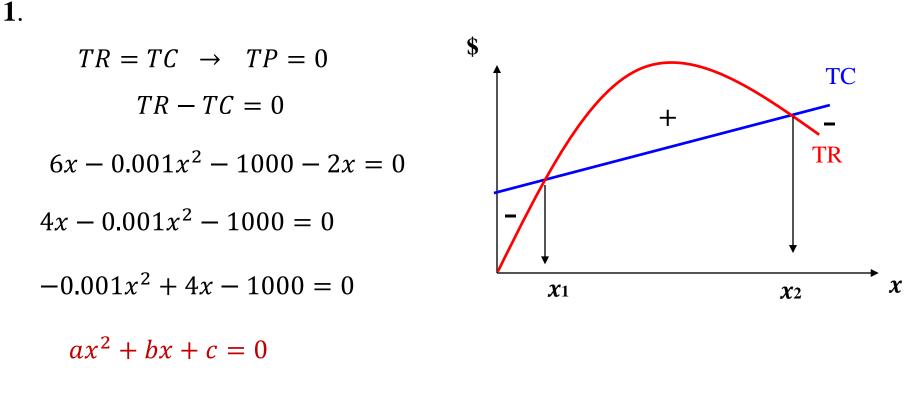


Obtaining and Estimating Cash Flows

16.2 Cost Viewpoints

Ex. The total cost TC and total revenue TR functions with respect to the annual production are given by the expression


$$TC(x) = 1000 + 2x$$
, $TR(x) = 6x - 0.001x^2$

,where x is the number of units sold per year , and the selling price in .

Determine the following:

- 1. Over what range of production is the profit possible?
- 2. The value of *x* that maximizes profit.
- 3. The maximum profit for a year.
- 4. The fixed cost per year.
- 5. The average cost of producing 2000 units.
- 6. The marginal cost at the production level of 2000 units.

Solution

 $x_1 = 267.949 \ unit/year$ $x_2 = 3732.05 \ unit/year$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

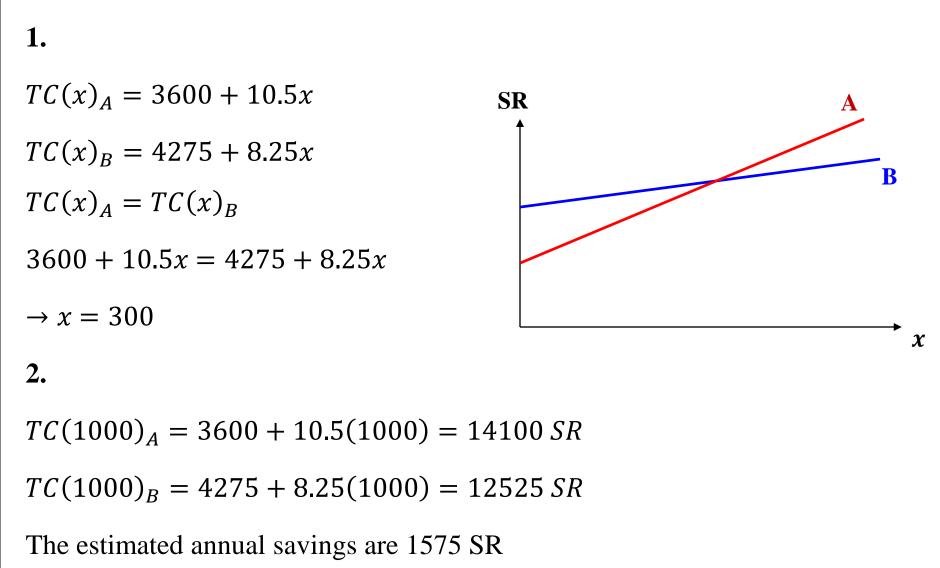
so, 267.949 < *x* < 3732.05

Solution

$$2. \quad TP(x) = -0.001x^2 + 4x - 1000$$

$$\frac{d TP(x)}{dx} = 0 \qquad -0.002x + 4 = 0 \quad \rightarrow \quad x = 2000 \text{ units/year}$$

- 3. $TP(2000) = -0.001(2000)^2 + 4(2000) 1000$ TP(2000) = \$3000
- **4.** FC = \$1000


5.
$$AC(x) = \frac{TC(x)}{x} = \frac{1000 + 2x}{x} = \frac{1000 + 2x}{x}$$

 $AC(2000) = \frac{TC(2000)}{2000} = \frac{1000 + 2(2000)}{2000} = 2.5
6. $MC(x) = \frac{d TC(x)}{dx} = \frac{d}{dx} [1000 + 2x] = 2
 $or MC = TC(2001) - TC(2000) = 2 .

Ex. Two machines are being considered for a project investment. The variable cost and the annual fixed cost are shown in the following table:

Machine	Fixed Cost, SR	Variable Cost, SR
А	3600	10.5
В	4275	8.25

- 1. What is the number of units/year for break-even between two machines ?
- 2. If the estimated number of units/year is 1000 ,what the annual savings are estimated if machine (B) is used instead of machine (A).

Solution

