

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department

CHEM 109

CHAPTER 9. AMINO ACIDS, PEPTIDES AND PROTEINS

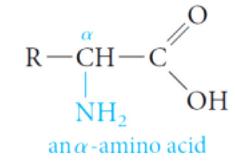
At the end of this chapter, students will able to:

- Predict the different type of amino acids.
- Recognize the basic properties (structure, physical and chemical properties) of amino acids.
- Predict whether the acid and amine groups in amino acids will be protonated at different pH values
- know how to prepare amino acids.
- Describe the primary, secondary, tertiary and quaternary structure of proteins

3

• Proteins are naturally occurring polymers (polypeptides) composed of α -amino acids units joined one to another by amide (or peptide) bonds.

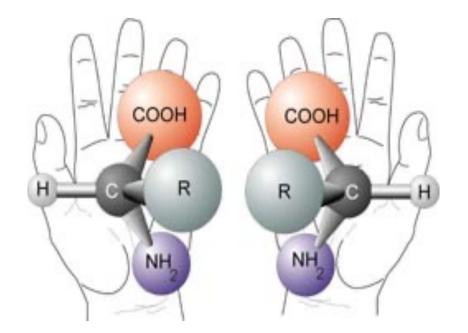
Example, animal hair and muscle, egg whites, and hemoglobin are all proteins.


 Peptides are oligomers of amino acids that play important roles in many biological processes.

Example, the peptide hormone insulin controls our blood sugar levels.

- Peptides are classified to dipeptides, tripeptides, tetrapeptides, etc.. According to the number of amino acids in the chain.
- **Proteins, peptides, and amino acids** are essential to the structure, function, and reproduction of living matter.




- 3
- \circ The amino acids obtained from protein hydrolysis are α -amino acids.
- The amino group is on the α -carbon atom. the one adjacent to the carboxyl group.

- With the exception of glycine, where R = H, a-amino acids have a stereogenic center (chiral carbon) at the α -carbon.
- \circ All except glycine are therefore **optically active**.
- All natural amino acids L-configuration relative to glyceraldehyde.
- Note that the Fischer convention, used with carbohydrates, is also applied to amino acids.

List of the 20 α -amino acids commonly found in proteins.

Name	Three-letter abbreviation (isoelectric point) one-letter abbreviation	Formula	R
A. One amino grou	ip and one carboxyl group		
1. glycine	Gly (6.0) G	H-CH-CO ₂ H	
2. alanine	Ala (6.0) A	СН ₃ —СН—СО ₂ Н NH ₂	
3. valine	Val (6.0) V	СН ₃ СН—СН—СО ₂ Н і і СН ₃ NH ₂	R is hydrogen or an alkyl group.
4. leucine	Leu (6.0) L	СН ₃ СНСН ₂ —СН—СО ₂ Н СН ₃ NH ₂	
5. isoleucine	Ile (6.0) I	CH ₃ CH ₂ CH—CH—CO ₂ H CH ₃ NH ₂	
6. serine	Ser (5.7) S	СН ₂ —СН—СО ₂ Н ОН NH ₂	
7. threonine	Thr (5.6) T	СН ₃ СН—СН—СО ₂ Н ОН NH ₂	R contains an alcohol function

Name	Three-letter abbreviation (isoelectric point) one-letter abbreviation	Formula	R
8. cysteine	Cys (5.0) C	СН ₂ —СН—СО ₂ Н SH NH ₂	
9. methionine	Met (5.7) M	CH ₃ S—CH ₂ CH ₂ —CH—CO ₂ H NH ₂	R contains sulfur.
10. proline	Pro (6.3) P	CH ₂ -CH-CO ₂ H CH ₂ NH CH ₂ CH ₂	The amino group is secondary and part of a ring.
11. phenylalanine	Phe (5.5) F	CH ₂ -CH-CO ₂ H	One hydrogen in
12. tyrosine	Tyr (5.7) Y	HO-CH2-CH-CO2H	alanine is replaced by an aromatic or heteroaromatic (indole) ring.
13. tryptophan	Trp (5.9) W	CH ₂ -CH-CO ₂ H I NH ₂	
			(continued)

7		

Name	Three-letter abbreviation (isoelectric point) one-letter abbreviation	Formula	R
B. One amino group a	and two carboxyl groups		
14. aspartic acid	Asp (3.0) D	HOOC-CH2-CH-CO2H I NH2	
15. glutamic acid	Glu (3.2) <mark>E</mark>	HOOC-CH ₂ CH ₂ -CH-CO ₂ H	
16. asparagine	Asn (5.4) <mark>N</mark>	$H_2N - C - CH_2 - CH - CO_2H$	
17. glutamine	Gln (5.7) Q	O II H ₂ N-C-CH ₂ CH ₂ -CH-COOH I NH ₂	
C. One carboxyl group	o and two basic groups		
18. lysine	Lys (9.7) K	CH ₂ CH ₂ CH ₂ CH ₂ —CH—CO ₂ H NH ₂ NH ₂	ĺ
19. arginine	Arg (10.8) R	NH2 C-NH-CH2CH2CH2-CH-CO2H	The second basic group is a primary amine a guanidine, or a
20. histidine	His (7.6) H	CH=C-CH ₂ -CH-CO ₂ H	imidazole.

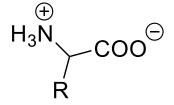
- 8
- The amino acids are known by common names.
- Each also has a three-letter abbreviation based on this name, which is used when writing the formulas of peptides, and a one-letter abbreviation used to describe the amino acid sequence in a protein.

For example; Glycine = Gly; Alanine = Ala; Valine = Val, etc..

- \odot The amino acids are classified into:
 - Essential amino acids

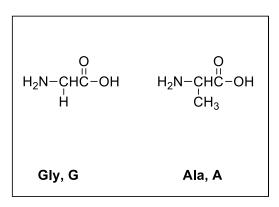
Eight amino cannot be synthesized by adult humans and therefore must be included in the diet in the form of proteins.

e.g. Valine, Leucine, Isoleucine, Threonine, Methionine, Phenylalanine, Tryptophan, and Lysine.

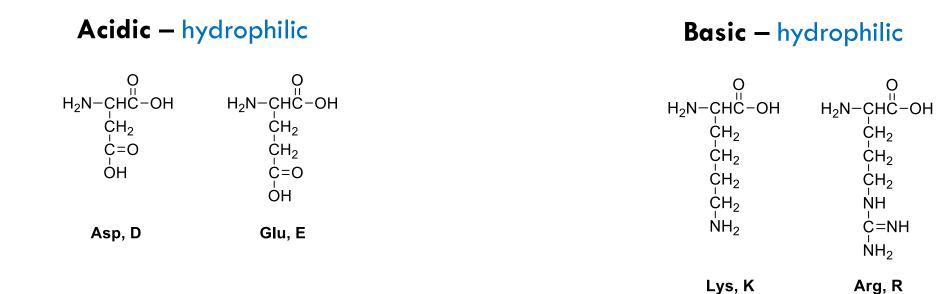

- Non-essential amino acids

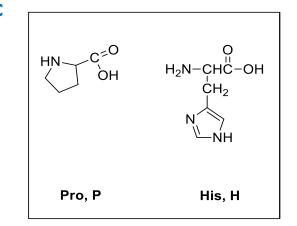
Twelve amino acids can be synthesized in the body from other foods.

e.g. Glycine, Alanine, Serine, Cysteine, Proline, Tyrosine, Aspartic acid, Glutamic acid, Asparagine, Glutamine, Arginine, and Histidine.


Classification - Amino acids are classified on the basis of the structure of R

- Aliphatic side chains non-polar amino acids: such as Alanine, Valine, Leucine, etchydrophobic
- Polar side chains: are containing HO-, SH- and amide groups, such as Serine, Cystein ---hydrophilic
- Acidic: are containing more than one COOH group, such as Aspartic, Glutamic----hydrophilic
- **Basic:** are containing more than one N atom, Such as Lysine, Arginine-----hydrophilic
- □ Heterocyclic/Aromatic Such as Histidine----hydrophilic or hydrophobic

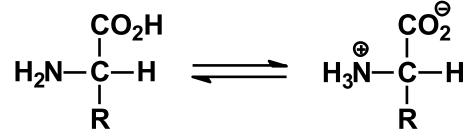

Aliphatic side chains – hydrophobic


Polar side chains – text classifies as HO-, S-, and amide containing – hydrophilic

$$\begin{array}{c|cccc} O & O & O \\ H_2N-CHC-OH & H_2N-CHC-OH & H_2N-CHC-OH \\ CH_2 & CHOH & CH_2 \\ OH & CH_3 & SH \end{array}$$

Heterocyclic/Aromatic – hydrophilic or hydrophobic

The Acid–Base Properties of Amino Acids

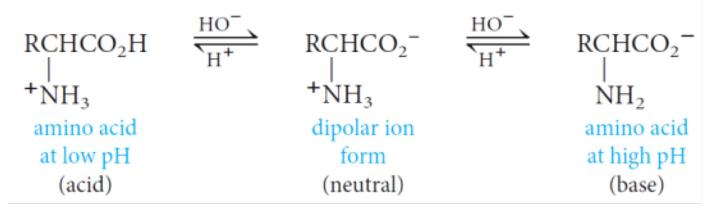


• Amino acids are classified according to the side chain into:

i) Neutral amino acids, such as Glycine, Alanine, Valine, etc..
ii) Basic amino acids, such as Arginine, Lysine (they have extra amino group)
iii) Acidic amino acid, such as Aspartic and Glutamice (they have extra carboxylic group)

Acid–Base Properties

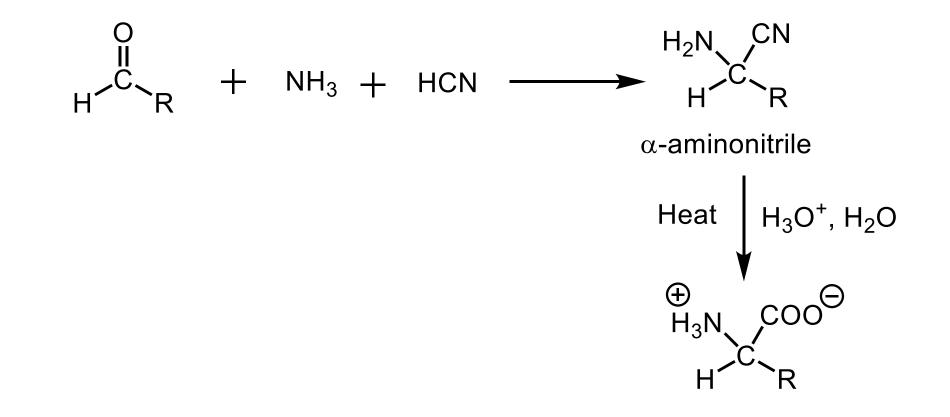
Since amino acids have both an acidic functionality and a basic functionality, we should expect the following equilibrium:


In fact, the equilibrium lies to the right all amino acids are charged at any pH!

Such species that are overall neutral molecules but contain charged ends are called *zwitterions*

- The amino group is protonated and present as an ammonium ion, whereas the carboxyl group has lost its proton and is present as a carboxylate anion.
- This dipolar structure is consistent with the salt-like properties of amino acids, which have rather high melting points and relatively low solubility in organic solvents.
- Amino acids are amphoteric.

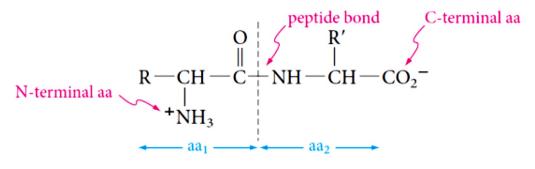
They can behave as acids and donate a proton to a strong base, or they can behave as bases and accept a proton from a strong acid.


• The isoelectric point (pl), the amino acid will be dipolar and have a net charge of zero.

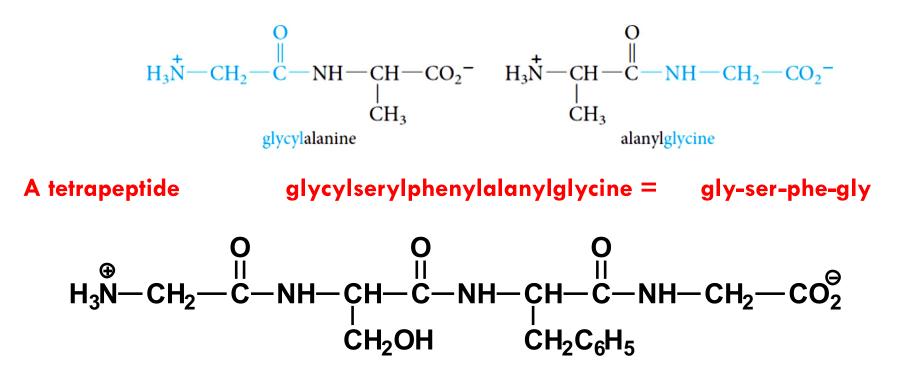
Synthesis of Amino Acids

12

Strecker Synthesis: Recall reductive amination and Cyanohydrin formation.



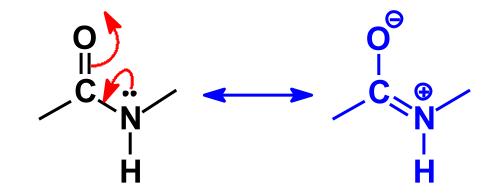
Reactions of Amino Acids


Formation of an amide linkage (The peptide bond: Proteins)

- Amino acids are linked in peptides and proteins by an amide bond (peptide bond) between the carboxyl group of one amino acid and the α -amino group of another amino acid.
- A molecule containing only two amino acids (the shorthand aa is used for amino acid) joined in this way is a **dipeptide**:
- By convention, the **peptide bond** is written with the amino acid having a free ${}^{+}NH_{3}$ group at the left and the amino acid with a free CO_{2}^{-} group at the right.
- These amino acids are called, respectively, the N-terminal amino acid and the C-terminal amino acid.

- We often write the formulas for peptides in a kind of shorthand by simply linking the three-letter abbreviations for each amino acid, starting with the N-terminal one at the left.
- For example; glycylalanine is Gly—Ala, and alanylglycine is Ala—Gly.

The peptide bond: Proteins



The Peptide (Amide) Bond

The amide nitrogen is sp^2 hybridized and the lone pair is conjugated with the carbonyl group

There is considerable C–N double-bond character

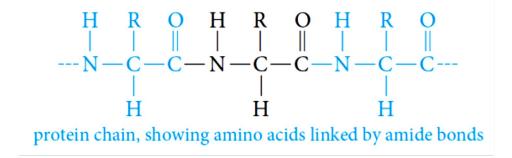
Rotation about the C–N bond is difficult

Structure of Proteins

- **Proteins** are biopolymers composed of many amino acids connected to one another through amide (peptide) bonds.
- Some proteins are major components of structural tissue (muscle, skin, nails, and hair).
- \circ Others transport molecules from one part of a living system to another.
- \circ The main features of peptide and protein structure.
 - Primary structure;

How many amino acids are present and what their sequence is in the peptide or protein chain.

- Secondary, tertiary, and quaternary structures;


Three-dimensional aspects of peptide and protein structure, usually referred to as their.

The Primary Structure of Proteins

17

 The backbone of proteins is a repeating sequence of one nitrogen and two carbon atoms.

- **Peptides and proteins** can be hydrolyzed to their amino acid components by heating with 6 M HCI.
- An instrument called an amino acid analyzer is used to determine the amino acids mixture.

Uses of Amino Acids

- Amino acids, often referred to as the building blocks of proteins, are compounds that play many critical roles in your body.
- They're needed for vital processes like the building of proteins and synthesis of hormones and neurotransmitters.
- Phenylalanine plays an integral role in the structure and function of proteins and enzymes and the production of other amino acids.
- Valine helps stimulate muscle growth and regeneration and is involved in energy production.
- Leucine helps to regulate blood sugar levels, stimulates wound healing and produces growth hormones.