4.2 EXERCISES

In Problems 1-12, find a general solution to the given differential equation.

3.
$$y'' + 5y' + 6y = 0$$

In Problems 13-20, solve the given initial value problem.

17.
$$y'' - 6y' + 9y = 0$$
; $y(0) = 2$, $y'(0) = 25/3$

For each of the following, determine whether the given three functions are linearly dependent or linearly independent on $(-\infty, \infty)$:

(a)
$$y_1(t) = 1$$
, $y_2(t) = t$, $y_3(t) = t^2$.

(b)
$$y_1(t) = -3$$
, $y_2(t) = 5\sin^2 t$, $y_3(t) = \cos^2 t$.

(c)
$$y_1(t) = e^t$$
, $y_2(t) = te^t$, $y_3(t) = t^2e^t$.

(d)
$$y_1(t) = e^t$$
, $y_2(t) = e^{-t}$, $y_3(t) = \cosh t$.

4.3 EXERCISES

In Problems 9–20, find a general solution.

13.
$$y'' - 2y' + 26y = 0$$

19.
$$y''' + y'' + 3y' - 5y = 0$$

In Problems 21–27, solve the given initial value problem.

27.
$$y''' - 4y'' + 7y' - 6y = 0$$
; $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$

Find a general solution to the following higher-order equations.

(a)
$$y''' - y'' + y' + 3y = 0$$

(b)
$$y''' + 2y'' + 5y' - 26y = 0$$

(c)
$$y^{iv} + 13y'' + 36y = 0$$

4.4 EXERCISES

In Problems 9–26, find a particular solution to the differential equation.

13.
$$y'' - y' + 9y = 3 \sin 3t$$

15.
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = xe^x$$

19.
$$4y'' + 11y' - 3y = -2te^{-3t}$$

25.
$$y'' + 2y' + 4y = 111e^{2t}\cos 3t$$

In Problems 33–36, use the method of undetermined coefficients to find a particular solution to the given higher-order equation.

33.
$$y''' - y'' + y = \sin t$$

35.
$$y''' + y'' - 2y = te^t$$

4.5 EXERCISES

In Problems 31–36, determine the form of a particular solution for the differential equation. Do not solve.

31.
$$y'' + y = \sin t + t \cos t + 10^t$$

33.
$$x'' - x' - 2x = e^t \cos t - t^2 + \cos^3 t$$

35.
$$y'' - 4y' + 5y = e^{5t} + t \sin 3t - \cos 3t$$

In Problems 37-40, find a particular solution to the given higher-order equation.

39.
$$y''' + y'' - 2y = te^t + 1$$

4.6 EXERCISES

In Problems 1–8, find a general solution to the differential equation using the method of variation of parameters.

4.
$$y'' + 2y' + y = e^{-t}$$

4.7 EXERCISES

In Problems 9 through 14, find a general solution to the given Cauchy–Euler equation for t > 0.

9.
$$t^2y''(t) + 7ty'(t) - 7y(t) = 0$$

11.
$$t^2 \frac{d^2z}{dt^2} + 5t \frac{dz}{dt} + 4z = 0$$

In Problems 15 through 18, find a general solution for t < 0.

17.
$$t^2y''(t) + 9ty'(t) + 17y(t) = 0$$

In Problems 37 through 39, find general solutions to the non-homogeneous Cauchy–Euler equations using variation of parameters.

37.
$$t^2z'' + tz' + 9z = -\tan(3 \ln t)$$

39.
$$t^2z'' - tz' + z = t\left(1 + \frac{3}{\ln t}\right)$$

In Problems 41 through 44, a differential equation and a non-trivial solution f are given. Find a second linearly independent solution using reduction of order.

43.
$$tx'' - (t+1)x' + x = 0$$
, $t > 0$; $f(t) = e^t$