

Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges

Credit hrs.: (2+1)

King Saud University

College of Science, Chemistry Department

Learning Objectives

At the end of this chapter, students will able to:

- Recognize and name amines.
- Predict the reactivity of amines as bases and nucleophiles
- Recognize the basic properties (structure, physical and chemical properties) of amines.
- know the different methods for the preparation of amines.
- Know the chemical reactions of amines.

Structure an Classification of Amines

 Amines are compounds that derived from ammonia by replacement of one, two, or three hydrogens by alkyl or aryl groups.

$$H \longrightarrow H$$
 N
 $H_{3C} \longrightarrow CH_{3}$
 $H_{3C} \longrightarrow CH_{3}$
Ammonia

Trimethyl amine

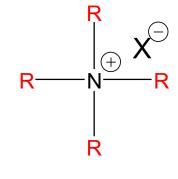
Nitrogen atom with a lone pair of electrons, making amines both basic and nucleophilic

Amines occur naturally in plants and animals.

Aliphatic amines contain only alkyl groups bonded directly to the nitrogen atom.

 Aromatic amines are those in which one or more aryl groups are bonded directly to nitrogen.

The relation between ammonia and amines is illustrated by the following structures:


- Amines are classified as primary, secondary, or tertiary, depending on whether one, two, or three
 organic groups are attached to the nitrogen.
- O NOTE:

- t-butyl alcohol is a tertiary alcohol (because three carbons are attached to the carbinol carbon).
- t-butyl amine is a primary amine (because only one carbon is attached directly to the nitrogen atom).

Quaternary Ammonium Ions:

A nitrogen atom with four attached groups is positively charged Compounds are quaternary ammonium salts

Ammonia

Hydrogen Chloride

Ammonium Chloride

$$H_3C$$
 CH_3
 H_3C
 CH_2
 CH_3
 CH_3

Nomenclature of Amines

Common Names

Amines are named by specifying the alkyl groups attached to the nitrogen and adding the suffix –amine (Alkylamine).

$$\begin{array}{ccc} & & H_3C & CH_3 \\ & CH & \\ CH_3NHCH_3 & & CH_3CH_2NCH_2CH_3 \\ & & Dimethylamine & & Diethylisopropylamine \\ \end{array}$$

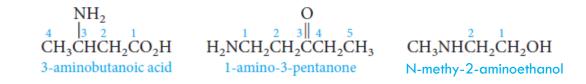
$$\begin{array}{c|c} H \\ \hline N \\ \hline \end{array}$$

$$\begin{array}{c} \operatorname{CH_3CH_2-N-CH_2CH_3} \\ \\ \operatorname{CH_2CH_3} \\ \end{array}$$

$$\begin{array}{c} \operatorname{CH_2CH_3} \\ \end{array}$$

$$\begin{array}{c} \operatorname{CH_2CH_3} \\ \end{array}$$

$$\begin{array}{c} \operatorname{CH_2CH_3} \\ \end{array}$$


IUPAC Names

 \circ The amino group, -NH₂, is named as a substituent.

Amines can be named as alkanamines.

$$\begin{array}{ccccc} & CH_3CHCH_3 & CH_3CHCH_2CH_2CH_3 \\ & & & & & \\ CH_3CH_2CH_2NH_2 & NH_2 & NHCH_3 \\ & propanamine & 2-propanamine & N-methyl-2-pentanamine \\ \end{array}$$

 \circ When other functional groups are present, the amino group, -NH₂, is named as a substituent.

When different alkyl groups are attached to the nitrogen; they are named

in alphabetical order

$$H_3C$$
 5
 4
 3
 2
 CH_3
 1

3-Hexanamine

N-Methyl-3-hexanamine

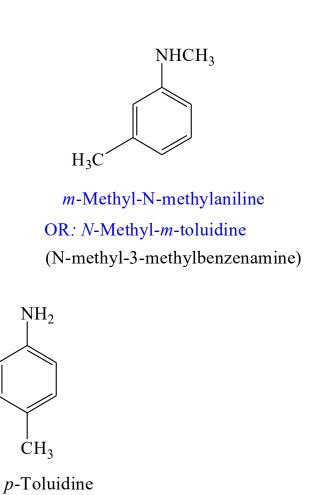
N-Ethyl-N-methyl-3-hexanamine

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

N-Isopropyl-*N*-methyl-3-hexanamine

$$CH_3$$
 N
 CH_3
 CH_3
 CH_3
 CH_3

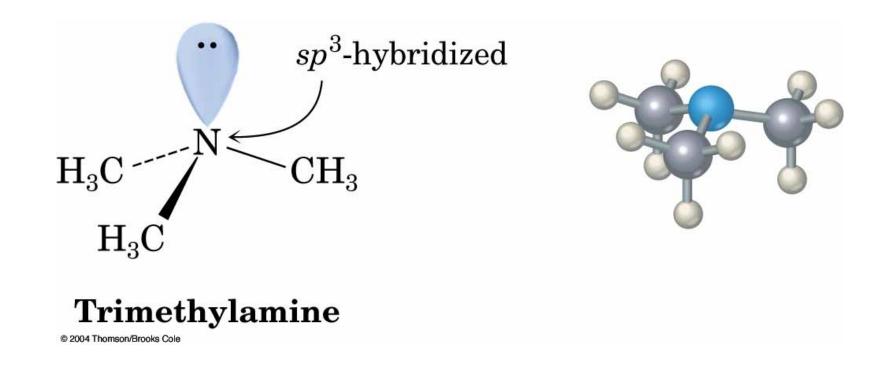
N-butyl-*N*-ethyl-3-hexanamine



Aromatic amines are named as derivatives of aniline.

 NH_2

Aniline is called benzenamine.


 $N(CH_3)_2$

Structure and Bonding in Amines

Bonding to N is similar to that in ammonia: N is sp^3 -hybridized C–N–C bond angles are close to 109° tetrahedral value

Physical Properties of Amines

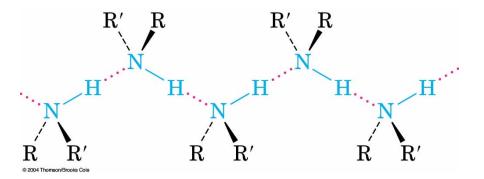
Boiling Point

- Methylamine and ethylamine are gases, but primary amines with three or more carbons are liquids.
- Primary amines boil well above alkanes with comparable molecular weights, but below comparable alcohols.

Intermolecular N-H···N hydrogen bonds are important and raise the boiling points of primary and secondary amines but are not as strong as the O-H····O bonds of alcohols.

The reason for this is that nitrogen is not as electronegative as oxygen.

alkane	CH_3CH_3 (30) bp $-88.6^{\circ}C$	$\mathrm{CH_3CH_2CH_3}$ (44) bp $-42.1^{\circ}\mathrm{C}$
amine	CH_3NH_2 (31) bp $-6.3^{\circ}C$	$CH_3CH_2NH_2$ (45) bp $+16.6$ °C
alcohol	CH ₃ OH (32) bp +65.0°C	CH_3CH_2OH (46) bp +78.5°C


Tertiary amines are also polar compounds, but because hydrogen is not bonded to nitrogen, these
amines are incapable of intermolecular hydrogen bonding.

Their boiling points are Lower than primary and secondary amines of identical molecular weights and Higher than those of alkanes of similar molecular weight.

Solubility in Water

- **All three classes of amines** can form hydrogen bonds with the -OH group of water (that is, O-H···N).
- Primary and secondary amines can also form hydrogen bonds with the oxygen atom in water: N-H···O.
- Amines with up to six carbons show appreciable solubility in water.

The Basicity of Amines

- The unshared pair of electrons on the nitrogen atom dominates the chemistry of amines.
- Because of this electron pair, amines are both basic and nucleophilic.
- Aqueous solutions of amines are basic because of the following equilibrium:

$$R\ddot{N}H_2$$
 + H OH \longrightarrow RNH_3 + OH Ammonium ion Hydroxide ion

 The most convenient way to measure the basicity of an amine (RNH₂) is to look at the acidity of the corresponding ammonium ion (RNH₃⁺)

$$K_b = \frac{[RNH_3^{\oplus}][OH]}{[RNH_2]} \qquad pK_b = -\log K_b$$

 \circ Typical amines have $K_{\rm b}$ values = 10^{-3} to 10^{-4}

	K _b
Aliphatic amines	10-3 - 10-4
Ammonia	1.8 x 10 ⁻⁵
Aniline	10 ⁻⁹ or less

- Electron-donating groups increase the basicity of amines.
- Electron-withdrawing groups decrease their basicity.

$$CH_3$$
— NH_2 CH_3 — NH — CH_3

One electron-donating group Two electron-donating groups

Amines are stronger bases than alcohols, ethers, or water

	Structure	Basicity	Acidity of conjugate acid
compound		ρK _b	pΚ _a
Ammonia	NH ₃	4.7	9.3
Primary Amines			
Methylamine	CH ₃ NH ₂	3.4	10.6
Ethylamine	CH ₃ CH ₂ NH ₂	3.2	10.8
Isopropylamine	(CH ₃) ₂ CHNH ₂	3.4	10.6
tert-Butylamine	(CH ₃) ₃ CNH ₂	3.6	10.4
Aniline	C ₆ H ₅ NH ₂	9.4	4.6
Secondary amines			
Dimethylamine	(CH3)2NH	3.3	10.7
Diethylamine	(CH3CH2)2NH	2.9	11.1
N-Methylaniline	C6H5NHCH3	9.2	4.8
Tertiary amines			
Trimethylamine	(CH3)3N	4.3	9.7
Triethylamine	(CH3CH2)3N	3.2	10.8
N,N-Dimethylaniline	C6H5N(CH3)2	8.9	5.1

- Aromatic amines are much weaker than aliphatic amines or ammonia.
 - Example: aniline is less basic than cyclohexylamine.

The reason is the resonance delocalization of the unshared electron pair that is possible in aniline, but not in cyclohexylamine:

$$H_3C-N-CH_3 > H_3C-N-H > \bigcirc_{CH_3}^{NH_2} > \bigcirc_{NO_2}^{NH_2} > \bigcirc_{NO_2}^{NH_2}$$

Preparation of Amines

1) Alkylation of Ammonia

- Ammonia reacts with alkyl halides to give amines via a two-step process.
- The first step is a nucleophilic substitution reaction.
- The free amine can then be obtained from its salt by treatment with a strong base

$$H_3N: +R-X \longrightarrow R-NH_3X^ R-NH_3X^ RNH_2+H_2O+Na^+X^ RNH_3$$
 RNH_2
 RNH_3
 RN

Primary, secondary, and tertiary amines can be similarly alkylated.

2) Reduction of Nitro Groups

The best route to aromatic primary amines is by reduction of the corresponding nitro compounds.

$$CH_{3} \xrightarrow{NO_{2}} \frac{3 \text{ H}_{2}, \text{ Ni catalyst}}{\text{or}} CH_{3} \xrightarrow{NH_{2} + 2 \text{ H}_{2}O} NH_{2} + 2 \text{ H}_{2}O$$

$$p\text{-nitrotoluene} \qquad p\text{-toluidine}$$

3) Reduction of Nitriles

Reduction of nitriles (cyanides) gives primary amines.

$$R-C \equiv N \xrightarrow{\text{LiAlH}_4} RCH_2NH_2$$

4) Reduction of Amides

Amides can be reduced to amines with lithium aluminum hydride.

$$R - C - N \xrightarrow{R'} \xrightarrow{\text{LiAlH}_4} RCH_2N \xrightarrow{R'} R' \text{ (R' and R'' may be H or organic groups.)}$$

Reactions of Amines

1) Reactions with Acids: Salt Formation

Amines react with strong acids to form alkylammonium salts.

2) Acylation of Amines: Amides Formation

Primary and secondary amines react with acyl halides to form amides.

$$\begin{array}{c} O \\ R-C-Cl + H_2N-R' \\ \text{acyl halide} \end{array} \longrightarrow \begin{array}{c} O \\ R-C-NHR' + HCl \\ \text{secondary amide} \end{array}$$

$$\begin{array}{c} O \\ R-C-Cl + HN \\ R'' \end{array} \longrightarrow \begin{array}{c} R' \\ R-C-N \\ R'' \end{array} \longrightarrow \begin{array}{c} R' \\ R-C-N \\ R'' \end{array} \longrightarrow \begin{array}{c} R' \\ R'' \end{array}$$

$$\begin{array}{c} O \\ R'' \\ R'' \end{array}$$

$$\begin{array}{c} A' \\ R'' \\ \text{acyl halide} \end{array} \longrightarrow \begin{array}{c} C-NHR' + HCl \\ R'' \end{array}$$

$$\begin{array}{c} A' \\ R'' \\ \text{acyl halide} \end{array} \longrightarrow \begin{array}{c} C-N \\ R'' \end{array} \longrightarrow \begin{array}{c} C-N \\ R'' \end{array} \longrightarrow \begin{array}{c} C-N \\ R'' \end{array}$$

3) Imines Formation

Primary amines, R-NH₂ or ArNH₂, undergo nucleophilic addition with aldehydes or ketones in an acidic buffer to give substituted imines.

$$\begin{array}{c} O \\ \vdots \\ R \\ \end{array} + R'' - NH_2 \longrightarrow \begin{array}{c} NR'' \\ \vdots \\ R \\ \end{array} + H_2O \\ \\ \text{imine} \end{array}$$

4) Aromatic Diazonium Salts

Primary aromatic amines react with nitrous acid at 0°C to yield aryldiazonium ions.
 The process is called diazotization.

$$NH_2 + HONO + H^+Cl^- \xrightarrow{0-5^{\circ}C} N_2^+Cl^- + 2 H_2O$$
aniline nitrous benzenediazonium chloride

O They are useful in synthesis because the diazonium group $(-N_2^+)$ can be replaced by nucleophiles; the other product is nitrogen gas.

OH
$$H_2O$$
 $N^+ \equiv N$
 BF_4 , heat
 Cu_2CN
 H_3PO_2 , H_2O
 BF

Uses of Amines

- Amines are largely used in pharmaceutical industry.
- Morphine and Demerol are used as analgesics that are pain killers.
- Novocaine is used as anesthetic and Ephedra is a very common decongestant.
- We use tetramethyl ammonium iodide for disinfecting drinking water.
- They find large applications in man-made dyes.