𝐺𝑖
𝑖𝑑,𝑚 = 𝐺𝑖

𝑚 + 𝑅𝑇𝐿𝑛(𝑚𝑖)      (14)  

 

The ideal solution Gibbs energy calculated from equation (13) is different from 

the one calculated from equation (14). The latter is therefore marked with 

superscript m. is the value of the molar standard state Gibbs energy on the 

molality scale and is a function of temperature and pressure.  

The entropy of component i is related to the Gibbs energy through the 

fundamental thermodynamic relation:  

𝑆𝑖 = (
𝜕𝐺𝑖

𝜕𝑇
)

𝑃,𝑥
    (15)              d G = dH- d(TS) = dH –SdT (if S constant) 

dG =-SdT        S =-dG/dT  

The entropy of component i in an ideal solution can be calculated from equation 

(13) using the relation in (14): 

𝑆𝑖
𝑖𝑑 = − [

𝜕𝐺𝑖
𝑖𝑑

𝜕𝑇
] = − [

𝜕𝐺𝑖
𝑜

𝜕𝑇
] = −𝑅𝐿𝑛𝑥𝑖 = 𝑆𝑖

𝑜 − 𝑅𝐿𝑛𝑥𝑖    (16)   

𝑆𝑖
𝑜 is the molar standard state entropy of component i and is a function of 

temperature and pressure.  

Through the fundamental thermodynamic relation Gi = Hi – TSi, the enthalpy of 

component i in an ideal solution can be calculated from equations (13) and (15): 

𝐻𝑖
𝑖𝑑 = 𝐺𝑖 + 𝑇𝑆𝑖 = 𝐺𝑖

𝑜 + 𝑅𝑇𝐿𝑛𝑥𝑖 + 𝑇𝑆𝑖
𝑜 − 𝑅𝑇𝐿𝑛𝑥𝑖     (17)  

= 𝐺𝑖
𝑜 + 𝑇𝑆𝑖

𝑜 = 𝐻𝑖
𝑜 



𝐻𝑖
𝑜, pressure. The Gibbs energy and the entropy of a component in an ideal 

solution both depend on the composition of the solution according to equation 

(13) and (15). According to equation (17), the enthalpy of a component in an 

ideal solution is not dependent on the composition.  

Example 2  

We will calculate the phase diagram assuming ideal solution behavior. The 

phase diagram consists of two equilibrium curves. On one curve solid 

potassium chloride is in equilibrium with a saturated solution. On the other 

curve solid sodium chloride is in equilibrium with a saturated solution. The two 

equilibria can be expressed as: 

𝐾+(𝑎𝑞) + 𝐶𝑙−(𝑎𝑞) ↔ 𝐾𝐶𝑙(𝑠)        (18)  

𝑁𝑎+(𝑎𝑞) + 𝐶𝑙−(𝑎𝑞) ↔ 𝑁𝑎𝐶𝑙(𝑠)      (19)  

 

The brackets (s) indicate solid, crystalline phase, the brackets (aq) indicate 

solutes in aqueous solution. Equilibrium is attained when there is no Gibbs 

energy change for a pair of ions that choose to go from the crystalline phase to 

the aqueous phase or vice versa.  The equilibria we consider in this example are 

heterogeneous, involving two solid phases and a liquid phase. The solid phases 

are pure, homogeneous phases, not mixtures. Even in point b in Figure 2.1 

where two solid salts are in equilibrium with the same liquid, the two solid salts 

will form crystals of pure NaCl and of pure KCl. In other systems, for example 

mixtures of ammonium and potassium salts, there is a tendency to form mixed 

crystals, solid solutions, due to the similarity of the two cations. The Gibbs 

energy of the pure solid salts can be found in thermodynamic tables. Also the 

Gibbs energy of the aqueous ions can be found in such tables. Table 5.2 contains 

the values necessary to calculate the phase diagram in Figure 2.1.  

The Gibbs energy of each component in the molality based ideal solution can be 

expressed using equation (14): 

𝐺
𝐾+(𝑎𝑞)
𝑖𝑑,𝑚 = ∆𝑓𝐺𝐾+(𝑎𝑞)

𝑚 + 𝑅𝑇𝐿𝑛𝑚𝐾+          (20)  

𝐺𝐶𝑙−(𝑎𝑞)
𝑖𝑑,𝑚 = ∆𝑓𝐺𝐶𝑙−(𝑎𝑞)

𝑚 + 𝑅𝑇𝐿𝑛𝑚𝐶𝑙−      (21)  

𝐺𝐾𝐶𝑙(𝑠) = ∆𝑓𝐺𝐾𝐶𝑙(𝑠)     (22)      

𝐺𝑁𝑎𝐶𝑙(𝑠) = ∆𝑓𝐺𝑁𝑎𝐶𝑙(𝑠)    (23)   



 

All the Gibbs energies used are Gibbs energies of formation as indicated by the 

subscript f. The Gibbs energies of formation refer to the same standard state: 

The natural state of the elements at 25°C and 1 bar. The values therefore allow 

us to calculate the Gibbs energy change by reactions among these compounds.  

The condition for equilibrium of potassium and chloride ions with solid 

potassium chloride is that the Gibbs energy is identical in the two phases, which 

can be expressed as: 

𝐺
𝐾+(𝑎𝑞)
𝑖𝑑,𝑚 + 𝐺

𝐶𝑙±(𝑎𝑞)

𝑖𝑑,𝑚 = 𝐺𝐾𝐶𝑙(𝑠)        (24)   

or 

∆𝑓𝐺𝐾+(𝑎𝑞)
𝑚 + 𝑅𝑇𝐿𝑛𝑚𝐾+ + ∆𝑓𝐺

𝐶𝑙±(𝑎𝑞)

,𝑚 +  𝑅𝑇𝐿𝑛𝑚𝐶𝑙− = ∆𝐺𝐾𝐶𝑙(𝑠)    (25)  

A corresponding expression for sodium chloride could also be written. By 

inserting numbers from Table 5.2, the following expression is obtained for 

potassium chloride: 

−283270 + 𝑅𝑇𝐿𝑛𝑚𝐾+ −  131228 + 𝑅𝑇𝐿𝑛𝑚𝐶𝑙− = −409140    (26)   

The equation can be modified to  

𝑚𝐾+𝑚𝐶𝑙− = 𝑒𝑥𝑝 (
5358

𝑅𝑇
) = 𝑒𝑥𝑝 (

5358

8.314×298.15
) = 8.6843    (27)  

By a similar method the corresponding equation for the equilibrium of sodium 

chloride can be derived as: 



𝑚𝑁𝑎+𝑚𝐶𝑙− = 𝑒𝑥𝑝 (
8995

𝑅𝑇
) = 37.6655        (28)   

The curve for KCl solubility can now be calculated at fixed concentrations of 

NaCl by using equation (27). Because the NaCl concentration is fixed, the 

molality of Cl- can be calculated as the molality of NaCl plus the molality of K+. 

The molality of K+ therefore is the only unknown. The curve for NaCl solubility 

can be calculated at fixed concentrations of KCl by using equation (28) in a 

similar manner. The point b from Figure 2.1 can be calculated by solving 

equations (27) and (28) simultaneously. 

 

The result of the calculation is shown in Figure 3.1. The calculated solubility of 

sodium chloride is very close to the actual solubility of sodium chloride. For 

potassium chloride on the other hand, the calculated solubility is much lower 

than the actual solubility of potassium chloride. This indicates that one of these 

apparently similar salts has ideal solution behavior while the other deviates 

strongly from ideal behavior. This is a coincidence caused by the fact that the 

mean molal activity coefficient of sodium chloride has values near 1 at 

concentrations near saturation of NaCl at room temperature.  



Obviously, the ideal solution assumption gives results that deviate significantly 

from the experimental value of the solubility in this system. In order to make 

this kind of calculations correct, it is very important to use a thermodynamic 

model that takes the deviation from ideality into account.   

Exercise 3.1  

In Example 3.1, the solid-liquid phase diagram of the ternary system KCl – NaCl 

– H2O system at 25°C was calculated, assuming ideal solution behavior and 

using molality as concentration scale. Derive the corresponding equations 

necessary for calculating the same phase diagram using mole fraction as the 

concentration scale, and calculate the phase diagram.  

The Gibbs energies of formation for the ions based on the mole fraction scale are 

given in Table 3.2. 

 

Table 3.2: Standard state Gibbs energy of formation of ions at 25°C. The values 

are based on the mole fraction concentration scale 

 

4.1.2 Colligative properties  

Colligative properties are properties that according to physical chemistry 

textbooks are independent of the type of species in the solution but are 

dependent on the amount of species. As it will be shown here, these colligative 

properties are not independent of the type of species. On the contrary, they are 

strongly depending on the type of species. The colligative properties are 

freezing point depression and boiling point elevation. Vapor pressure lowering 

and osmotic pressure are usually mentioned separately as colligative properties 

but these two latter properties are so closely related to the boiling point 

elevation that they don’t need to be discussed separately.  

In a freezing point depression experiment, the temperature at which solid 

solvent (ice) is in equilibrium with a solution is determined. This temperature is 

lower than the freezing point of pure water. In a boiling point elevation 

experiment, the temperature at which solvent vapor (steam) is in equilibrium 

with the solution is determined. At atmospheric pressure, this boiling point is 

higher than the normal boiling point of pure water.  

These phenomena can be understood by considering equations (13), and (14). 

According to these equations, the Gibbs energy of an ideal solution depends on 



the composition of the solution in addition to temperature and pressure. Ice and 

steam are two pure phases. The Gibbs energies of pure phases depend only on 

temperature and pressure. At equilibrium between solution and ice or solution 

and steam, the Gibbs energy of water in solution is identical to the Gibbs energy 

of ice or that of steam respectively. By varying the composition, it will therefore 

be possible to find a range of temperatures and pressures at which there is 

equilibrium between an ideal solution and the pure phases, ice and steam 

respectively. 

The equilibria between solutions and pure phases can be expressed:  

- For freezing point depression as: 

∆𝑓𝐺𝑤
𝑜 (𝑇, 𝑃) + 𝑅𝑇𝐿𝑛𝑥𝑤 = ∆𝑓𝐺𝑖𝑐𝑒

𝑜 (𝑇, 𝑃)      (29)   

- For boiling point elevation as 

∆𝑓𝐺𝑤
𝑜 (𝑇, 𝑃) + 𝑅𝑇𝐿𝑛𝑥𝑤 = ∆𝑓𝐺𝑠𝑡𝑟𝑒𝑎𝑚

𝑜 (𝑇, 𝑃)    (30)   

The left hand sides of the equations (29, 30) express the Gibbs energies of ideal 

solutions as functions of composition, temperature and pressure. The right hand 

sides of the expressions give the Gibbs energies of the pure phases as functions 

of temperature and pressure. By varying the water mole fractions it is possible 

to determine a range of temperatures and pressures at which these equilibria 

can be established.  

The expression for the equilibrium between aqueous solution and ice, equation 

(29) is plotted in figure 3.2 together with experimentally measured freezing 

point depressions. The pressure was held constant at 1 bar. The freezing point 

temperatures were calculated at a number of water mole fractions, using 

equation (29). The water mole fractions were converted to mol solute per kg 

water. The experimental data marked in Figure 3.2 show a significant difference 

between real electrolyte solutions and ideal solution behavior. The data also 

show a significant difference between the freezing point depressions caused by 

different electrolytes.  

Apparently, sodium chloride solutions are closer to ideal solution behavior than 

magnesium chloride solutions are. A solution containing 5.08 moles NaCl per 

kg water freezes at -21.7°C. Assuming full dissociation such a solution contains 

10.16 mol solutes (Na+ and Cl- ions) per kg water. This solution is called a 

eutectic solution because it is the sodium chloride solution with the lowest 

possible freezing point. A eutectic solution of magnesium chloride contains 2.73 

moles magnesium chloride and freezes at -33.6°C. If full dissociation is assumed, 

this solution contains 8.19 mol of solutes (Mg2+ and Cl- ions). This eutectic 



solution is therefore more dilute than the eutectic sodium chloride solution. It 

would be expected that the more concentrated solution would have a lower 

freezing point. 

Magnesium sulfate solutions have higher freezing points than ideal solutions 

have. The same is the case for sodium sulfate solutions but the positive 

deviation for sodium sulfate solutions is lower than for magnesium sulfate 

solutions. The experimental data for sodium sulfate solutions are not shown in 

Figure 3.2. The eutectic solution of sodium sulfate only contains 0.84 mol solutes 

per kg water.  

 
 

Figure 3.2: The theoretical freezing point depression of an ideal solution compared to 

measured freezing point depressions of sodium chloride, magnesium chloride, and 

magnesium sulfate solutions. 

 

Exercise 3.2  

Calculate the boiling point elevation of an ideal solution of solutes in water at 1 

atm pressure. Find the appropriate Gibbs energies as a function of temperature 

and pressure on the internet or in steam tables. Alternatively, you can use the 

relation G = H-TS to calculate Gibbs energies in the relevant temperature range, 

based on table values at 100°C and 1 atm. Compare the results with the 

experimental data from Hakuta given in Table 3.3. Plot the results in a graph 

similar to Figure 3.2. 

 

 



 

Table 3.3: Experimental measurements of the boiling point of electrolyte 

solutions at 1 atm. 

 
 

 

4.2  Chemical potential and activity coefficients  

4.2.1 Chemical potential  
 

The chemical potential of a species i is the partial molar derivative of the total 

Gibbs energy G, enthalpy H, Helmholtz energy A, or internal energy U of 

substance i  

 

𝜇𝑖 = [
𝜕𝐺

𝜕𝑛𝑖
]

𝑇,𝑃,𝑛𝑗

= [
𝜕𝐻

𝜕𝑛𝑖
]

𝑆,𝑃,𝑛𝑗

= [
𝜕𝐴

𝜕𝑛𝑖
]

𝑇,𝑉,𝑛𝑗

= [
𝜕𝑈

𝜕𝑛𝑖
]

𝑆,𝑉,𝑛𝑗

      (31)  

 

In equation (31), ni is the amount of component i, T is the temperature, P is the 

pressure, S is the entropy, and V is the volume.  

Matter flows spontaneously from a region of high chemical potential to a region 

of low chemical potential just like electric current flows from a region of high 

electric potential to a region of low electric potential and mass flows from a 

position of high gravitational potential to a position of low gravitational 

potential. The chemical potential can therefore be used to determine whether or 



not a system is in equilibrium. When the system is in equilibrium, the chemical 

potential of each substance will be the same in all phases of the system.  

The chemical potential of a species in its standard state is identical to its molar 

standard state Gibbs energy. Equation (14) can therefore be rewritten: 

𝜇𝑖
𝑖𝑑 = 𝜇𝑖

𝑜 + 𝐴 = 𝜋𝑟2RTLni         (32)   
 

4.2.2 Excess chemical potentials for real solutions  

It was shown in chapter 3 that aqueous salt solutions deviate significantly from 

ideal solution behavior. In order to describe phase equilibria of electrolyte 

solutions it is therefore necessary to introduce a correction for the deviation 

from ideal solution behavior. The difference between the chemical potential of a 

real solution and that of an ideal solution is called the excess chemical potential. 

The excess chemical potential for component i is: 

 

𝜇𝑖
𝑒𝑥 = 𝑅𝑇𝐿𝑛𝛾𝑖       (33)    

𝛾𝑖 is the  activity coefficient of component i. The activity coefficient is a function 

of composition, temperature and pressure. By including this excess term, the 

chemical potential of component i in a real solution is expressed as: 

𝜇𝑖 = 𝜇𝑖
𝑖𝑑 + 𝜇𝑖

𝑒𝑥      (34)   

𝜇𝑖 = 𝜇𝑖
𝑜 + 𝑅𝑇𝐿𝑛𝑥𝑖 + 𝑅𝑇𝐿𝑛𝛾𝑖         (35)   

𝜇𝑖 = 𝜇𝑖
𝑜 + 𝑅𝑇𝐿𝑛(𝑥𝑖𝛾𝑖)      (36)   

The chemical potential of water in an aqueous solution can be calculated from 

the definition in equation (31) and expressed through an equation of the form 

given in equations (34-36): 

𝜇𝑤 = (
𝜕𝐺

𝜕𝑛𝑤
)

𝑃,𝑇,𝑛𝑖,𝑥𝑤

= 𝜇𝑤
𝑜 + 𝑅𝑇𝐿𝑛(𝑥𝑤𝛾𝑤)         (37)    

As shown in chapter 3, dilute solutions are exhibiting ideal solution behavior. In 

the limit of xw → 1 it follows that γw = 1 and the excess chemical potential 

vanishes. The excess term is only relevant for mixtures. The standard state 

chemical potential of water, 𝜇𝑤
𝑜  is identical to the molar Gibbs energy of pure 

liquid water at temperature T and pressure P. 

5. Thermodynamic models for electrolyte solutions  

Thermodynamic models for electrolyte solutions are developed in order to be 

able to mathematically describe the properties and the phase behavior of 

solutions. For the chemical industry it is very valuable to be able to optimize 

processes for the production of chemicals. Electrolyte solutions are involved in 



many processes and it is therefore important to have good models for the 

description of electrolyte properties.  

 In order to properly model electrolyte systems, all different types of 

interactions: ion-ion, ion-dipole, dipole-dipole, molecule-molecule should be 

taken into account. The potential energy caused by ion-ion interactions is 

proportional to the inverse separation distance; 1/r. Electrostatic ion-ion 

interactions therefore have an effect over a relatively long distance and are 

called long range interactions. The potential energy caused by molecule-

molecule interactions is proportional to the sixth power of the inverse 

separation distance, 1/r6. These interactions are therefore called short-range 

interactions. The potential energy of ion-dipole interactions is proportional to 

1/r2 and the potential energy of dipole-dipole interactions is proportional to 1/r3. 

These interactions could be called intermediate range interactions.  

 Models are structured with terms representing only long range and 

intermediate/short range interactions.  

 

5.1 Electrostatic interactions  

5.1.1 Debye-Hückel theory  

The first really successful model for the electrostatic interactions between ions in 

aqueous electrolyte systems was developed in 1923 by P. Debye and E. Hückel. 

This author described the thermodynamics of ideal solutions of charged ions. As 

mentioned above, the electrostatic interactions between charged ions only 

represent the long range interactions in such solutions and not the short range 

interactions. The interactions between ions and water are not described by the 

Debye-Hückel model, which has led people to describe this model as a 

“dielectric continuum model”. In this model, the solvent only plays a role due to 

its relative permittivity (dielectric constant) and its density. The Debye-Hückel 

model can therefore not stand alone as a model for electrolyte solutions. It only 

represents some of the electrostatic interactions and should be combined with a 

term for short and intermediate range interactions in order to fully describe the 

properties of concentrated electrolyte solutions.  

In the Debye-Hückel theory, the electrostatic force that a positive ion exerts on a 

negative through the solvent medium is expressed through Coulombs law: 

𝐹 =
1

4𝜋𝜀𝑜𝜀𝑟
×

𝑒2

𝑟2
       (38)       

e is the electronic charge = 1.60206x10-19 C  

ε0 is the permittivity in vacuum = 8.8542x10-12 C2 J-1 m-1  

εr is the dielectric constant (relative permittivity) of the solvent (unitless). The 

value of the relative permittivity of water is 78.4 at 298.15K 



r is the distance between the ions (meter).  

Poisson’s equation gives a relationship between the charge density (ρi Cm-3) 

around ion i and the electrical potential (ψi J/C) for a sphere with radius r 

around ion i: 

1

𝑟2

𝑑

𝑑
(𝑟2 𝑑𝛹

𝑑𝑟
) =

𝜌𝑖

𝜀𝑜𝜀𝑟
       (39)    

Due to the charges, the ions are not distributed evenly or randomly in the 

solution. Near a cation, anions tend to be in excess, near an anion, cations tend 

to be in excess. An ion j has an electrical potential energy of 𝑧𝑗𝑒𝛹 if it is in the 

distance r from the ion i. Debye and Hückel assumed the distribution of the ions 

in the solution to be a Boltzmann distribution. This assumption gives another 

relation between the charge density and the electrical potential: 

𝜌𝑖 = 𝑒𝑁𝐴 ∑
𝑛𝑗𝑧𝑗

𝑛𝑉𝑎𝑙𝑙 𝑖𝑜𝑛𝑠 exp (
𝑧𝑗𝑒𝛹𝑖

𝑘𝑇
)       (40)     

nj is the mol number of component j, zj is the charge of component j, NA is 

Avogadro’s number = 6.023x1023 mol-1, k is the Boltzmann’s constant = 1.381x10-23 

JK-1, and T is the temperature in Kelvin, V is the molar volume of the solution.  

Debye and Hückel combined the Poisson equation and the Boltzmann equation 

thereby eliminating the charge density. The resulting Poisson-Boltzmann 

equation was solved for the electrical potential ψi. Debye and Hückel finally 

arrived at an excess Helmholtz function for an ideal solution of charged ions. It 

sounds like a contradiction to have an excess Helmholtz function for an ideal 

solution of charged ions. Ideal solutions do not have excess terms. But as 

mentioned before, this excess Helmholtz function only takes the non-ideality 

caused by the electrostatic interactions into account and does not deal with the 

traditional non-ideality, caused by short range forces. The molar excess 

Helmholtz function for the electrostatic interactions can be expressed by the 

equation: 
𝐴𝐸

𝑅𝑇
= −

1

3
∑ 𝑥𝑖 𝑧𝑖

2𝑠𝑘𝜒(𝑘𝑎𝑖)        (41)   

The term s is defined by:   

𝑠 =
𝑒2

4𝜋𝜀𝑜𝜀𝑟𝑘𝑇
        (42)    

The distance of closest approach to the ion i was given the symbol ai, (a for 

“annäherungsabstand”). The distance of closest approach is a parameter for the 

radius of ion i, not its diameter. It is expected that ai is larger than the radius of 

the ion, because the ions are thought to be surrounded by water that gives the 

ions a larger radius than the bare ion. The product “𝜅ai” is dimensionless and κ 



is therefore a reciprocal length. 1/κ is a characteristic length called the screening 

length. The screening length provides a good first estimate of the distance 

beyond which Coulomb interactions can be essentially ignored, as well as the 

size of the region near a point charge where opposite-charge counter-ions can be 

found. The expression for κ is: 

𝜅 = (
𝑒2𝑁𝐴

𝜀𝑜𝜀𝑟𝑘𝑇
×

∑ 𝑛𝑖𝑧𝑖
2

𝑛𝑉
)

1/2

       (43)  

The function χ is given by: 

χ(x) =
3

𝑥3 (
3

2
+ 𝐿𝑛(1 − 𝑥) − 2(1 + 𝑥) +

1

2
(1 + 𝑥)2)       (44)   

Apparently, the Helmholtz function of Debye and Hückel (41) has not been 

used by those who have developed models for electrolyte solutions. Actually 

this equation is usually not even mentioned. Instead, a number of 

simplifications of the Debye-Hückel equation have been used for model 

development and are often mentioned in text books. 

  

 

 


