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1.1 Definitions

• A scalar quantity is specified by a single value with an appropriate unit and has
no direction, such as time 𝑡 and temperature 𝑇 .

• A vector quantity is specified by a number and an appropriate unit plus a direction,
such as displacement 𝒙⃗AB and force 𝐅⃗.
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2.1 Cartesian and Polar Coordinates

• A point in a plane (2D space) can be repre>
sented by two numbers.

• In the Cartesian (rectangular) coordinate
system, the point is represented by its x and
y coordinates, (𝑥, 𝑦).

• In the polar coordinate system, the point is
represented by its distance 𝑟 from the origin
and the angle 𝜃 that the line makes with the
positive x>axis, (𝑟, 𝜃).

• The choice of a coordinate system depends
on what simplifies the problem and analysis.

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

𝑟 = √𝑥2 + 𝑦2

𝜃 = tan−1(𝑦
𝑥)
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2.1 Cartesian and Polar Coordinates

Example 2.1

The Cartesian coordinates of a point in the xy
plane are (𝑥, 𝑦) = (−3.5, −2.5) m, as shown
in the Figure. Find the polar coordinates of this
point.

Dr. Abdulaziz Alqasem Ch.3: Vectors 7 / 42



2.1 Cartesian and Polar Coordinates

Solution 2.1

𝑟 = √𝑥2 + 𝑦2 = √(−3.5)2 + (−2.5)2 = 4.3 m

tan 𝜃 = 𝑦
𝑥

= −2.5
−3.5

= 0.714

𝜃 = tan−1(0.714) = 35.5° ❌ Wrong
Notice that the point is in the third quadrant (from the signs of x and y);
therefore, we add 180° to the angle:

𝜃 = 35.5° + 180° = 215.5° ✔ Correct

Thus, the polar coordinates of the point are (𝑟, 𝜃) = (4.3 m, 215.5°).
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2.1 Cartesian and Polar Coordinates

Problem 2.1

The polar coordinates of a point are 𝑟 = 5.5 m and 𝜃 = 240°. What are the
Cartesian coordinates of this point?

Answer 2.1

𝑥 = 𝑟 cos 𝜃 = 5.5 cos(240°) = −2.75 m
𝑦 = 𝑟 sin 𝜃 = 5.5 sin(240°) = −4.75 m

Thus, the Cartesian coordinates of the point are (𝑥, 𝑦) = (−2.75 m, −4.75 m).
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2.1 Cartesian and Polar Coordinates
Problem 2.2

Two points in the xy plane have Cartesian coordinates (2, −4) m and (−3, 3) m.
Determine (a) the distance between these points and (b) their polar coordinates.
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2.1 Cartesian and Polar Coordinates

Solution 2.1

(a) The distance between the two points is given by:

𝑑 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 = 8.6 m
(b) The polar coordinates of the points are:

𝑟1 = √22 + (−4)2 = 4.47 m, 𝜃1 = tan−1(−4
2
) = −63.4°

𝑟2 = √(−3)2 + 32 = 4.24 m, 𝜃2 = tan−1( 3
−3

) = 135°
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3.1 Equality of Two Vectors

• Two vectors are equal if they have the same
magnitude and direction:

⃗𝑨 = 𝑩⃗      Only if

(1) | ⃗𝑨| = |𝑩⃗|     and,
(2)  𝜃𝐴 = 𝜃𝐵

• Therefore, a vector can be moved to different
locations parallel to itself without changing
its properties.
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3.2 Adding Vectors

• Graphical Method: Vectors can be added graphically by placing them head>to>
tail and drawing the resultant vector from the tail of the first vector to the head of
the last vector.
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3.2 Adding Vectors
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3.3 Subtracting Vectors

• The negative of a vector − ⃗𝑨 is a vector with the same magnitude as ⃗𝑨 but with
the opposite direction, such that: ⃗𝑨 + (− ⃗𝑨) = 0.

• Subtracting two vectors graphically is equivalent to adding a vector to the negative
of the other vector: 𝑪⃗ = ⃗𝑨 − 𝑩⃗ = ⃗𝑨 + (−𝑩⃗).
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3.4 Multiplying a Vector by a Scalar

• If vector ⃗𝑨 is multiplied by a positive scalar quantity 𝑚, then the product 𝑚 ⃗𝑨 is a
vector that has the same direction as ⃗𝑨 and magnitude 𝑚 | ⃗𝑨|.

• If vector ⃗𝑨 is multiplied by a negative scalar quantity −𝑚, then the product −𝑚 ⃗𝑨
is directed opposite to ⃗𝑨.

• For example:
‣ The vector 5 ⃗𝑨 is five times as long as ⃗𝑨 and points in the same direction as ⃗𝑨;

‣ The vector −1
3

⃗𝑨 is one>third the length of ⃗𝑨 and points in the direction opposite
to ⃗𝑨.
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3.5 Example
Example 3.2

A car travels 20 km due north and then 35 km in a direction 60° west of
north, as shown below. Find the magnitude and direction of the car’s resultant
displacement.
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3.5 Example

Solution 3.2

• First, notice that the angle between the two displacements is:
𝜃 = 180 − 60 = 120°

• Using the law of cosines, we find the magnitude of the resultant displacement
R:

𝑅2 = √𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝜃
= √202 + 352 − 2(20)(35) cos(120°) = 48.2 km

• To find the direction of the resultant displacement, we can use the law of sines:
sin 𝛽
𝐵

= sin 𝜃
𝑅
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3.5 Example

⇒ sin 𝛽 = 𝐵
𝑅

sin 𝜃 = 35
48.2

sin 120° = 0.629

⇒ 𝛽 = sin−1(0.629) = 39°

Therefore, the magnitude and direction of the car’s resultant displacement are
48.2 km and 39° west of north, respectively.
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4.1 Components of a Vector

• To simplify analysis, a vector can be described
by its components along the coordinate axes.

• For example, a vector ⃗𝑨 in two>dimensional
space can be represented by its components
along the x and y axes, 𝐴𝑥 and 𝐴𝑦, respectively.

• The components can be found using trigonom>
etry:

𝐴𝑥 = 𝐴 cos 𝜃
𝐴𝑦 = 𝐴 sin 𝜃
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4.2 Unit Vectors

• A unit vector is a dimensionless vector that has
a magnitude of one.

|̂𝒊| = |𝒋| = |𝒌̂| = 1,

• 𝒊̂, 𝒋, and 𝒌̂ are the unit vectors in the x, y, and z
directions, respectively.

• Therefore, unit vectors are used to specify di>
rections in space.
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4.3 How to Express a Vector in Terms of Unit Vectors?

For any vector ⃗𝑨, we can express it in terms of
its components and unit vectors:

⃗𝑨 = 𝐴𝑥𝒊̂ + 𝐴𝑦𝒋
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4.3 How to Express a Vector in Terms of Unit Vectors?

Example 4.3

Express the position vector ⃗𝒓 of a point in the
xy plane in terms of its components and unit
vectors, given that its polar coordinates are
𝑟 = 5 m and 𝜃 = 60°.
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4.3 How to Express a Vector in Terms of Unit Vectors?

Solution 4.3

• The components of the position vector ⃗𝒓 can be found using the relationships:
𝑥 = 𝑟 cos 𝜃 = 5 cos 60° = 2.5 m
𝑦 = 𝑟 sin 𝜃 = 5 sin 60° = 4.33 m

• Therefore, we can express the position vector as:
⃗𝒓 = 𝑥𝒊̂ + 𝑦𝒋 = (2.5𝒊̂ + 4.33𝒋) m
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4.4 How to Add Vectors Using their Components?

• To add two vectors ⃗𝑨 and 𝑩⃗ using their com>
ponents, we simply add their corresponding
components:

𝑹⃗ = ⃗𝑨 + 𝑩⃗ = (𝐴𝑥 + 𝐵𝑥)̂𝒊 + (𝐴𝑦 + 𝐵𝑦)𝒋

• Notice the components of the resultant vector

𝑹⃗ = 𝑅𝑥𝒊̂ + 𝑅𝑦𝒋

are:
𝑅𝑥 = 𝐴𝑥 + 𝐵𝑥

𝑅𝑦 = 𝐴𝑦 + 𝐵𝑦
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4.4 How to Add Vectors Using their Components?

• The magnitude and direction of the resultant vector 𝑹⃗ can be found using the
Pythagorean theorem and trigonometry:

|𝑹⃗| = √𝑅2
𝑥 + 𝑅2

𝑦

𝜃 = tan−1(
𝑅𝑦

𝑅𝑥
)
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4.5 Vectors in three Dimensions

• In three>dimensional space, a vector ⃗𝑨 can be represented by its components along
the x, y, and z axes, 𝐴𝑥, 𝐴𝑦, and 𝐴𝑧, respectively:

⃗𝑨 = 𝐴𝑥𝒊̂ + 𝐴𝑦𝒋 + 𝐴𝑧𝒌̂

• The magnitude of the vector is given by:

| ⃗𝑨| = √𝐴2
𝑥 + 𝐴2

𝑦 + 𝐴2
𝑧

‣ The direction of the vector is given by the angles it makes with the coordinate
axes:

𝜃𝑥 = cos−1( 𝐴𝑥

| ⃗𝑨|
), 𝜃𝑦 = cos−1(

𝐴𝑦

| ⃗𝑨|
), 𝜃𝑧 = cos−1( 𝐴𝑧

| ⃗𝑨|
)
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4.5 Vectors in three Dimensions

• The sum of two vectors ⃗𝑨 and 𝑩⃗ in three>dimensional space can be found by
adding their corresponding components:

𝑹⃗ = ⃗𝑨 + 𝑩⃗ = (𝐴𝑥 + 𝐵𝑥)̂𝒊 + (𝐴𝑦 + 𝐵𝑦)𝒋 + (𝐴𝑧 + 𝐵𝑧)𝒌̂
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4.6 Examples

Example 4.4

Find the sum of two vectors 𝐀⃗ and 𝐁⃗ lying in the xy plane and given by
⃗𝑨 = (2𝒊̂ + 2𝒋) m

𝑩⃗ = (2𝒊̂ − 4𝒋) m
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4.6 Examples

Solution 4.4

• First, we find the resultant vector:
𝑹⃗ = ⃗𝑨 + 𝑩⃗ = (2𝒊̂ + 2𝒋) m + (2𝒊̂ − 4𝒋) m

= (4𝒊̂ − 2𝒋) m
• The magnitude of the resultant vector is:

|𝑹⃗| = √(4)2 + (−2)2 =
√

16 + 4 = 4.5 m
• The direction of the resultant vector is:

𝜃 = tan−1(−2
4
) = −26.6° (or 360° − 26.6° = 333.4°)
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4.6 Examples

Example 4.5

A particle undergoes three consecutive displacements:
⃗𝒅1 = (15𝒊̂ + 30𝒋 + 12𝒌̂) cm
⃗𝒅2 = (23𝒊̂ − 14𝒋 + 5𝒌̂) cm
⃗𝒅3 = (−13𝒊̂ + 15𝒋) cm

Find the components of the resultant displacement and its magnitude.
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4.6 Examples

Solution 4.5

• First, we find the components of the resultant displacement:
𝑹⃗ = ⃗𝒅1 + ⃗𝒅2 + ⃗𝒅3

= (15 + 23 − 13)̂𝒊 + (30 − 14 + 15)𝒋 + (12 − 5 + 0)𝒌̂

= (25𝒊̂ + 31𝒋 + 7𝒌̂) cm
• The magnitude of the resultant displacement is:

|𝑹⃗| = √(25)2 + (31)2 + (7)2 = 39.5 cm
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4.6 Examples
Example 4.6

A hiker begins a trip by first walking 25 km
southeast from her car. She stops and sets
up her tent for the night. On the second day,
she walks 40 km in a direction 60.0° north
of east, at which point she discovers a forest
ranger’s tower.

(A) Determine the components of the
hiker’s displacement for each day.
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4.6 Examples

Solution 4.6

• The components of the hiker’s displacement for the first day are:
𝐴𝑥 = 25 cos(−45°) = 17.7 km
𝐴𝑦 = 25 sin(−45°) = −17.7 km

• The components of the hiker’s displacement for the second day are:
𝐵𝑥 = 40 cos(60°) = 20 km
𝐵𝑦 = 40 sin(60°) = 34.6 km
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4.6 Examples

Example 4.6

(B) Determine the components of the hiker’s resultant displacement 𝐑⃗ for the
trip. Find an expression for 𝐑⃗ in terms of unit vectors.
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4.6 Examples

Solution 4.6

• The resultant displacement for the trip,
𝑹⃗ = ⃗𝑨 + 𝑩⃗,

has components given by:
𝑅𝑥 = 𝐴𝑥 + 𝐵𝑥 = 17.7 km + 20 km = 37.7 km
𝑅𝑦 = 𝐴𝑦 + 𝐵𝑦 = −17.7 km + 34.6 km = 16.9 km

• In unit vector notation, we can write the resultant displacement as:
𝑹⃗ = (37.7𝒊̂ + 16.9𝒋)  km
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4.6 Examples

Example 4.7

A commuter airplane takes the route shown
in the Figure. First, it flies from the origin
of the coordinate system shown to city A,
located 175 km in a direction 30.0° north of
east. Next, it flies 153 km 20.0° west of north
to city B. Finally, it flies 195 km due west to
city C. Find the location of city C relative to
the origin
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4.6 Examples

Solution 4.7

• First, we find the components of the displacement to city A:
𝑎𝑥 = 175 cos(30°) = 151.6  km
𝑎𝑦 = 175 sin(30°) = 87.5  km

• Next, we find the components of the displacement to city B:
𝑏𝑥 = 153 cos(110°) = −52.3  km
𝑏𝑦 = 153 sin(110°) = 144  km

• Finally, we find the components of the displacement to city C:
𝑐𝑥 = −195  km
𝑐𝑦 = 0  km
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4.6 Examples

• The total displacement components are:
𝑅𝑥 = 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 = 151.6 − 52.3 − 195 = −95.7  km
𝑅𝑦 = 𝑎𝑦 + 𝑏𝑦 + 𝑐𝑦 = 87.5 + 144 + 0 = 231.5  km

• In unit vector notation, we can write the resultant displacement as:
𝑹⃗ = (−95.7𝒊̂ + 231.5𝒋)  km
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5. Suggested Problems

1, 4, 19, 21, 27, 30, 31, 33, 39, 49, 50
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