108 Chem

Chapter 4

Organic Halogen compounds

Organic Halides and their uses

- Organic Halides are a large class of natural and synthetic chemicals that contain one or more halogens (fluorine, chlorine, bromine, or iodine) combined with carbon and other elements.
- Halogen compounds are very important for a number of reasons:
 - Simple alkyl and aryl halides (especially: Cl & Br) are versatile reagent in syntheses.
 - Halogen can be converted to unsaturated compounds through dehydrogenation (*Elimination reactions*).
 - Halogen can be replaced by many other functional groups (*substitution reactions*).

Classification Alkyl Halides

1.Alkyl Halides, R-X: compounds which have a halogen atom bonded to one sp^3 hybrid <u>C</u> atom. Alkyl halides are also called haloalkanes.(primary (1°), secondary (2°) or tertiary (3°))

Compound	CH ₃ -Cl	CH ₃ -CH ₂ -Br	(CH ₃) ₂ -CHF
Common name	Methyl Chloride	Ethyl bromide	Isopropyl fluoride
IUPAC name	Chloromethane	Bromoethane	2-Fluoropropape
			2 11001000000
Class	1°	1°	28
Compound	I	$H_3C \xrightarrow{CH_3} Br$ CH_3	CI CH ₃
Common name	Cyclohexyl Iodide	t.Butyl bromide	Methylcyclopentyl chloride
IUPAC name	Iodocyclohexane	2-Bromo-2-methylpropane	1-Chloro-1-methylcyclopentane
Class	2°	3°	3°

2. Vinylic Halides, C=C-X : has a halogen atom bonded to one sp^2 hybrid <u>C</u> atom.

CH₂=CHBr Common name: Vinyl bromide IUPAC name: Bromoethene

1-Chlorocyclobutene

3. Aryl Halides, Ar-X : has a halogen atom bonded directly to an aromatic ring.

Common name: *p*-Bromotoluene IUPAC name: 4-Bromotoluene

4. Allylic Halides, C=C-C-X : has a halogen atom bonded to one sp^3 hybrid <u>C</u> atom.

CH₂=CHCH₂Cl Common name: Allyl chloride IUPAC name: 3-Chloro-1-propene

Cl

3-Chlorocyclopentene

5. Benzylic halides, Ar-C-X : has a halogen atom bonded to Carbone one away from aromatic ring.

 CH_2Cl

Common name: Benzyl Chloride IUPAC name: Chloromethylbenzene

Nomenclature OF Alkyl halides

- **IUPAC** names derived from the names of parent organic compound (alkane or alkene or alkyne or alcohol or aldehydes and so on) with a prefix indicating halogens and their positions.
- Common names derived from the corresponding alkyl group followed by the name of halogen atom.

Physical Properties

Polarity

 Fluorine, chlorine, bromine and iodine are all more electronegative than carbon ; as a result, C-X bonds with these atoms are polarized with a partial negative charge on halogen and a partial positive charge on carbon.

The polar C-X bond makes the carbon atom electron deficient in each CH₃X molecule.

Physical Properties

Solubility

- Alkyl halides have some polar character, but only alkyl fluorides have an atom that can form a hydrogen bond with water. The other alkyl halides are less soluble in water
- In General, all organic halides are insoluble in water and soluble in common organic solvents.

The boiling point

- The boiling points of alkyl halides increase with increasing molecular weight because of the increase in van der Waals forces. $\begin{array}{cc} CH_3CH_2CH_2F \\ bp = 47^0C \end{array} \begin{array}{c} CH_3CH_2CH_2Br \\ bp = 71^0C \end{array} \begin{array}{c} CH_3CH_2CH_2I \\ bp = 102^0C \end{array}$
- Alkyl halides have higher boiling point than the corresponding alkanes, alkenes, and alkynes because:

1. Polarity 2. Molecular weight

Ethane (bp = -89° C) & Bromoethane (bp = 38° C)

• Branching of the alkane chain lowers the boiling point.

Butyl bromide (bp = 100° C) & *tert*-Butyl bromide (bp = 72° C)

- 1- Direct halogenation of hydrocarbons
 - A. Halogenation of alkanes: Substitution reaction called Free-Radical Reaction

$$R-H + Cl-Cl \xrightarrow{light or} R-Cl + H-Cl Chlorination$$

$$R-H + Br-Br \xrightarrow{light or} R-Br + HBr Bromination$$

• If excess halogen is present:

B. Halogenation of alkenes: Electophilic Addition

$$\sum C = C \left(+ X_2 \xrightarrow{CCl_4} - \begin{bmatrix} | & | \\ -C & -C \\ | & | \\ X & X \end{bmatrix} (X = Cl, Br)$$

u observed

C. Halogenation of alkynes : Electophilic Addition

$$R-C \equiv C-H+X_{2} \longrightarrow \begin{array}{c} R \\ X \end{array} \xrightarrow{C} = C \xrightarrow{X} \xrightarrow{X_{2}} RCX_{2}CHX_{2} \\ H \end{array}$$
$$R-C \equiv C-H+H-X \longrightarrow \begin{array}{c} R \\ X \end{array} \xrightarrow{C} = C \xrightarrow{H} \xrightarrow{H-X} RCX_{2}CHX_{3} \\ H \end{array}$$

Markovnikov's Rule

D. Halogenation of aromatic ring and alkyl benzene:

Electrophilic Aromatic Substitution

Radical halogenation

Electrophilic Aromatic Substitution

2-Conversion of alcohols into alkyl halides: Nucleophilic Substitution

$$R - OH + H - X \xrightarrow{heat, ZnCl_2} R - X + H - OH (X = Cl, Br, I)$$

 $3 \text{ ROH} + PX_3 \longrightarrow 3 \text{ RX} + H_3 PO_3 (X = Cl \text{ or } Br)$

 $R - OH + SOCl_3 \xrightarrow{heat} R - Cl + SO_2 + HCl$

1- Nucleophilic Substitution Reactions (S_N 1 and S_N 2)

 $S_N 2$: Bimolecular Nucleophilic Substitution

 $S_N 1$: Unimolecular Nucleophilic Substitution

Reactions of Common Nucleophiles with Alkyl Halides:

Nu			R—Nu	
Formula	Name	Formula	Name	Comments
Oxygen nucleo	philes			
1. но:-	hydroxide	R-OH	alcohol	
2. RO:-	alkoxide	R-OR	ether	
3. нон	water	R-OHH	alkyloxonium ion	These ions $\xrightarrow{-H^+}$ ROH lose a proton and the (alcohol)
4. ROH	alcohol	R-0 H	dialkyloxonium ion	$ \begin{cases} \text{products are} \\ \text{alcohols and} \\ \text{ethers.} \\ \end{cases} \\ \end{cases} \\ \begin{array}{c} -H^+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
5. R-C	carboxylate	0 R−0C−R	ester	
Nitrogen nucle	ophiles			
6. NH ₃	ammonia	$R-NH_3$	alkylammonium ion	With a base, $\xrightarrow{-H^+}$ RNH ₂
7. RNH ₂	primary amine	$R - NH_2R$	dialkylammonium ion	readily lose $\xrightarrow{-H^+}$ R ₂ NH
8. R ₂ NH	secondary amine	$R-NHR_2$	trialkylammonium ion	to give $\xrightarrow{-H^+} R_3N$:
9. R ₃ N	tertiary amine	$R - NR_3$	tetraalkylammonium ion	amines.

14

Reactions of Common Nucleophiles with Alkyl Halides:

Sulfur nucleophiles	s			
10. н <mark>ў:</mark> -	hydrosulfide	R—SH	thiol	
11. RS:-	mercaptide	R—SR	thioether (sulfide)	
12. R ₂ S:	thioether	$R - \overset{+}{\underset{\cdots}{SR_2}}R_2$	trialkylsulfonium ion	
Halogen nucleophi	iles			
13. : ::	iodide	R—I:	alkyl iodide	The usual solvent is acetone. Sodium iodide is soluble in acetone, but sodium bromide and sodium chloride are not.
Carbon nucleophile	es			
14. ⁻ :C≡N:	cyanide	R—C≡N:	alkyl cyanide (nitrile)	Sometimes the isonitrile, $R = N \equiv \overline{C}$; is formed
15. [–] ∶C≡⊂CR	acetylide	R—C≡CR	alkyne	n n_o, is formed.

The $S_N 1$ and $S_N 2$ Mechanisms Compared

- Class of Alkyl halide
- Solvent polarity
- Nucleophile

Variables	S _N 2	S _N 1
Halide structure		
Primary or CH ₃ Secondary Tertiary	Common Sometimes Rarely	Rarely* Sometimes Common
Stereochemistry	Inversion	Racemization
Solvent	Rate is retarded by polar protic solvents and increased by polar aprotic solvents	Because the intermedi- ates are ions, the rate is increased by polar solvents
Nucleophile	Rate depends on nucleophile con- centration; mechanism is favored when the nucleophile is an anion	Rate is independent of nucleophile concen- tration; mechanism is more likely with neutral nucleophiles

2- Elimination Reactions (E1 and E2)

E2 : Bimolecular Elimination

E1 : Unimolecular Elimination

Substitution and Elimination in Competition:

Zaitsev's Rule

Hint:	Overall Summary of S _N 1, S _N 2, E1, and E2 Reactions			
CH₃X	H H R—C—X H	R R—C—X H	R R—C—X R	
Methyl	1°	2°	3°	
Bimolecular (S _N 2/E2) Reactions Only S _N 1/E1 or E2				
Gives S _N 2 reactions	Gives mainly S _N 2 except with a hindered strong base [e.g., (CH ₃) ₃ CO ⁻] and then gives mainly E2.	Gives mainly S _N 2 with weak bases (e.g., I ⁻ , CN ⁻ , RCO ₂ ⁻) and mainly E2 with strong bases (e.g., RO ⁻).	No S_N2 reaction. In solvolysis gives $S_N1/E1$, and at lower temperatures S_N1 is favored. When a strong base (e.g., RO^-) is used, E2 predominates.	

3- Formation of Grignard reagent and its reactions:

$$R - X + Mg \xrightarrow{dry ether} R - MgX$$

X = Cl, Br, I a Grignard reagent

Reactions of Grignard reagent:

$$R - X + Mg \xrightarrow{dry \text{ ether}} R - MgX \xrightarrow{H_2O} R - H + Mg(OH)X$$

