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Remember From Previous Chapters

Classical Mechanics

• Equations of motion:

⃗𝒗𝑓 = ⃗𝒗𝑖 + 𝒂⃗𝑡

⃗𝒓𝑓 = ⃗𝒓𝑖 + ⃗𝒗𝑖𝑡 + 1
2
𝒂⃗𝑡2

⃗𝒗2
𝑓 = ⃗𝒗2

𝑖 + 2𝒂⃗ ⋅ ( ⃗𝒓𝑓 − ⃗𝒓𝑖)

• Newton’s Second Law:

∑ ⃗𝑭 = 𝑚𝒂⃗

• Work-Energy Theorem:

𝑊 = Δ𝐾

𝑊 = ⃗𝑭 ⋅ ⃗𝒅

𝐾 = 1
2
𝑚 ⃗𝒗2

Electric Field

• Coulomb’s Law:

⃗𝑭𝑒 = 𝑘𝑒
𝑞1𝑞2
𝑟2 𝒓

• Electric Field:

𝑬⃗ =
⃗𝑭𝑒

𝑞0
= 𝑘𝑒

𝑞
𝑟2 𝒓

𝒂⃗ = ( 𝑞
𝑚

)𝑬⃗



1. Electric Flux

2. Gauss’s Law

3. Application of Gauss’s Law to Various Charge Distributions



1.1 Definition of Electric Flux

Electric Flux Φ
𝐸

 measures the amount 

(or “flow”) of electric field 𝐸 passing 

through a given surface 𝐴.

Φ𝐸 = 𝐸𝐴

• E is perpendicular to the surface.

• Φ𝐸  has a unit of N·m²/C.
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1.1 Definition of Electric Flux

• The number of field lines passing 

through the area 𝐴⟂ equals the num

ber of field lines passing through area 

𝐴 at an angle 𝜃 to the normal.#pause

• Therefore,

Φ𝐸 = 𝐸𝐴⟂ = 𝐸𝐴 cos 𝜃 = 𝑬⃗ ⋅ ⃗𝑨

• ⃗𝑨 is a vector whose magnitude is the 

area 𝐴 and direction is normal (per

pendicular) to the surface.

• The flux Φ𝐸  is a scalar quantity.
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1.1 Definition of Electric Flux

• Therefore, we conclude the following:

• The flux through a surface of fixed 

area (𝐴) has a maximum value 𝐸𝐴 

when the surface is perpendicular to 

the field, and

• a minimum value of zero when the 

surface is parallel to the field.

• The flux vector 𝚽⃗𝐸  can be positive 

or negative, depending on the angle 𝜃 

between 𝑬⃗ and ⃗𝑨.
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1.2 Electric Flux through a Curved and large Surface

• The electric field 𝑬⃗ may vary in mag

nitude and direction over a curved 

surface.

• The area vector ⃗𝑨 may also vary in 

direction over the surface.

• Therefore, we divide the surface into 

small elements of area d ⃗𝑨 and calcu

late the flux through each element.

Φ𝐸,𝑖 = 𝑬⃗𝑖 ⋅ Δ ⃗𝑨𝑖 = 𝐸𝑖Δ𝐴𝑖 cos 𝜃𝑖
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1.2 Electric Flux through a Curved and large Surface
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1.2 Electric Flux through a Curved and large Surface

• The total electric flux Φ𝐸  through the 

entire surface is the sum of all small 

contributions,

Φ𝐸 ≈ ∑
𝑖

𝑬⃗𝑖 ⋅ Δ ⃗𝑨𝑖

• In the limit as the area elements become 

infinitesimally small, the sum becomes a 

surface integral:

Φ𝐸 = ∮ 𝑬⃗ ⋅ d ⃗𝑨
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1.3 Example

Example 1.1

Consider a uniform electric field 𝑬⃗ 
oriented in the 𝑥 direction in empty 
space. A cube of edge length 𝑙 is 
placed in the field, oriented as shown 
in the Figure. Find the net electric flux 
through the surface of the cube.
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1.3 Example

Solution 1.1

Φ𝐸 = Φ𝐸,1 + Φ𝐸,2 + Φ𝐸,3 + Φ𝐸,4

Φ𝐸,1 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 cos 180° ∮ d𝐴 = −𝐸𝐴 = −𝐸𝑙2

Φ𝐸,2 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 cos 0° ∮ d𝐴 = 𝐸𝐴 = 𝐸𝑙2

Φ𝐸,3 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 cos 90° ∮ d𝐴 = 0

Φ𝐸,4 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 cos 270° ∮ d𝐴 = 0

⟹ Φ𝐸 = −𝐸𝑙2 + 𝐸𝑙2 + 0 + 0 = 0
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1. Electric Flux

2. Gauss’s Law

3. Application of Gauss’s Law to Various Charge Distributions



2.1 Derivation of Gauss’s Law

Consider a point charge 𝑞 located at the 

center of a spherical surface of radius 𝑟,

known as a gaussian surface.

The electric field at every point on the 

surface has a magnitude

𝐸 = 𝑘𝑒
𝑞
𝑟2

The area of the spherical surface is

𝐴 = 4𝜋𝑟2
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2.1 Derivation of Gauss’s Law

The electric flux through the spherical 

surface is

Φ𝐸 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸𝐴

= (𝑘𝑒
𝑞
𝑟2 )(4𝜋𝑟2) = 4𝜋𝑘𝑒𝑞

Since 𝑘𝑒 = 1
4𝜋𝜀0

, we have

Φ𝐸 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝑞
𝜀0

Notice that Φ𝐸  does not depend on 𝑟
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2.1 Derivation of Gauss’s Law

• Every field line that passes through 

𝑆1 also passes through the nonspher

ical surfaces 𝑆2 and 𝑆3. Therefore,

• The net flux through any closed sur

face surrounding a point charge 𝑞 

is independent of the shape of that 

surface.

ΦES1
= ΦES2

= ΦES3
= 𝑞

𝜀0
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2.1 Derivation of Gauss’s Law

• Any electric field line entering the 

surface leaves the surface at another 

point.

• The number of electric field lines en

tering the surface equals the number 

leaving the surface.

• Therefore, the net electric flux 

through a closed surface that sur

rounds no charge is zero.

Φ𝐸 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 0
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2.1 Derivation of Gauss’s Law

• The net electric flux through any 

closed surface depends only on the 

charge inside that surface.

ΦES = 𝑞1
𝜀0

ΦES' = 𝑞2 + 𝑞3
𝜀0

ΦES'' = 0

Dr. Abdulaziz Alqasem Ch.23: Continuous Charge Distributions and Gauss’s Law 18 / 40



2.1 Derivation of Gauss’s Law

Gauss’s Law states that the net electric flux Φ𝐸  through any closed surface is equal 

to the net charge 𝑞in inside that surface divided by the permittivity of free space 𝜀0.

Φ𝐸 = ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝑞in
𝜀0

where 𝑬⃗ is the electric field at any point on the closed surface.
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2.1 Derivation of Gauss’s Law

Example 2.2

A spherical gaussian surface surrounds a point charge 𝑞. Describe what happens 
to the total flux through the surface if:
(A) the charge is tripled,
(B) the radius of the sphere is doubled,
(C) the surface is changed to a cube, and
(D) the charge is moved to another location inside the surface.
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2.1 Derivation of Gauss’s Law

Solution 2.2

(A) The flux through the surface is tripled because flux is proportional to the 
amount of charge inside the surface.

(B) The flux does not change because all electric field lines from the charge pass 
through the sphere, regardless of its radius.

(C) The flux does not change when the shape of the gaussian surface changes 
because all electric field lines from the charge pass through the surface, regard
less of its shape.

(D) The flux does not change when the charge is moved to another location 
inside the surface because Gauss’s law refers to the total charge enclosed, 
regardless of where the charge is located inside the surface.
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1. Electric Flux

2. Gauss’s Law

3. Application of Gauss’s Law to Various Charge Distributions



3.1 Why to use Gauss’s Law?

• Gauss’s law is a powerful tool for calculating electric fields when the charge distri

bution has enough degree of symmetry.

• It is often much easier to use Gauss’s law than to apply Coulomb’s law and perform 

complex integrations.

• Gauss’s law is useful when at least one of four conditions is satisfied for the chosen 

gaussian surface.
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3.2 Four Conditions to Use Gauss’s Law

1. The value of the electric field can be argued by symmetry to be constant

over the portion of the surface (S).

E is constant at S ✔︎

✘ Bad choice, since 𝐸 is 

not constant over the sur

face ✘ E is constant at S ✔︎
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3.2 Four Conditions to Use Gauss’s Law

2. The dot product between 𝑬⃗ and d ⃗𝑨 can be expressed as a simple algebraic

product 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 d𝐴, where 𝑬⃗ and d ⃗𝑨 are parallel.

𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 d𝐴  ✔︎

✘ Bad choice of Gaussian 

surface since 𝐸 is not gen

erally parallel to d ⃗𝑨 ✘ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 d𝐴  or 0 ✔︎
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3.2 Four Conditions to Use Gauss’s Law

3. The dot product is zero because 𝑬⃗ and 

d ⃗𝑨 are perpendicular.

𝑬⃗ ⟂ d ⃗𝑨 at the curved surface.

4. The electric field is zero over the por

tion of the surface.

Arbitrary shaped conductor with zero 

electric field at the curved surface.
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3.3 Examples

Example 3.3

An insulating solid sphere of radius 
𝑎 has a uniform volume charge den
sity 𝜌 and carries a total positive 
charge 𝑄.

(A) Calculate the magnitude of the 
electric field at a point outside the 
sphere.
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3.3 Examples

Solution 3.3

Choosing spherical gaussian surface and using Gauss’s law, we have:

∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝑞in
𝜀0

Since 𝑬⃗ and d ⃗𝑨 are parallel vectors and 𝑞in = 𝑄, we get:

∮ 𝐸 cos 0° d𝐴 = 𝐸 ∮ d𝐴 = 𝐸(4𝜋𝑟2) = 𝑄
𝜀0

Solving for 𝐸, we obtain:

⇒ 𝐸 = 1
4𝜋𝜀0

𝑄
𝑟2

⟹ 𝐸 = 𝑘𝑒
𝑄
𝑟2 (for 𝑟 > 𝑎)
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3.3 Examples

(B) Find the magnitude of the elec
tric field at a point inside the sphere.
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3.3 Examples

Solution 3.4

Similar to part (A), we apply Gauss’s law:

∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸(4𝜋𝑟2) = 𝑞in
𝜀0

Solving for 𝐸,

𝐸 = 𝑞in
4𝜋𝜀0𝑟2

Since 𝑟 < 𝑎, the internal charge 𝑞in < 𝑄. Therefore, to find 𝑞in, we multiply the 
charge density 𝜌 by the volume of a sphere of radius 𝑟:

𝑞in = 𝜌(4
3
𝜋𝑟3) = ( 𝑄

4
3𝜋𝑎3 )(4

3
𝜋𝑟3) = 𝑄𝑟3

𝑎3

Notice that at 𝑟 = 𝑎, we have 𝑞in = 𝑄 as expected.
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3.3 Examples

Substituting 𝑞in into the expression for 𝐸, we get:

𝐸 = 𝑄 𝑟3/𝑎3

4𝜋𝜀0𝑟2 = ( 𝑄
4𝜋𝜀0𝑎3 )𝑟

Therefore,

⟹ 𝐸 = 𝑘𝑒
𝑄
𝑎3 𝑟 (for 𝑟 < 𝑎)
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3.3 Examples

Therefore, the electric field inside the sphere 
increases linearly with distance 𝑟 until it 
reaches its maximum value at the surface of 
the sphere (𝑟 = 𝑎), then decreases as 1/𝑟2 
for points outside the sphere.

Additionally, the two expressions for 𝐸 at 
𝑟 = 𝑎 are equal, confirming the continuity 
of the electric field at the surface of the 
sphere.
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3.3 Examples

Example 3.5

Find the electric field a distance 𝑟 
from a line of positive charge of 
infinite length and constant charge 
per unit length 𝜆

Dr. Abdulaziz Alqasem Ch.23: Continuous Charge Distributions and Gauss’s Law 33 / 40



3.3 Examples

Solution 3.5

• Using Gauss’s law, we choose a cylindrical gaussian sur
face of radius 𝑟 and length 𝑙 coaxial with the line of charge.

• The electric field 𝑬⃗ is radial and has the same magnitude 
at every point on the curved surface of the cylinder.

• The area vector d ⃗𝑨 is also radial on the curved surface, so 
𝑬⃗ and d ⃗𝑨 are parallel vectors.

• On the two flat end caps of the cylinder, 𝑬⃗ is perpendicular 
to d ⃗𝑨, so there is no flux through these surfaces.
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3.3 Examples

Therefore, the total flux through the cylindrical surface is given by:

∮ 𝑬⃗ ⋅ d ⃗𝑨 = 𝐸 ∮ d𝐴 = 𝐸𝐴 = 𝑞in
𝜀0

The area of the curved surface is 𝐴 = 2𝜋𝑟𝐿, and the charge enclosed by the 
gaussian surface is the charge density times length (𝑞in = 𝜆𝐿). Substituting these 
expressions into Gauss’s law, we have:

𝐸(2𝜋𝑟𝐿) = 𝜆𝐿
𝜀0

⟹ 𝐸 = 𝜆
2𝜋𝜀0𝑟

= 2𝑘𝑒
𝜆
𝑟
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3.3 Examples

Example 3.6

Find the electric field due to an in
finite plane of positive charge with 
uniform surface charge density 𝜎.
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3.3 Examples

Solution 3.6

• We use a cylindrical gaussian surface (or a cubic surface).

• The electric field 𝑬⃗ is perpendicular to the plane and has the same magnitude 
at every point on the two flat surfaces.

• 𝑬⃗ and d ⃗𝑨 are parallel vectors at the two flat surfaces.

• On the curved surface, 𝑬⃗ is perpendicular to d ⃗𝑨, so there is no flux through 
this surface.

• Therefore, the total flux through the two sides of the cylinder is given by:

2 ∮ 𝑬⃗ ⋅ d ⃗𝑨 = 2𝐸 ∮ d𝐴 = 2𝐸𝐴 = 𝑞in
𝜀0

= 𝜎𝐴
𝜀0
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3.3 Examples

Solving for 𝐸, we get:

⟹ 𝐸 = 𝜎
2𝜀0

Notice that the electric field due to an infinite plane of charge is constant and 
does not depend on the distance from the plane.

Dr. Abdulaziz Alqasem Ch.23: Continuous Charge Distributions and Gauss’s Law 38 / 40



3.3 Examples

Example 3.7

Explain why Gauss’s law cannot be used to calculate the electric field near an 
electric dipole, a charged disk, or a triangle with a point charge at each corner.

Solution 3.7

The charge distributions of all these configurations do not have sufficient sym
metry to make a practical use of Gauss’s law.

Dr. Abdulaziz Alqasem Ch.23: Continuous Charge Distributions and Gauss’s Law 39 / 40



Suggested Problems

10, 11, 13, 14, 15, 16, 18, 19, 24, 27, 29, 33, 34, 37, 38

Book: Serway, R. A., & Jewett, J. W. (2018). Physics for Scientists and Engineers (10th 

ed.)
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