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1. Linear Momentum and Its Conservation

2. Impulse and Momentum

3. Collisions in One Dimension

4. Two-Dimensional Collisions

5. Suggested Problems



1.1 Derivation of Momentum

• From Newton’s third law, we have:

⃗𝑭12 = − ⃗𝑭21

⇒ ⃗𝑭12 + ⃗𝑭21 = 0
𝑚𝒂⃗12 + 𝑚𝒂⃗21 = 0

𝑚𝑑 ⃗𝒗1
𝑑𝑡

+ 𝑚𝑑 ⃗𝒗2
𝑑𝑡

= 0

⟹ 𝑑
𝑑𝑡

(𝑚 ⃗𝒗1 + 𝑚 ⃗𝒗2) = 0

• Therefore, the quantity

𝑚 ⃗𝒗1 + 𝑚 ⃗𝒗2 = Constant. (1)

• This quantity is called the total linear 

momentum of the system of two par

ticles.

• The fact that the total linear momen

tum is constant is known as the law of 

conservation of linear momentum.

• Therefore, the total linear momentum 

before an interaction is equal to the 

total linear momentum after the inter

action.
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1.2 Linear Momentum of a Particle

• The linear momentum (or simply momentum) of a particle of mass 𝑚 moving with 

velocity ⃗𝒗 is defined as the product of the mass and velocity:

⃗𝒑 ≡ 𝑚 ⃗𝒗 (2)

• where ⃗𝒑 is the linear momentum vector of a particle and has the same direction as 

the velocity vector ⃗𝒗. Therefore, in three dimensions:

𝑝𝑥 = 𝑚𝑣𝑥, 𝑝𝑦 = 𝑚𝑣𝑦, 𝑝𝑧 = 𝑚𝑣𝑧

• The SI unit of momentum is (kg m/s).
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1.3 The Momentum and Newton’s Second Law

• From the definition of momentum, we can write Newton’s second law as:

∑ ⃗𝑭 = 𝑚𝑑 ⃗𝒗
𝑑𝑡

= 𝑑 ⃗𝒑
𝑑𝑡

(3)

• This shows that the time rate of change of the linear momentum of a particle is 

equal to the net force acting on the particle.
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1.4 The Conservation of Linear Momentum

• We saw earlier in equation 1 that for a system of two particles, the total linear 

momentum is conserved. This result can be generalized to a system of 𝑛 particles,

⃗𝑷𝑖 = ⃗𝑷𝑓

⃗𝒑1𝑖 + ⃗𝒑2𝑖 + … = ⃗𝒑1𝑓 + ⃗𝒑2𝑓 + …
(4)

• This implies that momentum is conserved for every dimension separately:

𝑝𝑥𝑖 = 𝑝𝑥𝑓 , 𝑝𝑦𝑖 = 𝑝𝑦𝑓 , 𝑝𝑧𝑖 = 𝑝𝑧𝑓 (5)
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1.4 The Conservation of Linear Momentum

Example 1.1

A 60 kg archer stands at rest on frictionless ice 
and fires a 0.5 kg arrow horizontally at 50 m/s.

With what velocity does the archer move 
across the ice after firing the arrow?
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1.4 The Conservation of Linear Momentum

Solution 1.1

• The horizontal momentum for the two objects is conserved as:
⃗𝒑𝑖 = ⃗𝒑𝑓

𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = 𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓

0 + 0 = 𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓

⟹ ⃗𝒗1𝑓 = −(𝑚2
𝑚1

) ⃗𝒗2𝑓

= −(0.5
60

)(50 ̂𝒊) = −0.42 m/s 𝒊̂
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1.4 The Conservation of Linear Momentum

What if the arrow were shot in a direction that makes an angle with the 
horizontal? How will this change the recoil velocity of the archer?

• Since the relevant momentum is only in the horizontal direction, we take the 
horizontal component of the arrow’s velocity:

𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓 cos 𝜃 = 0

⟹ 𝑣𝑥1𝑓 = −(𝑚2
𝑚1

)𝑣𝑥2𝑓 cos 𝜃
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1.4 The Conservation of Linear Momentum

Problem 1.1

A 3 kg particle has a velocity of (3𝒊̂ − 4𝒋) m/s.

(a) Find its x and y components of momentum.
(b) Find the magnitude and direction of its momentum.
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1.4 The Conservation of Linear Momentum

Answer 1.1

• (a) The x and y components of momentum are given by:

𝑝𝑥 = 𝑚𝑣𝑥 = (3 kg)(3 m/s) = 9 kg m/s
𝑝𝑦 = 𝑚𝑣𝑦 = (3 kg)(−4 m/s) = −12 kg m/s

• (b) The magnitude of the momentum is:

| ⃗𝒑| = √𝑝2
𝑥 + 𝑝2

𝑦 = √(9 kg m/s)2 + (−12 kg m/s)2 = 15 kg m/s
• The direction of the momentum is given by the angle 𝜃:

𝜃 = tan−1(
𝑝𝑦

𝑝𝑥
) = 307°
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1. Linear Momentum and Its Conservation

2. Impulse and Momentum

3. Collisions in One Dimension

4. Two-Dimensional Collisions

5. Suggested Problems



2.1 Impulse

• From Newton’s second law in equation 

3, we have:

⃗𝑭 = 𝑑 ⃗𝒑
𝑑𝑡

𝑑 ⃗𝒑 = ⃗𝑭𝑑𝑡

• Integrating both sides from an initial 

time 𝑡𝑖 to a final time 𝑡𝑓 , we obtain:

Δ ⃗𝒑 = ⃗𝒑𝑓 − ⃗𝒑𝑖 = ∫
𝑡𝑓

𝑡𝑖

⃗𝑭 𝑑𝑡

• The quantity on the right side of the 

equation is called the impulse ⃗𝑰  de

livered to the particle by the force ⃗𝑭  

during the time interval Δ𝑡 = 𝑡𝑓 − 𝑡𝑖,
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2.1 Impulse

• Therefore, impulse is defined as:

⃗𝑰 ≡ ∫
𝑡𝑓

𝑡𝑖

⃗𝑭 𝑑𝑡 = Δ ⃗𝒑 (6)

• where Δ ⃗𝒑 is the change in momentum 

of the particle during the time interval 

Δ𝑡.
• Impulse has the same unit as momen

tum, which is (kg m/s).

• Impulse is a vector quantity and has 

the same direction as the force ⃗𝑭  and 

the change in momentum Δ ⃗𝒑.

• Examples of impulse is the force expe

rienced by a car during a collision, or 

the force exerted by a bat on a baseball 

during a hit.
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2.2 Time Average Force

• The average force 
̄ ⃗𝑭  exerted on a par

ticle during the time interval Δ𝑡 is 

defined as:

̄ ⃗𝑭 ≡ 1
Δ𝑡

∫
𝑡𝑓

𝑡𝑖

⃗𝑭 𝑑𝑡 (7)

• Therefore, from the definition of im

pulse in equation 6, we have:

⃗𝑰 ≡ ̄⃗𝑭Δ𝑡 (8)
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2.3 Example

Example 2.2

In a particular crash test, a car of mass 
1500 kg collides with a wall. The ini
tial and final velocities of the car are 
𝑣𝑖 = −15𝒊̂ m/s and 𝑣𝑓 = 2.6𝒊̂ m/s, 
respectively. If the collision lasts for 
0.15 s,

find the impulse caused by the colli
sion and the average force exerted on 
the car.

Dr. Abdulaziz Alqasem Ch.9: Linear Momentum and Collisions 17 / 69



2.3 Example

Solution 2.2

• The impulse experienced by the car is given by:
⃗𝑰 = Δ ⃗𝒑 = ⃗𝒑𝑓 − ⃗𝒑𝑖

= 𝑚 ⃗𝒗𝑓 − 𝑚 ⃗𝒗𝑖

= (1500 kg)(2.6𝒊̂ m/s) − (1500 kg)(−15𝒊̂ m/s)

= 2.64 × 104 kg m/s 𝒊̂
• The average force exerted on the car during the collision is given by:

̄ ⃗𝑭 =
⃗𝑰

Δ𝑡
= 2.64 × 104 kg m/s 𝒊̂

0.15  s
= 1.76 × 105 N 𝒊̂
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1. Linear Momentum and Its Conservation

2. Impulse and Momentum

3. Collisions in One Dimension

4. Two-Dimensional Collisions

5. Suggested Problems



3.1 Definition and Types of Collisions

• A collision is an event in which two or 

more bodies exert forces on each other 

for a relatively short time.

• Collisions are classified into two main 

types:

‣ Elastic collisions, and

‣ Inelastic collisions.

• In both types of collisions, the total 

linear momentum is conserved.

• In an inelastic collision, the kinetic 

energy is not conserved because some 

of the energy is transformed into other 

forms of energy, such as heat or sound.
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3.2 Perfectly Inelastic Collisions

• In a perfectly inelastic collision, the colliding objects stick together after the 

collision.

• Applying the conservation of linear momentum to a perfectly inelastic collision 

between two objects of masses 𝑚1 and 𝑚2 with initial velocities ⃗𝒗1𝑖 and ⃗𝒗2𝑖, we 

have:

𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = (𝑚1 + 𝑚2) ⃗𝒗𝑓 (9)

• where ⃗𝒗𝑓  is the common velocity of the two objects after the collision:

⃗𝒗𝑓 = 𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖
𝑚1 + 𝑚2
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3.3 Elastic Collisions

• In an elastic collision, both momentum and kinetic energy are conserved.

• Applying the conservation of linear momentum to an elastic collision, we get:

𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = 𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓 (10)

• Applying the conservation of kinetic energy to the same collision, we have:

1
2
𝑚1 ⃗𝒗2

1𝑖 + 1
2
𝑚2 ⃗𝒗2

2𝑖 = 1
2
𝑚1 ⃗𝒗2

1𝑓 + 1
2
𝑚2 ⃗𝒗2

2𝑓 (11)
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3.3 Elastic Collisions

• Solving equations 10 and 11 simultaneously, we obtain the final velocities after an 

elastic collision:

⃗𝒗1𝑓 = (𝑚1 − 𝑚2
𝑚1 + 𝑚2

) ⃗𝒗1𝑖 + ( 2𝑚2
𝑚1 + 𝑚2

) ⃗𝒗2𝑖

⃗𝒗2𝑓 = ( 2𝑚1
𝑚1 + 𝑚2

) ⃗𝒗1𝑖 + (𝑚2 − 𝑚1
𝑚1 + 𝑚2

) ⃗𝒗2𝑖

(12)
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3.4 Special Cases for Elastic Collisions

• If 𝑚1 = 𝑚2, then from equation 12:

⃗𝒗1𝑓 = ⃗𝒗2𝑖, ⃗𝒗2𝑓 = ⃗𝒗1𝑖

• This means that the two objects simply exchange their velocities.

• If 𝑚1 ≫ 𝑚2, then from equation 12:

⃗𝒗1𝑓 ≈ ⃗𝒗1𝑖, ⃗𝒗2𝑓 ≈ 2 ⃗𝒗1𝑖

• This means that the first object continues with nearly its original velocity, while 

the second object rebounds with approximately twice the initial velocity of the first 

object.
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3.4 Special Cases for Elastic Collisions

• If 𝑚1 ≪ 𝑚2, then from equation 12:

⃗𝒗1𝑓 ≈ − ⃗𝒗1𝑖, ⃗𝒗2𝑓 ≈ ⃗𝒗2𝑖

• This means that the first object rebounds with nearly its original speed in the 

opposite direction, while the second object continues with nearly its original 

velocity.

• If particle 2 is initially at rest ( ⃗𝒗2𝑖 = 0), then from equation 12:

⃗𝒗1𝑓 = (𝑚1 − 𝑚2
𝑚1 + 𝑚2

) ⃗𝒗1𝑖

⃗𝒗2𝑓 = ( 2𝑚1
𝑚1 + 𝑚2

) ⃗𝒗1𝑖
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3.4 Special Cases for Elastic Collisions

Example 3.3

An ingenious device that illustrates conservation of momentum and kinetic 
energy is shown in the Figure. It consists of five identical hard balls supported by 
strings of equal lengths. When ball 1 is pulled out and released, after the almost-
elastic collision between it and ball 2, ball 5 moves out, as shown in the Figure. 
If balls 1 and 2 are pulled out and released, balls 4 and 5 swing out, and so forth. 
Is it ever possible that when ball 1 is released, balls 4 and 5 will swing out on the 
opposite side and travel with half the speed of ball 1,as in the Figure?
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3.4 Special Cases for Elastic Collisions
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3.4 Special Cases for Elastic Collisions

Solution 3.3

• No, such movement can never occur
if we assume the collisions are elastic.

• The conservation of momentum and 
energy for one ball is expressed as:

⃗𝒑𝑓 = ⃗𝒑𝑖

𝑚 ⃗𝒗5𝑓 = 𝑚 ⃗𝒗1𝑖

⟹ ⃗𝒗5𝑓 = ⃗𝒗1𝑖

1
2
𝑚 ⃗𝒗2

5𝑓 = 1
2
𝑚 ⃗𝒗2

1𝑖

⟹ ⃗𝒗5𝑓 = ⃗𝒗1𝑖

• But if two balls are involved,
⃗𝒑𝑓 = ⃗𝒑𝑖

𝑚(𝑣
2
) + 𝑚(𝑣

2
) = 𝑚𝑣

But the conservation of kinetic energy 
gives:
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3.4 Special Cases for Elastic Collisions

1
2
𝑚(𝑣

2
)

2
+ 1

2
𝑚(𝑣

2
)

2
≠

1
2
𝑚𝑣2

Therefore, such a movement is impos
sible.
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3.4 Special Cases for Elastic Collisions

Example 3.4

An 1800 kg car stopped at a traffic light is struck from the rear by a 900 kg car, and 
the two become entangled, moving along the same path as that of the originally 
moving car. If the smaller car were moving at 20 m/s before the collision, what 
is the velocity of the entangled cars after the collision?
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3.4 Special Cases for Elastic Collisions

Solution 3.4

• The phrase “become entangled” tells us that this is a perfectly inelastic 
collision.

• Applying the conservation of linear momentum, we have:

⃗𝒗𝑓 = 𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖
𝑚1 + 𝑚2

= (900 kg)(20 m/s) + (1800 kg)(0 m/s)
900 kg + 1800 kg

= 6.67 m/s 𝒊̂
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3.4 Special Cases for Elastic Collisions

Example 3.5

The ballistic pendulum is an apparatus 
used to measure the speed of a fast-
moving projectile, such as a bullet. 
A bullet of mass 𝑚1 is fired into a 
large block of wood of mass 𝑚2 sus
pended from some light wires. The 
bullet embeds in the block, and the 
entire system swings through a height 
ℎ. How can we determine the speed of 
the bullet from a measurement of ℎ?
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3.4 Special Cases for Elastic Collisions

Solution 3.5

• The collision is perfectly inelastic because the bullet becomes embedded in the 
block. Therefore, the kinetic energy is not conserved during the collision.

• However, the mechanical energy is conserved after the collision since the 
system is isolated and under a conservative force (gravity).

𝐸𝑓 = 𝐸𝑖

𝐾𝑓 + 𝑈𝑓 = 𝐾𝑖 + 𝑈𝑖

0 + (𝑚1 + 𝑚2)𝑔ℎ = 1
2
𝑚1𝑣2

𝑏 + 0

𝑣2
𝑏 = 2𝑔ℎ(𝑚1 + 𝑚2)

𝑚1
(E1)
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3.4 Special Cases for Elastic Collisions

• To find the bullet speed 𝑣𝑏 after the collision, we apply the conservation of 
linear momentum during the collision:

𝑣𝑏 = 𝑚1𝑣1𝐴 + 𝑚2𝑣2𝑖
𝑚1 + 𝑚2

= 𝑚1𝑣1𝐴 + 0
𝑚1 + 𝑚2

(E2)

• By substituting equations E2 into E1, we obtain:

(𝑚1𝑣1𝐴)2

(𝑚1 + 𝑚2)
2 = 2𝑔ℎ(𝑚1 + 𝑚2)

𝑚1

• Solving for 𝑣1𝐴, we get:

𝑣1𝐴 = 𝑚1 + 𝑚2
𝑚1

√2𝑔ℎ
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3.4 Special Cases for Elastic Collisions

Example 3.6

A block of mass 𝑚1 = 1.6 kg initially moving to the right with a speed of 4 m/s 
on a frictionless horizontal track collides with a spring attached to a second 
block of mass 𝑚2 = 2.1 kg initially moving to the left with a speed of 2.5 m/s. 
The spring constant is 600 N/m. (A) Find the velocities of the two blocks after 
the collision.

Dr. Abdulaziz Alqasem Ch.9: Linear Momentum and Collisions 35 / 69



3.4 Special Cases for Elastic Collisions

Solution 3.6

• First the type of collision is elastic because the spring force is conservative 
and there is no energy loss to heat, sound, or deformation.

• Using Equation 12, we find the final velocities of the two blocks after the 
collision:

⃗𝒗1𝑓 = (𝑚1 − 𝑚2
𝑚1 + 𝑚2

) ⃗𝒗1𝑖 + ( 2𝑚2
𝑚1 + 𝑚2

) ⃗𝒗2𝑖

= (1.6 kg − 2.1 kg
1.6 kg + 2.1 kg

)(4 m/s) + ( 2(2.1 kg)
1.6 kg + 2.1 kg

)(−2.5 m/s)

= −3.38 m/s 𝒊̂
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3.4 Special Cases for Elastic Collisions

⃗𝒗2𝑓 = ( 2𝑚1
𝑚1 + 𝑚2

) ⃗𝒗1𝑖 + (𝑚2 − 𝑚1
𝑚1 + 𝑚2

) ⃗𝒗2𝑖

= ( 2(1.6 kg)
1.6 kg + 2.1 kg

)(4 m/s) + (2.1 kg − 1.6 kg
1.6 kg + 2.1 kg

)(−2.5 m/s)

= 3.12 m/s 𝒊̂
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3.4 Special Cases for Elastic Collisions

(B) During the collision, at the instant block 1 is moving to the right with a 
velocity of 3 m/s, as in the Figure, determine the velocity of block 2.
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3.4 Special Cases for Elastic Collisions

• Using the conservation of linear momentum, we have:
𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = 𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓

⇒ ⃗𝒗2𝑓 =
𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 − 𝑚1 ⃗𝒗1𝑓

𝑚2

= (1.6 kg)(4 m/s) + (2.1 kg)(−2.5 m/s) − (1.6 kg)(3 m/s)
2.1 kg

= −1.74 m/s 𝒊̂
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3.4 Special Cases for Elastic Collisions

(C) What is the compression of the spring at this instant?
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3.4 Special Cases for Elastic Collisions

1
2
𝑚1 ⃗𝒗2

1𝑓 + 1
2
𝑚2 ⃗𝒗2

2𝑓 + 1
2
𝑘𝑥2 = 1

2
𝑚1 ⃗𝒗2

1𝑖 + 1
2
𝑚2 ⃗𝒗2

2𝑖 + 0

Solving for 𝑥, we get:

𝑥 = √𝑚1 ⃗𝒗2
1𝑖 + 𝑚2 ⃗𝒗2

2𝑖 − 𝑚1 ⃗𝒗2
1𝑓 − 𝑚2 ⃗𝒗2

2𝑓

𝑘

𝑥 = √(1.6)(4)2 + (2.1)(−2.5)2 − (1.6)(3)2 − (2.1)(−1.74)2

600
= 0.173 m
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3.4 Special Cases for Elastic Collisions

(D) What is the maximum compression of the spring during the collision?
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3.4 Special Cases for Elastic Collisions

• The maximum compression would occur when the two blocks are moving 
with the same velocity.

⃗𝒗𝑓 = 𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖
𝑚1 + 𝑚2

= 0.311 m/s

• Using the conservation of mechanical energy, we have:
1
2
𝑚1𝑣2

1𝑖 + 1
2
𝑚2𝑣2

2𝑖 = 1
2
(𝑚1 + 𝑚2)𝑣2

𝑓 + 1
2
𝑘𝑥2

max

⟹ 𝑥max = 0.253 m
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1. Linear Momentum and Its Conservation

2. Impulse and Momentum

3. Collisions in One Dimension

4. Two-Dimensional Collisions

5. Suggested Problems



4.1 Conservation of Momentum in Two Dimensions

• In two-dimensional collisions, both the x and y components of momentum are 

conserved separately.

𝑚1 ⃗𝒗1𝑖,𝑥 + 𝑚2 ⃗𝒗2𝑖,𝑥 = 𝑚1 ⃗𝒗1𝑓,𝑥 + 𝑚2 ⃗𝒗2𝑓,𝑥 (13)

𝑚1 ⃗𝒗1𝑖,𝑦 + 𝑚2 ⃗𝒗2𝑖,𝑦 = 𝑚1 ⃗𝒗1𝑓,𝑦 + 𝑚2 ⃗𝒗2𝑓,𝑦 (14)
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4.2 Conservation of Kinetic Energy in Two Dimensions

• If the collision is elastic, then the kinetic energy is also conserved:

1
2
𝑚1| ⃗𝒗1𝑖|

2 + 1
2
𝑚2| ⃗𝒗2𝑖|

2 = 1
2
𝑚1| ⃗𝒗1𝑓 |2 + 1

2
𝑚2| ⃗𝒗2𝑓 |2 (15)
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4.3 Example of Two-Dimensional Collision

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃 + 𝑚2𝑣2𝑓 cos 𝜑

0 = 𝑚1𝑣1𝑓 sin 𝜃 − 𝑚2𝑣2𝑓 sin 𝜑
1
2
𝑚1𝑣2

1𝑖 = 1
2
𝑚1𝑣2

1𝑓 + 1
2
𝑚2𝑣2

2𝑓

Dr. Abdulaziz Alqasem Ch.9: Linear Momentum and Collisions 47 / 69



4.3 Example of Two-Dimensional Collision

Example 4.7

A 1500 kg car traveling east with a 
speed of 25 m/s collides at an inter
section with a 2500 kg van traveling 
north at a speed of 20 m/s, as shown 
in the Figure.

Find the direction and magnitude of 
the velocity of the wreckage (حطام) 
after the collision, assuming that the 
vehicles undergo a perfectly inelastic 
collision (that is, they stick together).
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4.3 Example of Two-Dimensional Collision

Solution 4.7

• Applying the conservation of linear momentum in the x and y directions, we 
have:

x:      𝑚1𝑣1𝑖 + 0 = (𝑚1 + 𝑚2)𝑣𝑓 cos 𝜃
y:      0 + 𝑚2𝑣2𝑖 = (𝑚1 + 𝑚2)𝑣𝑓 sin 𝜃

• Dividing the y equation by the x equation, we get:

tan 𝜃 = 𝑚2𝑣2𝑖
𝑚1𝑣1𝑖

= 1.33 ⟹ 𝜃 = 53.1°

• Substituting 𝜃 back into the x equation (or y equation), we obtain:

𝑣𝑓 = 𝑚1𝑣1𝑖
(𝑚1 + 𝑚2) cos 𝜃

= 15.6 m/s
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4.3 Example of Two-Dimensional Collision

Example 4.8

A proton collides elastically with another proton that is initially at rest. The 
incoming proton has an initial speed of 3.5 × 105 m/s and makes a glancing 
collision with the second proton, as in the Figure. After the collision, one proton 
moves off at an angle of 𝜃 = 37° to the original direction of motion, and the 
second deflects at an angle of 𝜑 to the same axis.
Find the final speeds of the two protons and the angle 𝜑.
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4.3 Example of Two-Dimensional Collision

Solution 4.8

• We have four givens:

𝑣1𝑖 = 3.5 × 105 m/s 𝑣2𝑖 = 0 𝑚1 = 𝑚2 = 𝑚𝑝 𝜃 = 37°
• We have three equations from the conservation of momentum and energy:

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃 + 𝑚2𝑣2𝑓 cos 𝜑
0 = 𝑚1𝑣1𝑓 sin 𝜃 − 𝑚2𝑣2𝑓 sin 𝜑

1
2
𝑚1𝑣2

1𝑖 = 1
2
𝑚1𝑣2

1𝑓 + 1
2
𝑚2𝑣2

2𝑓

• Solving three equations simultaneously to find three unknowns 𝑣1𝑓 , 𝑣2𝑓 , and 

𝜑, we obtain:

𝑣1𝑓 = 2.8 × 105 m/s, 𝑣2𝑓 = 2.11 × 105 m/s, 𝜑 = 53°
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4.3 Example of Two-Dimensional Collision

Example 4.9

In a game of billiards, a player wishes 
to sink a target ball in the corner 
pocket, as shown in the figure.
If the angle to the corner pocket is 
35°, at what angle is the cue ball 
deflected?
Assume that friction and rotational 
motion are unimportant and that the 
collision is elastic. Also assume that 
all billiard balls have the same mass 
𝑚.
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4.3 Example of Two-Dimensional Collision

Solution 4.9

x:        𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃 + 𝑚2𝑣2𝑓 cos 𝜑
y:              0 = 𝑚1𝑣1𝑓 sin 𝜃 − 𝑚2𝑣2𝑓 sin 𝜑

KE:     1
2
𝑚1𝑣2

1𝑖 = 1
2
𝑚1𝑣2

1𝑓 + 1
2
𝑚2𝑣2

2𝑓

• Solving the three equations simultaneously, we find the angle 𝜑:
𝜑 = 55.1°
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5. Suggested Problems

1, 2, 4, 5, 7, 8, 9, 10, 13, 15, 16, 17, 18, 21, 25, 27, 32, 33, 35



5.1 Selected Problems

Problem 5.2

A ball of mass 0.15 kg is dropped from rest from a height of 1.25 m. It rebounds 
from the floor to reach a height of 0.96 m.

What impulse was given to the ball by the floor?
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5.1 Selected Problems

Answer 5.2

The impulse delivered to the ball by the floor is given by:

𝐼 = Δ ⃗𝒑 = ⃗𝒑𝑓 − ⃗𝒑𝑖 = 𝑚 ⃗𝒗𝑓 − 𝑚 ⃗𝒗𝑖 = 𝑚(𝑣𝑓 − (−𝑣𝑖))
To find the initial and final velocities, we use the kinematic equation:

1
2
𝑚𝑣2

𝑖 = 𝑚𝑔ℎ𝑖 ⟹ 𝑣𝑖 = √2𝑔ℎ𝑖

1
2
𝑚𝑣2

𝑓 = 𝑚𝑔ℎ𝑓 ⟹ 𝑣𝑓 = √2𝑔ℎ𝑓
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5.1 Selected Problems

Substituting the values, we get:

𝐼 = 𝑚(√2𝑔ℎ𝑓 + √2𝑔ℎ𝑖)

= (0.15 kg)(√2(9.8 m/s2)(0.96 m) + √2(9.8 m/s2)(1.25 m))
⃗𝑰 = 1.39 kg m/s 𝒋   (upward direction)
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5.1 Selected Problems

Problem 5.3

A 3 kg steel ball strikes a wall with a 
speed of 10 m/s at an angle of 60° with 
the surface. It bounces off with the 
same speed and angle. If the ball is in 
contact with the wall for 0.2 s,

what is the average force exerted by 
the wall on the ball ?
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5.1 Selected Problems

Answer 5.3

The average force exerted by the wall on the ball is given by:

⃗𝑭avg =
⃗𝑰

Δ𝑡
Since the ball bounces off with the same speed and angle, the change in 
momentum in the y-direction is zero. Therefore, we only need to consider the 
x-direction:

Δ ⃗𝒑𝑥 = ⃗𝒑𝑥𝑓 − ⃗𝒑𝑥𝑖 = 𝑚 ⃗𝒗𝑥𝑓 − 𝑚 ⃗𝒗𝑥𝑖

= 𝑚(−𝑣 sin 𝜃) − 𝑚(𝑣 sin 𝜃) = −2𝑚𝑣 sin 𝜃
Thus, the average force exerted by the wall on the ball is:

⃗𝑭avg = −2𝑚𝑣 sin 𝜃
Δ𝑡

= −2(3 kg)(10 m/s)(sin 60°)
0.2 s

= −260 N 𝒊̂
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5.1 Selected Problems

Problem 5.4

High-speed stroboscopic photographs show that the head of a golf club (مضرب 
 of mass 200 g is traveling at 55 m/s just before it strikes a 46 g golf ball at (جولف
rest on a tee (نقطة الإنطلاق). After the collision, the club head travels (in the same 
direction) at 40 m/s.

Find the speed of the golf ball just after impact.
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5.1 Selected Problems

Answer 5.4

From the conservation of linear momentum, we have:
𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = 𝑚1 ⃗𝒗1𝑓 + 𝑚2 ⃗𝒗2𝑓

(0.2kg)(55 m/s) + 0 = (0.2kg)(40 m/s) + (0.046kg)𝑣2𝑓

⟹ 𝑣2𝑓 = 65.2 m/s
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5.1 Selected Problems

Problem 5.5

A 10g bullet is fired into a stationary block of wood (𝑚 = 5 kg). The relative 
motion of the bullet stops inside the block. The speed of the bullet-plus-wood 
combination immediately after the collision is 0.6 m/s.

What was the original speed of the bullet?
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5.1 Selected Problems

Answer 5.5

Since this is a perfectly inelastic collision, we have:

𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 = (𝑚1 + 𝑚2) ⃗𝒗𝑓

⟹ ⃗𝒗1𝑖 =
(𝑚1 + 𝑚2) ⃗𝒗𝑓

𝑚1
= (0.01 kg + 5 kg)(0.6 m/s)

0.01 kg
= 300.6  m/s
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5.1 Selected Problems

Problem 5.6

Three carts of masses 4 kg, 10 kg, and 3 kg move on a frictionless horizontal track 
with speeds of 5 m/s, 3 m/s, and 4 m/s, as shown in the Figure. Velcro couplers 
make the carts stick together after colliding.
Find the final velocity of the train of three carts.
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5.1 Selected Problems

Answer 5.6

From the conservation of linear momentum, we have:

𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 + 𝑚3 ⃗𝒗3𝑖 = (𝑚1 + 𝑚2 + 𝑚3) ⃗𝒗𝑓

⟹ ⃗𝒗𝑓 = 𝑚1 ⃗𝒗1𝑖 + 𝑚2 ⃗𝒗2𝑖 + 𝑚3 ⃗𝒗3𝑖
𝑚1 + 𝑚2 + 𝑚3

= (4 kg)(5 m/s) + (10 kg)(3 m/s) + (3 kg)(−4 m/s)
4 kg + 10 kg + 3 kg

= 2.24 m/s
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5.1 Selected Problems

Problem 5.7

Two automobiles of equal mass approach an intersection. One vehicle is trav
eling with velocity 13 m/s toward the east, and the other is traveling north with 
speed 𝑣2𝑖. Neither driver sees the other. The vehicles collide in the intersection 
and stick together, leaving parallel skid marks at an angle of 55° north of east. The 
speed limit for both roads is 35 mi/h, and the driver of the northward-moving 
vehicle claims he was within the speed limit when the collision occurred.

Is he telling the truth?
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5.1 Selected Problems

Answer 5.7

Since the vehicles stick together after the collision, this is a perfectly inelastic 
collision. From the conservation of linear momentum in the x and y directions, 
we have:

x:      𝑚𝑣1𝑖 + 0 = (𝑚 + 𝑚)𝑣𝑓 cos 𝜃
y:      0 + 𝑚𝑣2𝑖 = (𝑚 + 𝑚)𝑣𝑓 sin 𝜃

Dividing the y equation by the x equation, we get:

tan 𝜃 = 𝑣2𝑖
𝑣1𝑖

⟹ 𝑣2𝑖 = 𝑣1𝑖 tan 𝜃 = (13) tan(55°) = 18.6 m/s ≈ 42 mi/h

Therefore, the driver is not telling the truth since 42 mi/h > 35 mi/h.
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5.1 Selected Problems

Problem 5.8

A billiard ball moving at 5 m/s strikes a stationary ball of the same mass. After 
the collision, the first ball moves, at 4.33 m/s, at an angle of 30° with respect to 
the original line of motion. Assuming an elastic collision (and ignoring friction 
and rotational motion),

find the struck ball’s velocity after the collision.
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5.1 Selected Problems

Answer 5.8

From the conservation of linear momentum in the x and y directions, we have:
x:      𝑚𝑣1𝑖 + 0 = 𝑚𝑣1𝑓 cos 𝜃 + 𝑚𝑣2𝑓 cos 𝜑

𝑣2𝑓 cos 𝜑 = 𝑣1𝑖 − 𝑣1𝑓 cos 𝜃        (1)
y:      0 + 0 = 𝑚𝑣1𝑓 sin 𝜃 − 𝑚𝑣2𝑓 sin 𝜑

𝑣2𝑓 sin 𝜑 = 𝑣1𝑓 sin 𝜃                (2)
• Squaring and adding equations (1) and (2), we get:

𝑣2
2𝑓(cos2 𝜑 + sin2 𝜑) = (𝑣1𝑖 − 𝑣1𝑓 cos 𝜃)2 + (𝑣1𝑓 sin 𝜃)2

𝑣2𝑓 = √𝑣2
1𝑓 + 𝑣2

1𝑖 − 2𝑣1𝑖𝑣1𝑓 cos 𝜃 = 2.5 m/s
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