108 Chem

Chapter 2

Aliphatic Hydrocarbons

Hydrocarbons

- Hydrocarbons are Organic Compounds, which contain only the two elements carbon and hydrogen.
- **Aliphatic hydrocarbons are subdivided into: Saturated hydrocarbons and Unsaturated** hydrocarbons.

General Molecular Formula of Hydrocarbons (Homologous Series)

Alkanes

C_nH_{2n+2} Saturated

- ane

Alkanes

Names and Formulas of the first Ten unbranched Alkanes

Isomerism

Isomers are molecules with the same number and kinds of atoms but different arrangements of the atoms.

structural (or constitutional) isomers have the same molecular formula but different structural formulas.

Classification of Carbon and Hydrogen Atoms

• The carbon atoms are classified according to their degree of substitution by other carbons.

 The hydrogen atoms of an alkane are classified on the basis of the carbon atom to which they are attached. A hydrogen atom attached to a primary carbon atom is a primary (1°) hydrogen atom, and so forth.

Alkyl Substituents

- An alkyl group lacks one of the hydrogen substituents of an alkane.
- An alkyl group is named by taking the name of the alkane with the same number of carbon atoms and changing the -*ane* ending to -*yl*.
- The symbol \bf{R} is used as a general symbol to represent any alkyl group.

Nomenclature of Organic Compounds

- Common or trivial names: The older unsystematic names.
- Systematic names: Chemists use a systematic nomenclature developed and updated by the *International Union of Pure and Applied Chemistry* (IUPAC). Underlying the IUPAC system is a fundamental principle.

IUPAC Rules for Naming Alkanes

1) Locate the longest continuous carbon chain. This gives the name of the parent alkane.

2) Number the longest chain beginning with the end of the chain nearer the substituent.

3) Use the numbers obtained by application of rule 2 to designate the location of the substituent group.

4) When two or more substituents are present, give each substituent a number corresponding to its location on the longest chain. The substituent groups should be listed alphabetically (i.e., ethyl before methyl).

4-Ethyl-2-methylhexane

5) When two substituents are present on the same carbon atom, use that number twice.

3-Ethyl-3-methylhexane

6) When two or more substituents are identical, indicate this by the use the prefixes *di-, tri-, tetra-*, and so on.

7) When two chains of equal length compete for selection as the parent chain, choose the chain with the greater number of substituents.

8) When branching first occurs at an equal distance from either end of the longest chain, choose the name that gives the lower number at the first point of difference.

2,3,5-Trimethylhexane (not 2,4,5-trimethylhexane)

(not 2,3,3,7,7-Pentameth[§]loctane) 2,2,6,6,7-Pentamethyloctane

9) If substituents other than alkyl groups are also presents on the parent carbon chain, all substituents are named alphabetically.

Use of the IUPAC Rules

It is important not only to be able to write a correct IUPAC name for a given structure, but also to do the converse: Write the structure given the IUPAC name.

For example, to write the formula for 2,2,4-trimethylpentane :

Examples

Physical properties of alkanes

A) Physical States and Solubilities

 Alkanes are nonpolar compounds. Thus alkanes are soluble in the nonpolar solvents such as carbon tetrachloride (CCl_4) and benzene (C_6H_6) , but they are insoluble in polar solvents such as water.

B) Boiling Points

- The boiling points of the normal alkanes increase with increasing molecular weight.
- **Branching of the alkane chain lowers the boiling point.**

Example:

Sources of Alkanes and Cycloalkanes

- The two most important natural sources of alkanes are petroleum and natural gas.
- Petroleum is a complex liquid mixture of organic compounds, many of which are alkanes or cycloalkanes.
- Natural gas, often found associated with petroleum deposits, consists mainly of *methane* (about 80%) and *ethane* (5% to 10%), with lesser amounts of some higher alkanes. *Propane* is the major constituent of liquefied petroleum gas (LPG), a domestic fuel used mainly in rural areas and mobile homes. *Butane* is the gas of choice in some areas. Natural gas is becoming an energy source that can compete with and possibly surpass oil.

Preparation of alkanes

1) From Alkenes & Alkynes

Catalytic Hydrogenation

2) Hydrolysis of Grignard Reagent

$$
R-X + Mg \xrightarrow{dry \text{ether}} R - MgX \xrightarrow{H_2O} R - H + Mg(OH)X
$$

X = Cl, Br, I \t a Grignard reagent

3) The Corey–Posner, Whitesides–House Reaction

Use of Lithium Dialkyl Cuprate (Gilman Reagent) in Coupling Reaction

 $\frac{\text{dichtyl ether}}{\text{or THE}}$ R₂CuLi + LiX $2RLi$ $+$ CuX Alkyllithium $Cu(I)$ halide Lithium Lithium $(X = \text{Cl}, \text{Br}, I)$ dialkylcuprate halide $+$ R'X \longrightarrow R-R' + RCu + LiX R_2 CuLi Lithium Alkyl halide Alkane Alkylcopper Lithium dialkylcuprate halide

 $(CH_3)_2$ CuLi + CH₃(CH₂)₈CH₂I $\frac{\text{ether}}{0.0}$ CH₃(CH₂)₈CH₂CH₃ Lithium 1-Iododecane Undecane (90%) dimethylcuprate

21

Reactions of alkanes

1) Oxidation and Combustion; Alkanes as Fuels

$$
C_nH_{2n+2}+\left(\frac{3n+1}{2}\right)O_2 \longrightarrow nCO_2+(n+1)H_2O
$$

CH₄ +
$$
2O_2 \longrightarrow CO_2 + 2H_2O + heat
$$

methane

$$
C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4 CO_2 + 5 H_2O + heat
$$

butane

2) Halogenation

$$
R - H + X_2 \xrightarrow{\text{heat}} R - X + H - X \quad (X = Cl, Br)
$$

• Chlorination or Bromination of hydrocarbons is a substitution reaction in which a chlorine or bromine atom is substituted for a hydrogen atom.

$$
R - H + Cl - Cl \xrightarrow{\text{light or}} R - Cl + H - Cl \qquad \text{Free-radical reaction}
$$
\n
$$
R - H + Br - Br \xrightarrow{\text{light or}} R - Br + HBr
$$
\n
$$
CH_4 + Cl - Cl \xrightarrow{\text{sunlight}} CH_3Cl + HCl
$$
\n
$$
methane
$$
\n
$$
Ch_4 + Cl - Cl \xrightarrow{\text{sunlight}} CH_3Cl + HCl
$$
\n
$$
chloromethane
$$

If excess halogen is present:

$$
CH_3Cl \xrightarrow{Cl_2} CH_2Cl_2 \xrightarrow{Cl_2} CHCl_3 \xrightarrow{Cl_2} CCl_4
$$
\n
$$
trichloromethane \ttetrachloromethane
$$
\n
$$
^{23}
$$

The Free-Radical Chain Mechanism of Halogenation

- A reaction mechanism is a step-by-step description of the bond-breaking and bond-making processes that occur when reagents react to form products.
- A free-radical chain reaction includes a chain-initiating step, chain-propagating steps, and chain-terminating steps.

Initialization

\n
$$
\begin{array}{ll}\n\therefore \ddot{x} \cdot \ddot{x} \cdot \frac{\text{light}}{\text{or heat}} : \ddot{x} \cdot + : \ddot{x} \cdot \text{ (Homolysis of a halogen molecule)} \\
\text{Propagation} & \ddot{R} - \dot{H} + \ddot{X} \cdot \ddot{x} \cdot \text{ } \rightarrow \text{ R} \cdot + \text{ H} - \text{ X} \\
& \text{ally} \text{radical} \\
& \text{R} \cdot \ddot{+} \text{X} - \text{X} \rightarrow \text{R} \underset{\text{alkyl}}{\longrightarrow} \text{X} + \cdot \ddot{X} \cdot \text{ } \\
\text{the three values of } \text{R} \cdot \ddot{+} \text{X} \cdot \ddot{+} \text{ } \text{and} \\
& \text{R} \cdot \ddot{+} \cdot \text{R} \rightarrow \text{X} - \text{X} \\
& \text{R} \cdot \ddot{+} \cdot \text{R} \rightarrow \text{R} - \text{R} \\
& \text{R} \cdot \ddot{+} \cdot \ddot{X} \cdot \text{ } \rightarrow \text{R} - \text{X}\n\end{array}
$$

Alkenes

C_nH_{2n} Crabon-Carbon double bond

- ene

Alkenes

Nomenclature of Alkenes

- The IUPAC rules for naming alkenes are similar to those for alkanes, but a few rules must be added for naming and locating the multiple bonds.
	- 1. The ending *-ene* is used to designate a carbon–carbon double bond. When more than one double bond is present, the ending is *-diene*, *-triene*, and so on.
	- 2. Select the longest chain that includes both carbons of the double.

3. Number the chain from the end nearest the double bond so that the carbon atoms in that bond have the lowest possible numbers.

$$
\overset{1}{C} - \overset{2}{C} = \overset{3}{C} - \overset{4}{C} - \overset{5}{C} \qquad not \qquad \overset{5}{C} - \overset{4}{C} = \overset{3}{C} - \overset{2}{C} - \overset{1}{C}
$$

If the double bond is equidistant from both ends of the chain, number the chain from the end nearest the first branch point.

$$
\begin{array}{cccc}\n1 & 2 & 3 & 4 \\
C & -C & -C & not & C & -C \\
C & C & \n\end{array}
$$

4. Indicate the position of the double bond using the lower numbered carbon atom of that bond.

$$
{}^{1}_{\text{CH}_2} = {}^{2}_{\text{CHCH}_2} {}^{3}_{\text{CH}_3}
$$
 1-butene, *not* 2-butene

5. If more than one double bond is present, number the chain from the end nearest the first double bond.

$$
\overset{1}{C} = \overset{2}{C} - \overset{3}{C} = \overset{4}{C} - \overset{5}{C} \qquad not \qquad \overset{5}{C} = \overset{4}{C} - \overset{3}{C} = \overset{2}{C} - \overset{1}{C}
$$

Examples

4-methyl-2-pentene

28

4-Isopropyl-3,5-dimethyl-2-octene.

Common names

• The simplest members of the alkene series are frequently referred to by their older common names, ethylene and propylene.

$CH_2 = CH_2$	$CH_3CH = CH_2$
$ethylene$	$propylene$
(ethene)	(propene)

 Two important groups also have common names. They are the *vinyl* and *allyl* groups, these groups are used in common names.

$$
CH_{2} = CH - CH_{2} - CH_{2}
$$
\n
$$
CH_{2} = CH - CH_{2}
$$
\n
$$
CH_{2} = CH - CH_{2}Cl
$$
\n
$$
CH_{2} = CH - CH_{2}Cl
$$
\n
$$
CH_{2} = CH - CH_{2}Cl
$$
\n
$$
CH_{2} = CHCl
$$
\n
$$
CH_{2} = CHCl
$$
\n
$$
CH_{2} = CHCl
$$
\n
$$
Vinyl chloride
$$
\n
$$
Vinyl cylobexane
$$
\n
$$
(3-chloropropene)
$$
\n
$$
(cyclobexylethane)
$$

Cycloalkenes

 C_nH_{2n-2}

 Cycloalkenes are unsaturated hydrocarbons that have at least one ring of carbon atoms.

Nomenclature of Cycloalkenes

In cycloalkenes, the double is always found between carbon 1 and carbon 2. It is therefore not necessary to specify the position of the double bond with a number. If substituents are present, the ring must numbered, starting from the double bond, in the direction that gives the substituents the lowest number(s).

Physical properties of alkenes

Physical States and Solubilities

Alkenes are nonpolar compounds. Thus alkenes are soluble in the nonpolar solvents such as carbon tetrachloride (CCl₄) and benzene (C_6H_6), but they are insoluble in polar solvents such as water.

Geometric Isomerism in Alkene

 Because rotation at carbon–carbon double bonds is restricted, geometric isomerism is possible in appropriately substituted alkenes.

A)When W differs from X and Y from Z, Alkenes exist as geometric isomers

The *cis*-*trans* system

(two similar groups are on the *same* side) (two similar groups are on the *opposite* sides)

trans-1,2-dichloroethene

 They have different physical properties and can be separated by fractional crystallization or distillation.

Geometric Isomerism in Alkene

B) If ($W = X$ or $Y = Z$), geometric isomerism is not possible.

C) For alkenes with four different substituent

The *E-Z* System

Z : Zusammen (two groups of higher priority are on the *same* side)

E : Entgegen (two groups of higher priority are on the *opposite* sides)

Geometric Isomerism in Alkene

The *E-Z* System

Higher atomic number gets higher priority.

$I > Br > C l > S > P > F > O > N > C > H$

Preparation of alkenes

- Alkenes are prepared from alcohols and alkyl halides by Elimination Reactions.
- 1- Dehydration of Alcohols

Examples:

Regioselectivity in Dehydration of Alcohols: Zaitsev's Rule

Zaitsev's Rule:

- Hydrogen is preferably removed from the carbon with least no. of hydrogen since the alkene formed is more highly branched and is energetically more stable.
- **The reaction proceeds** *via* a carbocation intermediate, the stabilities of carbocations and the ease of dehydration of alcohols follows the order $3^{\circ} > 2^{\circ} > 1^{\circ}$.

$$
R - C+ > R - C + C + C + C + C
$$

\n
$$
R - C + C + C + C
$$

\n
$$
R - C + C + C
$$

\n
$$
R - C + C + C
$$

\n
$$
R - C + C
$$

\n
$$
P - C +
$$

 $\rm R_2C{=}CR_2 > R_2C{=}CHR > R_2C{=}CH_2, RCH{=}CHR > RCH{=}CH_2 > CH_2{=}CH_2$

2- Dehydrohaloganation of Alkyl halides

$$
H - C - C - X \xrightarrow{B:-} C = C' + BH + X
$$

Examples:

Reaction of alkenes

■ Electrophilic Addition reactions on the carbon-carbon double bond.

1- Addition of Hydrogen: Catalytic Hydrogenation

2- Addition of Halogens: Halogenation

$$
CH_3CH=CHCH_3 + Cl_2 \longrightarrow CH_3CH-CHCH_3
$$
\n
$$
\begin{array}{c|c}\n & | & | \\
\hline\n & Cl & Cl \\
\hline\n2\text{-butene} & 2,3\text{-dichlorobutane}\n\end{array}
$$

Cyclopentene

trans-1,2-Dibromocyclopentane

3- Addition of Acids:

Acids that add in this way are the hydrogen halides (H-F, H-Cl, H-Br, H-I).

Addition of Unsymmetric Reagents to Unsymmetric Alkenes; Markovnikov's Rule

When an unsymmetric reagent adds to an unsymmetric alkene, the electropositive part of the reagent adds to the carbon of the double bond that has the greater number of hydrogen substituents .

4- Addition of Water : Hydration

 $CH_2=CH_2 + H-OH \xrightarrow{H^+} CH_2-CH_2$ (or CH_3CH_2OH) H \overline{OH} ethanol

Markovnikov's Rule $\begin{array}{ccc} & \text{OH} & \\ \text{CH}_3\text{C}=\text{CH}_2 + \text{H} - \text{OH} & \xrightarrow[]{\delta^+} & \text{CH}_3\text{CCH}_3 & \text{ } & \text{(CH}_3\text{CHCH}_2\text{OH)} \\ \mid & \mid & \mid & \mid & \mid \\ \text{CH}_3 & & \text{CH}_3 & \text{CH}_3 & \\ \end{array}$ not observed

Reaction of alkenes

• Oxidation of alkenes to Diols or Carbonyl-Containing Compounds.

1- Oxidation of alkenes with Permanganate

syn hydroxylation

2- Ozonolysis:

Oxidation of alkenes by ozone O_3

C_nH_{2n-2} Crabon-Carbon Trible bond

- yne

Alkynes

Nomenclature of Alkynes

IUPAC Names: $\qquad \qquad \text{and} \qquad \longrightarrow \text{yne}$

 $HC = CH$ ethyne

 $HC = CCH₃$ propyne

2,5-dimethyl-3-heptyne

Physical Properties

 C_1 - C_4 gases

 C_5 - C_{18} liquid

More than C_{18} soilds

Acidity of Terminal Alkynes

• A hydrogen atom on a triply bonded carbon is weakly acidic and can be removed by a very strong base. Sodium amide, for example, converts acetylenes to acetylides.

R-C= C-H + Na⁺NH₂⁻ liquid NH₃ R-C= C⁺Na⁺ + NH₃
\n*a* sodium acetylide
\nthis hydrogen is
\nweakly acidic
\n
$$
-C_{\mu\nu...H}^{H} = C_{\mu}^{H}
$$
\n
$$
= C_{25\%s, 33\frac{1}{3}\%s, 50\%s, 50\%s, 50\%s, 50\%s, 50\%p}^{sp}
$$
\n
$$
= 6.44
$$

Preparation of Alkynes

1- Dehydrohalogenation of Alkyl Dihalide

Examples:

2- Alkylation of Acetylene and Terminal Acetylene

- By attaching alkyl groups to acetylene, more complex alkynes can be prepared.
- By treating the sodium alkynide with a primary alkyl halide.

 $HC = CH + \text{NaNH}_2 \longrightarrow HC = \text{CNa} + \text{NH}_3$ Sodium amide Sodium acetylide Acetylene Ammonia via $HC = C^{\sim} R - X$ $HC = CNa + RX \longrightarrow HC = CR + NaX$ Sodium Alkyl Alkyne Sodium acetylide halide halide

Examples:

+ $CH_3CH_2CH_2CH_2Br \xrightarrow{NH_3} CH_3CH_2CH_2CH_2CH_2CH$ $HC = CNa$ 1-Bromobutane 1-Hexyne $(70-77%)$ Sodium acetylide

$$
\frac{\text{HC}=CH}{2. CH_3 CH_2 Br} \xrightarrow{1. \text{NaNH}_2, \text{NH}_3} \text{HC}=CCH_2 CH_3 \xrightarrow{1. \text{NaNH}_2, \text{NH}_3} \text{CH}_3C=CCH_2 CH_3
$$
\n
\nAcetylene\n
\n1-Butyne\n
\n2-Pentyne (81%)

Reactions of Alkynes

1- Addition of Hydrogen: Hydrogenation

 $RC \equiv CR' + 2H_2 \xrightarrow{Pt, Pd, Ni, or Rh} RCH_2CH_2R'$ Alkyne Hydrogen Alkane

 $CH_3CH_2CHCH_2C \equiv CH + 2H_2 \xrightarrow{Ni} CH_3CH_2CHCH_2CH_2CH_3$ $CH₃$ $CH₃$ 4-Methyl-1-hexyne Hydrogen 3-Methylhexane (77%)

• Hydrogenation of an alkyne to an alkene can be accomplished through the use of special catalysts or reagents. Moreover, these special methods allow the preparation of either (E) - or (Z) -alkenes from disubstituted alkynes.

51

2- Addition of Halogen: Halogenation

3- Addition of Hydrogen Halide: Hydrohalogenation

Markovnikov addition

4- Addition of Water : Hydration

Addition of water to alkynes requires not only an acid catalyst but mercuric ion as well.

