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1.1 What is Work?

• Work (W) is the energy transferred to an object by a Force ( ⃗𝑭 ) that causes the
object to move a distance (Δ ⃗𝒓).

• The more distance the object moves, the more energy is transferred to the object
and the greater the work done on the object.

• The greater the force applied to the object, the greater the work and energy trans-
ferred to the object.
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1.2 What if the Force is Not in the Direction of Motion?

If the force is equal for all the three figures, which force is more effective in moving
the box?
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1.3 The Mathematical Definition of Work

𝑊 = 𝐹Δ𝑟 cos 𝜃
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1.4 Cases

Which force results in non-zero work?
Only ⃗𝑭  along the direction of motion.

What is the work done by the force in
each case?
(a) Zero work
(b) Negative work
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1.5 Examples

Example 1.1

A man cleaning a floor pulls a vacuum
cleaner with a force of magnitude 𝐹 =
50 N at an angle of 30° with the hori-
zontal. Calculate the work done by the
force on the vacuum cleaner as the
vacuum cleaner is displaced 3 m to the
right.
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1.5 Examples

Solution 1.1

𝑊 = 𝐹Δ𝑟 cos 𝜃 = (50 N)(3 m) cos 30° = 130 J
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2.1 What is the Scalar Product?

• It is helpful to use a convenient notation for multiplying two vectors to get a scalar
quantity taking into account the angle between them.

• When two vectors ⃗𝑨 and 𝑩⃗ are multiplied to get a scalar quantity, the operation
is called the scalar product (or dot product) and is denoted by a dot (⋅) between the
two vectors.
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2.2 Rewriting the Work Formula

• The work done by a constant force can be expressed in terms of the scalar product
of two vectors as:

𝑊 = 𝐹Δ𝑟 cos 𝜃 = ⃗𝑭 ⋅ Δ ⃗𝒓

• Notice that 𝐹 cos 𝜃 is the component of the force in the direction of the displace-
ment. Or the projection of the force vector onto the displacement vector.
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2.3 Properties of the Scalar Product

• The scalar product of two vectors is commutative:

⃗𝑨 ⋅ 𝑩⃗ = 𝑩⃗ ⋅ ⃗𝑨

• The scalar product of a vector with itself is equal to the square of the magnitude of
the vector:

⃗𝑨 ⋅ ⃗𝑨 = 𝐴2

• The scalar product of two perpendicular (⟂) vectors is zero:

⃗𝑨 ⋅ 𝑩⃗ = 0 ,      If ⃗𝑨 ⟂ 𝑩⃗
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2.3 Properties of the Scalar Product

• The scalar product of two parallel (⇉) vectors is equal to the product of their
magnitudes:

⃗𝑨 ⋅ 𝑩⃗ = 𝐴𝐵 ,      If ⃗𝑨 ⇉ 𝑩⃗

• The scalar product of two anti-parallel vectors is equal to the negative product of
their magnitudes:

⃗𝑨 ⋅ 𝑩⃗ = −𝐴𝐵 ,      If ⃗𝑨 ⇄ 𝑩⃗

• The scalar product is distributive over vector addition:

⃗𝑨 ⋅ (𝑩⃗ + 𝑪⃗) = ⃗𝑨 ⋅ 𝑩⃗ + ⃗𝑨 ⋅ 𝑪⃗
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2.3 Properties of the Scalar Product

• The scalar product of a vector and a scalar multiple of another vector is:

⃗𝑨 ⋅ (𝑘𝑩⃗) = 𝑘( ⃗𝑨 ⋅ 𝑩⃗)

where k is a scalar.
• The scalar product of two vectors can be expressed in terms of their components:

⃗𝑨 = 𝐴𝑥𝒊̂ + 𝐴𝑦𝒋 + 𝐴𝑧𝒌̂

𝑩⃗ = 𝐵𝑥𝒊̂ + 𝐵𝑦𝒋 + 𝐵𝑧𝒌̂

⃗𝑨 ⋅ 𝑩⃗ = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧

where ̂𝒊, 𝒋, and 𝒌̂ are the unit vectors in the x, y, and z directions, respectively.
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2.3 Properties of the Scalar Product

𝒊̂ ⋅ 𝒊̂ = 𝒋 ⋅ 𝒋 = 𝒌̂ ⋅ 𝒌̂ = 1

𝒊̂ ⋅ 𝒋 = 𝒊̂ ⋅ 𝒌̂ = 𝒋 ⋅ 𝒌̂ = 0

• The scalar product of two vectors can be used to find the angle between them:

cos 𝜃 =
⃗𝑨 ⋅ 𝑩⃗

𝐴𝐵

where 𝜃 is the angle between the vectors ⃗𝑨 and 𝑩⃗.
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2.4 Examples

Example 2.2

The vectors ⃗𝑨 and 𝑩⃗ are given by

⃗𝑨 = 2𝒊̂ + 3𝒋
𝑩⃗ = −𝒊̂ + 2𝒋

(A) Determine the scalar product ⃗𝑨 ⋅ 𝑩⃗

(B) Find the angle 𝜃 between ⃗𝑨 and 𝑩⃗. 𝑥

𝑦

⃗𝑨

𝑩⃗ 𝜃
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2.4 Examples

Solution 2.2 (A)

⃗𝑨 ⋅ 𝑩⃗ = (2𝒊̂ + 3𝒋) ⋅ (−𝒊̂ + 2𝒋)
⃗𝑨 ⋅ 𝑩⃗ = [(2)(−1)(̂𝒊 ⋅ 𝒊̂)] + [(2)(2)(̂𝒊 ⋅ 𝒋)] + [(3)(−1)(𝒋 ⋅ 𝒊̂)] + [(3)(2)(𝒋 ⋅ 𝒋)]
⃗𝑨 ⋅ 𝑩⃗ = (2)(−1)(1) + (2)(2)(0) + (3)(−1)(0) + (3)(2)(1)
⃗𝑨 ⋅ 𝑩⃗ = (2)(−1) + (3)(2) = −2 + 6 = 4

• The same answer can be obtained using the component form of the scalar
product:

⃗𝑨 ⋅ 𝑩⃗ = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 = (2)(−1) + (3)(2) = −2 + 6 = 4
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2.4 Examples

Solution 2.2 (B)

cos 𝜃 =
⃗𝑨 ⋅ 𝑩⃗

𝐴𝐵

cos 𝜃 = 4√
22 + 32 × √(−1)2 + 22

𝜃 = cos−1( 4√
65

) = 60.3°
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2.4 Examples

Example 2.3

A particle moving in the 𝑥𝑦 plane undergoes a displacement given by
Δ ⃗𝒓 = (2𝒊̂ + 3𝒋)  m

as a constant force
⃗𝑭 = (5𝒊̂ + 2𝒋)  N

acts on the particle.

Calculate the work done by ⃗𝑭  on the particle.
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2.4 Examples

Solution 2.3

𝑊 = ⃗𝑭 ⋅ Δ ⃗𝒓 = (5𝒊̂ + 2𝒋) ⋅ (2𝒊̂ + 3𝒋)
𝑊 = (5)(2) + (2)(3) = 10 + 6 = 16 J
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3.1 Definition

• When a force varies in magnitude and/
or direction as an object moves, the
work done by the force can be found
by dividing the total displacement into
small segments over which the force
can be considered constant.

• The total work done by the force is
the sum of the work done over each
segment.

𝑊 ≈ ∑
𝑥𝑓

𝑥𝑖

𝐹𝑥Δ𝑥𝑖
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3.1 Definition

• As the number of segments increases
and their length decreases, the approx-
imation becomes more accurate.

• In the limit as the segment length
approaches zero, the sum becomes an
integral.

𝑊 = ∫
𝑥𝑓

𝑥𝑖

𝐹𝑥 d𝑥
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3.2 Examples

Example 3.4

A force acting on a particle varies
with x, as shown in the figure.
Calculate the work done by the
force as the particle moves from 𝑥 =
0 to 𝑥 = 6 m.
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3.2 Examples

Solution 3.4

• The work done by the force is equal to the area under the curve of the force-
position graph as shown in the figure.

• The area under the curve can be calculated by dividing it into simple geometric
shapes (rectangles and triangles) and summing their areas. Therefore,

𝑊 = Area0→4 + Area4→6

𝑊 = (5 × 4) + (1
2

× 2 × 5) = 25 J
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3.2 Examples

Example 3.5

The interplanetary probe shown in the
Figure is attracted to the Sun by a force
given by

𝐹 = −1.3 × 1022

𝑥2   N

where x is the Sun-probe separation
distance. Graphically and analytically
determine how much work is done by
the Sun on the probe as the probe–Sun
separation changes from 1.5 × 1011 m
to 2.3 × 1011 m.
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3.2 Examples

Solution 3.5

Analytical Solution

𝑊 = ∫
2.3×1011

1.5×1011

−1.3 × 1022

𝑥2 d𝑥 = −1.3 × 1022 ∫
2.3×1011

1.5×1011

𝑥−2 d𝑥

= −1.3 × 1022[−1
𝑥

]
2.3×1011

1.5×1011

= −1.3 × 1022[− 1
2.3 × 1011 + 1

1.5 × 1011 ]

= −3 × 1010 J
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3.2 Examples

Solution 3.5

Graphical Solution

• The work done by the force is equal
to the area under the curve of the
force-position graph as shown in the
figure.

• The area under the curve is equal to
−3 × 1010 J, which is the same as
the analytical solution.
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3.3 Work Done by a Spring

• A spring exerts a restoring force that is
proportional to the displacement from its
equilibrium position (Hooke’s Law):

𝐹𝑠 = −𝑘𝑥

where 𝑘 is the spring constant and 𝑥 is the
displacement from the equilibrium position.

• The negative sign indicates that the force
exerted by the spring is always directed
opposite to the displacement. When 𝑥 is
negative (compression), the force is positive
(to the right), and vice versa.
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3.3 Work Done by a Spring

• The work done by the spring force as the spring is stretched or compressed from
an initial position 𝑥𝑖 to a final position 𝑥𝑓  is given by:

𝑊𝑠 = ∫
𝑥𝑓

𝑥𝑖

(−𝑘𝑥) d𝑥 = 1
2
𝑘𝑥2

𝑖 − 1
2
𝑘𝑥2

𝑓
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3.4 What is the Total Work Done by the Spring?

−𝑥max → 0 : 𝑊𝑠 = +1
2
𝑘𝑥2

max

0 → +𝑥max : 𝑊𝑠 = −1
2
𝑘𝑥2

max

−𝑥max → +𝑥max : 𝑊𝑠 = 0

+𝑥max → −𝑥max : 𝑊𝑠 = 0
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3.5 External Force Applied to the Spring-Block System

• When an external force ⃗𝑭app is applied
to the block attached to the spring and
the block is moved from 𝑥𝑖 to 𝑥𝑓 , the
work done by the external force (as-
suming to be almost equal to the spring
force) is:

𝑊ext = ∫
𝑥𝑓

𝑥𝑖

(𝑘𝑥) d𝑥 = 1
2
𝑘𝑥2

𝑓 − 1
2
𝑘𝑥2

𝑖
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3.6 Examples
Example 3.6

A common technique used to measure
the force constant of a spring is demon-
strated by the setup in the Figure. The
spring is hung vertically, and an object
of mass 𝑚 is attached to its lower end.
Under the action of the “load” 𝑚𝑔, the
spring stretches a distance 𝑑 from its
equilibrium position.

(A) If a spring is stretched 2 cm by a sus-
pended object having a mass of 0.55 kg,
what is the force constant of the spring?
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3.6 Examples

Solution 3.6

𝑘𝑑 = 𝑚𝑔

⇒ 𝑘 = 𝑚𝑔
𝑑

=
(0.55 kg)(9.8 m/s2)

2 × 10−2 m
= 270 N/m
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3.6 Examples

Example 3.6

(B) How much work is done by the spring as it stretches through this distance?

Solution 3.6

𝑊𝑠 = 1
2
𝑘𝑥2

𝑖 − 1
2
𝑘𝑥2

𝑓

𝑊𝑠 = 0 − 1
2
(270 N/m)(2 × 10−2 m)2 = −5.4 × 10−2 J
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4.1 Kinetic Energy

• One outcome of doing work on a sys-
tem is that it changes its speed.

• To find a quantity that measures the
energy of a moving object, we start
with Newton’s second law:

∑ 𝑊 = ∫
𝑥𝑓

𝑥𝑖

∑ 𝐹 d𝑥 = ∫
𝑥𝑓

𝑥𝑖

𝑚𝑎 d𝑥

= ∫
𝑥𝑓

𝑥𝑖

𝑚d𝑣
d𝑡

d𝑥 = ∫
𝑣𝑓

𝑣𝑖

𝑚𝑣 d𝑣

∑ 𝑊 = 1
2
𝑚𝑣2

𝑓 − 1
2
𝑚𝑣2

𝑖

= 𝐾𝑓 − 𝐾𝑖 = Δ𝐾
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4.1 Kinetic Energy

Example 4.7

A 6 kg block initially at rest is pulled to the right along a horizontal, frictionless
surface by a constant horizontal force of 12 N. Find the speed of the block after
it has moved 3.0 m.
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4.1 Kinetic Energy

Solution 4.7

• First, we find the work done by the force on the block:
𝑊 = 𝐹Δ𝑥 = (12 N)(3 m) = 36 J

• Then, we use the work-kinetic energy theorem to find the final speed:

𝑊 = 1
2
𝑚𝑣2

𝑓 − 1
2
𝑚𝑣2

𝑖

36 J = 1
2
(6 kg)𝑣2

𝑓 − 0

𝑣𝑓 = √2 × 36 J
6.0 kg

= 3.5  m/s
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4.1 Kinetic Energy

Example 4.8

A man wishes to load a refrigerator onto a truck using a ramp at angle 𝜃 as
shown in the Figure. He claims that less work would be required to load the
truck if the length L of the ramp were increased so that the angle 𝜃 would be
smaller. Is his claim valid?
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4.1 Kinetic Energy

Solution 4.8

No, the claim is wrong.
• The man pushes the refrigerator up the ramp at a constant speed, so the net

work and the change in kinetic energy are both zero:
𝑊net = 𝑊man − 𝑊gravity = Δ𝐾 = 0.

• Therefore, the work done by the man is equal to the work done by gravity:
𝑊man = 𝑊gravity = 𝑚𝑔ℎ

• Thus, the work done by the man is independent of the length of the ramp L
and the angle 𝜃.
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5.1 Reading Assignment

Read Section 7.6 (page 196) in Serway’s book (6th edition), and make sure to under-
stand the following concepts:

• Isolated system

• Nonisolated system

• Types of energy and energy transfer
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6.1 Frictional Force and Work

• Friction always acts to oppose the motion of an object, therefore, the work done by
friction is always negative, and take out energy from the system:

Δ𝐾 = +𝑊 − 𝑓𝑘𝑑

• Also we can write:

1
2
𝑚𝑣2

𝑓 = 1
2
𝑚𝑣2

𝑖 + 𝐹net𝑑 − 𝑓𝑘𝑑

Dr. Abdulaziz Alqasem Ch.7: Energy and Energy Transfer 46 / 68



6.1 Frictional Force and Work

Example 6.9

A 6 kg block initially at rest is pulled
to the right along a horizontal surface
by a constant horizontal force of 12 N.

(A) Find the speed of the block after
it has moved 3 m if the surfaces in
contact have a coefficient of kinetic
friction of 0.15.
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6.1 Frictional Force and Work

Solution 6.9

1
2
𝑚𝑣2

𝑓 = 1
2
𝑚𝑣2

𝑖 + 𝐹net𝑑 − 𝑓𝑘𝑑

= 0 + 𝐹𝑑 − (𝜇𝑘𝑚𝑔)𝑑
1
2
(6 kg)𝑣2

𝑓 = 0 + (12 N)(3 m) − (0.15)(6 kg)(9.8 m/s2)(3 m)

⟹ 𝑣𝑓 = 1.8 m/s
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6.1 Frictional Force and Work

Example 6.9

(B) Suppose the force F is applied at an
angle as shown in the Figure. At what
angle should the force be applied to
achieve the largest possible speed after
the block has moved 3.0 m to the right?
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6.1 Frictional Force and Work

Solution 6.9

• To find the angle that maximizes the final speed, we first write the equation
for the final speed in terms of the angle 𝜃:

1
2
𝑚𝑣2

𝑓 = 1
2
𝑚𝑣2

𝑖 + (𝐹 cos 𝜃)𝑑 − 𝑓𝑘𝑑

• To find the frictional force, we apply Newton’s second law in the vertical
direction:

𝑛 + 𝐹 sin 𝜃 − 𝑚𝑔 = 0
⇒ 𝑛 = 𝑚𝑔 − 𝐹 sin 𝜃

⇒ 𝑓𝑘 = 𝜇𝑘𝑛 = 𝜇𝑘(𝑚𝑔 − 𝐹 sin 𝜃)
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6.1 Frictional Force and Work

Using this expression for 𝑓𝑘 and with 𝑣𝑖 = 0, we get:
1
2
𝑚𝑣2

𝑓 = (𝐹 cos 𝜃) 𝑑 − 𝜇𝑘(𝑚𝑔 − 𝐹 sin 𝜃) 𝑑

• To maximize 12𝑚𝑣2
𝑓 , we take the derivative with respect to 𝜃 and set it to zero:

d
d𝜃

(1
2
𝑚𝑣2

𝑓) = 𝑑
𝑑𝜃

[(𝐹 cos 𝜃) 𝑑 − 𝜇𝑘(𝑚𝑔 − 𝐹 sin 𝜃) 𝑑] = 0

= −(𝐹 sin 𝜃)𝑑 − 𝜇𝑘(0 − 𝐹 cos 𝜃)𝑑 = 0
⇒ −𝐹𝑑 sin 𝜃 + 𝜇𝑘𝐹𝑑 cos 𝜃 = 0
⇒ sin 𝜃 = 𝜇𝑘 cos 𝜃
⇒ tan 𝜃 = 𝜇𝑘

⇒ 𝜃 = tan−1(𝜇𝑘) = tan−1(0.15) = 8.5°
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6.1 Frictional Force and Work

Example 6.10

A car traveling at an initial speed 𝑣 slides a distance 𝑑 to a halt after its brakes
lock. Assuming that the car’s initial speed is instead 2𝑣 at the moment the brakes
lock, estimate the distance it slides.
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6.1 Frictional Force and Work

Solution 6.10

• Using the work-kinetic energy the-
orem:

1
2
𝑚𝑣2

𝑓 − 1
2
𝑚𝑣2

𝑖 = −𝑓𝑘𝑑1

0 − 1
2
𝑚𝑣2 = −𝑓𝑘𝑑1

(1)

• If the initial speed is 2𝑣, then:

0 − 1
2
𝑚(2𝑣)2 = −𝑓𝑘𝑑2 (2)

• Dividing the second equation by the
first:

1
2𝑚(2𝑣)2

1
2𝑚𝑣2 = −𝑓𝑘𝑑2

−𝑓𝑘𝑑1

⇒ 4 = 𝑑2
𝑑1

• Therefore, the distance the car slides
is:

𝑑2 = 4𝑑1
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6.1 Frictional Force and Work

Example 6.11

A block of mass 1.6 kg is attached to a horizontal spring that has a force constant
of 1 × 103 N/m. The spring is compressed 2 cm and is then released from rest.

(A) Calculate the speed of the block as it passes through the equilibrium position
(𝑥 = 0) if the surface is frictionless.
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6.1 Frictional Force and Work

Solution 6.11

• We saw earlier that the work done by the spring as it moves from 𝑥𝑖 to 0 is:

𝑊 = 1
2
𝑘𝑥2

𝑖 = 1
2
(1 × 103 N/m)(−2 × 10−2 m)2 = 0.2 J

• Using the work-kinetic energy theorem:
1
2
𝑚𝑣2

𝑓 − 1
2
𝑚𝑣2

𝑖 = 𝑊

⇒ 1
2
(1.6 kg)𝑣2

𝑓 − 0 = 0.2 J

⇒ 𝑣𝑓 = 0.5 m/s
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6.1 Frictional Force and Work

Example 6.11

(B) Calculate the speed of the block as it passes through the equilibrium position
if a constant friction force of 4 N opposes its motion from the moment it is
released.
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6.1 Frictional Force and Work

Solution 6.11

• The work done by friction as the block moves from 𝑥𝑖 to 0 is:
−𝑓𝑘𝑑 = −(4 N)(2 × 10−2 m) = −0.08 J

• Using the work-kinetic energy theorem:
1
2
𝑚𝑣2

𝑓 − 1
2
𝑚𝑣2

𝑖 = 𝑊 − 𝑓𝑘𝑑

⇒ 1
2
(1.6 kg)𝑣2

𝑓 − 0 = 0.2 J − 0.08 J

⇒ 𝑣𝑓 = 0.39 m/s
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1. Work Done by a Constant Force

2. The Scalar Product of Two Vectors

3. Work Done by a Varying Force

4. Kinetic Energy and the Work-Kinetic Energy Theorem

5. The Nonisolated System—Conservation of Energy

6. Situations Involving Kinetic Friction

7. Power

8. Additional Problems



7.1 Definition

• Power is the time rate of energy trans-
fer.

• The average power ̄𝑃  is defined as
the work done 𝑊  divided by the time
interval Δ𝑡 during which the work is
done:

̄𝑃 = 𝑊
Δ𝑡

• The instantaneous power 𝑃  is the
limit of the average power as the time
interval approaches zero, or the deriv-
ative of work with respect to time:

𝑃 = d𝑊
d𝑡

• Using d𝑊 = ⃗𝑭 ⋅ 𝑑 ⃗𝒓, we can write:

𝑃 = ⃗𝑭 ⋅ ⃗𝒗
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7.1 Definition

• Since there are many types of energy,
power can be defined as the time rate
of change of any type of energy 𝐸,

𝑃 = d𝐸
d𝑡

.

• The SI unit of power is watt (W):

1𝑊 = 1 J/s.

• Another common unit of power is the
horsepower (hp):

1 hp = 746 W.

• One kilowatt-hour (kWh) is a com-
mon unit of energy used by electric
companies:

1 kWh = 103 W × 3600 s
= 3.6 × 106 J.
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7.1 Definition

Example 7.12

An elevator car has a mass of 1600 kg
and is carrying passengers having a
combined mass of 200 kg. A constant
friction force of 4000 N retards its mo-
tion upward, as shown in the Figure.

(A) What power delivered by the mo-
tor is required to lift the elevator car at
a constant speed of 3 m/s?
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7.1 Definition

Solution 7.12

• The motor must supply the force of magnitude 𝑇  that pulls the elevator car
upward.

• Using Newton’s second law in the vertical direction, we find:
∑ 𝐹 = 𝑇 − 𝑓 − (𝑚car + 𝑚pass)𝑔 = 0

𝑇 = 𝑓 + (𝑚car + 𝑚pass)𝑔

𝑇 = (4000 N) + (1600kg + 200kg)(9.8 m/s2) = 2.16 × 104 N
• The power delivered by the motor is:

𝑃 = ⃗𝑻 ⋅ ⃗𝒗 = (2.16 × 104 N)(3 m/s) = 6.48 × 104 W
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7.1 Definition

Example 7.12

(B) What power must the motor deliver at the instant the speed of the elevator is
𝑣 if the motor is designed to provide the elevator car with an upward acceleration
of 1 m/s?
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7.1 Definition

Solution 7.12

• Similar to part (A), we apply Newton’s second law in the vertical direction to
find the tension in the cable:

∑ 𝐹𝑦 = 𝑇 − 𝑓 − 𝑀tot𝑔 = 𝑀tot𝑎
⇒ 𝑇 = 𝑀tot(𝑔 + 𝑎) + 𝑓
⇒ 𝑇 = (1800kg)(9.8 m/s2 + 1 m/s2) + 4000 N = 2.34 × 104 N

• The power delivered by the motor at 𝑣 is:
𝑃 = ⃗𝑻 ⋅ ⃗𝒗 = 2.34 × 104 𝑣
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7.1 Definition

Example 7.13

Your bill may state that you used 900 kWh of energy during a month and that
you are being charged at the rate of 11¢ per kilowatt-hour.

(A) What is the energy, in joules, that you used during the month?

(B) How much is your bill for the month?
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7.1 Definition

Solution 7.13

• (A) The energy used during the month is:
𝐸 = (900 kWh)(3.6 × 106 J/kWh) = 3.24 × 109 J

• (B) The cost of the energy used during the month is:
cost = (900 kWh)(0.11 $/kWh) = 99 $
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7.1 Definition

Example 7.14

Suppose an electric bulb is rated at 100 W. In 1 h of operation, how much energy
does it convert to heat and light in joules and kilowatt-hours?

• The energy converted by the bulb in 1 h is:
𝐸 = 𝑃 × 𝑡 = (100 W)(3600 s) = 3.6 × 105 J

• In kilowatt-hours:
𝐸 = (0.1 kW)(1ℎ) = 0.1 kWh
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8. Additional Problems
1, 4, 7, 13, 14, 15, 16, 19, 21, 24, 25, 26, 28, 31, 32, 33, 35, 37, 40
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