

Isomorphism Problems

Problem1: Find an isomorphism from the group of integers under addition to the group of even integers under addition.

Solution: Define $\phi: \mathbb{Z} o 2\mathbb{Z}$ by $\phi(n) = 2n$

- One-to-one: If $\phi(m)=\phi(n)$, then 2m=2n , so m=n \checkmark
- Onto: For any even integer $2k \in 2\mathbb{Z}$, we have $\phi(k) = 2k$ 🗸
- Operation-preserving:

$$\phi(m+n)=2(m+n)=2m+2n=\phi(m)+\phi(n)$$
 <

Therefore ϕ is an isomorphism and $\mathbb{Z}\cong 2\mathbb{Z}$.

Problem2: Find $\operatorname{Aut}(\mathbb{Z})$ and $\operatorname{Aut}(\mathbb{Z}_6)$.

Solution: $\operatorname{Aut}(\mathbb{Z})$: Any automorphism ϕ of \mathbb{Z} is determined by $\phi(1)$.

- $\phi(n)=n\phi(1)$ for all $n\in\mathbb{Z}$
- For ϕ to be onto, $\phi(1)$ must generate $\mathbb Z$
- Therefore $\phi(1) \in \{\pm 1\}$

Thus $\mathrm{Aut}(\mathbb{Z})=\{\mathrm{id},\phi_{-1}\}$ where $\phi_{-1}(n)=-n$. Therefore $|\mathrm{Aut}(\mathbb{Z})|=2$ and $\mathrm{Aut}(\mathbb{Z})\cong~\mathbb{Z}_2$

 $\operatorname{Aut}(\mathbb{Z}_6)$: ϕ is determined by $\phi(1)$, which must generate \mathbb{Z}_6

- $\phi(1) \in U(6) = \{1,5\}$ (elements relatively prime to 6)
- $\phi_1(k) = k$ and $\phi_5(k) = 5k \mod 6$

Thus $\operatorname{Aut}(\mathbb{Z}_6)=\{\phi_1,\phi_5\}$ and $|\operatorname{Aut}(\mathbb{Z}_6)|=2$

Problem4: Show that $U(8) \not\cong U(10)$. Show that $U(8) \cong U(12)$.

Solution: Part 1: $U(8) = \{1, 3, 5, 7\}$ and $U(10) = \{1, 3, 7, 9\}$

- U(8): All elements have order ≤ 2 : $1^2 \equiv 1$, $3^2 \equiv 1$, $5^2 \equiv 1$, $7^2 \equiv 1 \pmod 8$
- U(10): Element 3 has order 4: $3^1\equiv 3$, $3^2\equiv 9$, $3^3\equiv 7$, $3^4\equiv 1\pmod{10}$

Since U(8) is not cyclic while U(10) is, we have $U(8) \not\cong U(10)$.

Part 2:
$$U(12) = \{1, 5, 7, 11\}$$

Define $\phi:U(8)\to U(12)$ by $\phi(1)=1$; $\phi(3)=5$; $\phi(5)=7$; $\phi(7)=11$. To see that ϕ is operation preserving we observe that:

- $\phi(1 \cdot a) = \phi(a) = \phi(a) \cdot 1 = \phi(a)\phi(1)$ for all a;
- $\phi(3\cdot 5) = \phi(7) = 11 = 5\cdot 7 = \phi(3)\phi(5)$;
- $\phi(3\cdot7) = \phi(5) = 7 = 5\cdot11 = \phi(3)\phi(7)$;
- $\phi(5\cdot7) = \phi(3) = 5 = 7\cdot11 = \phi(5)\phi(7)$.

Problem6: Prove that \cong is an equivalence relation on groups.

Proof:

Reflexive: $G\cong G$

• The identity map $\mathrm{id}_G:G o G$ defined by $\mathrm{id}_G(g)=g$ is an isomorphism

Symmetric: $G\cong H\implies H\cong G$

- If $\phi:G o H$ is an isomorphism, then $\phi^{-1}:H o G$ exists and is a bijection
- ϕ^{-1} preserves operations: for $a,b\in H$ with $\phi(x)=a,\phi(y)=b$, $\phi^{-1}(ab)=\phi^{-1}(\phi(x)\phi(y))=\phi^{-1}(\phi(xy))=xy=\phi^{-1}(a)\phi^{-1}(b)$

Transitive: $G\cong H$ and $H\cong K\implies G\cong K$

• If $\phi:G o H$ and $\psi:H o K$ are isomorphisms, then $\psi\circ\phi:G o K$ is an isomorphism

$$(\psi\circ\phi)(xy)=\psi(\phi(xy))=\psi(\phi(x)\phi(y))=\psi(\phi(x))\psi(\phi(y))=(\psi\circ\phi)(x)(\psi\circ\phi)(y)$$

Problem7: Give three reasons why S_4 is not isomorphic to D_{12} .

Solution:

Reason 1: D_{12} has elements of order 12 e.g., R_{30} and S_4 has maximum element order = 4.

Reason 2: D_{12} has elements of order 6 e.g., R_{60} and S_4 has maximum element order = 4.

Reason 3: Center structure

Problem12: Prove that the mapping $\alpha:G o G$ defined by $\alpha(g)=g^{-1}$ is an automorphism if and only if G is Abelian.

Proof: (\Rightarrow) **Assume** α **is an automorphism:** Since α preserves the operation, for all $a,b\in G$: $\alpha(ab)=\alpha(a)\alpha(b)$

$$\alpha(ab) = \alpha(a)\alpha(b)$$
$$(ab)^{-1} = a^{-1}b^{-1}$$

But we also know $(ab)^{-1}=b^{-1}a^{-1}$ (always true in any group). Therefore $b^{-1}a^{-1}=a^{-1}b^{-1}$ for all $a,b\in G$. Taking inverses of both sides: $(b^{-1}a^{-1})^{-1}=(a^{-1}b^{-1})^{-1}$, which gives ab=ba. So G is Abelian.

(\Leftarrow) Assume G is Abelian:

- lpha is clearly a bijection (since $(g^{-1})^{-1}=g$)
- Need to verify $\alpha(ab)=\alpha(a)\alpha(b)$: $\alpha(ab)=(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}=\alpha(a)\alpha(b)$ (using commutativity in the third equality)

Therefore $lpha\in {
m Aut}(G)$ \checkmark

Problem13: If g and h are elements from a group, prove that $\phi_g \circ \phi_h = \phi_{gh}$.

Proof: Recall: ϕ_g denotes the inner automorphism induced by g, defined by $\phi_g(x) = gxg^{-1}$

For any $x \in G$:

$$(\phi_g \circ \phi_h)(x) = \phi_g(\phi_h(x)) = \phi_g(hxh^{-1}) = g(hxh^{-1})g^{-1} = (gh)x(h^{-1}g^{-1}) = (gh)x(gh)^{-1} = \phi_{gh}(x)$$

Therefore $\phi_g \circ \phi_h = \phi_{gh}$

Note: This shows that the map $g\mapsto \phi_g$ is a homomorphism from G to $\operatorname{Aut}(G)$.

Problem15: Prove that the inner automorphisms $\phi_{R_0},\phi_{R_{90}},\phi_H$ and ϕ_D of D_4 are distinct.

Proof: Done in class.

Problem17: If G is a group, prove that $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ are groups.

Proof: Done in class.

Problem31: Let $r\in U(n)$. Prove that the mapping $lpha:\mathbb{Z}_n o\mathbb{Z}_n$ defined by lpha(s)=sr mod n is an automorphism of \mathbb{Z}_n .

Proof: Done in class.

Problem41: Prove that $\mathbb Z$ under addition is not isomorphic to $\mathbb Q$ under addition.

Proof: $\mathbb{Z}=\langle 1 \rangle$ is cyclic. \mathbb{Q} is not cyclic: Suppose $\mathbb{Q}=\langle q \rangle$ for some $q\in \mathbb{Q}$. Then $\frac{q}{2}\in \mathbb{Q}$,

but there is no integer n such that $nq=rac{q}{2}$ (this would require $n=rac{1}{2}
otin\mathbb{Z}$).

Since isomorphisms preserve the cyclic property, $\mathbb{Z} \ncong \mathbb{Q}$

Problem43: Let $M=\left\{egin{bmatrix} a & -b \ b & a \end{bmatrix}\mid a,b\in\mathbb{R} \right\}$. Prove that $\mathbb{C}\cong M$ under addition and $\mathbb{C}^*\cong M^*$ under multiplication.

Proof: Define
$$\phi:\mathbb{C} o M$$
 by $\phi(a+bi)=egin{bmatrix} a & -b \ b & a \end{bmatrix}$

• Bijection: Clear from the one-to-one correspondence between $(a,b)\in\mathbb{R}^2$.

Addition isomorphism: Operation-preserving: For $z_1=a+bi$ and $z_2=c+di$:

$$\phi((a+bi)+(c+di)) = \phi((a+c)+(b+d)i) = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$
$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(a+bi) + \phi(c+di)$$

Multiplication isomorphism: Operation-preserving: For $z_1=a+bi$ and $z_2=c+di$:

•
$$z_1z_2 = (ac - bd) + (ad + bc)i$$

$$\phi(z_1z_2) = egin{bmatrix} ac-bd & -(ad+bc) \ ad+bc & ac-bd \end{bmatrix}$$

Matrix multiplication:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -ad - bc \\ bc + ad & -bd + ac \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$$

Therefore $\phi(z_1z_2)=\phi(z_1)\phi(z_2)$, so $\mathbb{C}^*\cong\ M^*$.

Problem45: Consider: "The order of a subgroup divides the order of the group." If you could prove this for finite permutation groups, would it be true for all finite groups?

Solution: YES, by Cayley's Theorem, every finite group G is isomorphic to a subgroup of some symmetric group S_n (specifically, n=|G|). More precisely: Since there exists an embedding $\phi:G\to S_{|G|}$ such that ϕ is an injective homomorphism, **Proof strategy:**

- 1. Let G be a finite group and $H \leq G$
- 2. By Cayley's Theorem, $G\cong \phi(G)\leq S_n$ for some permutation subgroup $\phi(G)$
- 3. The restriction $\phi|_H: H o S_n$ gives $\phi(H) \le \phi(G) \le S_n$
- 4. If we know " $|K| \mid |L|$ whenever $K \leq L \leq S_n$ ", then: $|\phi(H)| \mid |\phi(G)|$
- 5. Since isomorphisms preserve order: $|H|=|\phi(H)|$ and $|G|=|\phi(G)|$
- 6. Therefore $|H| \mid |G|$

Problem47: Let G be a group and $g \in G$. If $z \in Z(G)$, show that the inner automorphism induced by g equals the inner automorphism induced by zg.

Proof: Need to show: $\phi_g = \phi_{zg}$ for any $z \in Z(G)$. For any $x \in G$:

$$\phi_{zg}(x)=(zg)x(zg)^{-1}$$
 $=(zg)x(g^{-1}z^{-1})$
 $=z(gxg^{-1})z^{-1}$ (associativity)
 $=(gxg^{-1})z\cdot z^{-1}$ (since $z\in Z(G)$, z commutes with gxg^{-1})
 $=(gxg^{-1})\cdot e$
 $=gxg^{-1}$
 $=\phi_g(x)$

Therefore $\phi_g = \phi_{zg}$ for all $z \in Z(G)$

Problem49: Suppose g and h induce the same inner automorphism. Prove that $h^{-1}g\in Z(G)$. Combine with Problem 47 for an "if and only if" theorem.

Proof: Done in class. Theorem: $\phi_g = \phi_h$ if and only if $h^{-1}g \in Z(G)$.

Problem51: If lpha and eta are elements in S_n ($n\geq 3$), prove that $\phi_lpha=\phi_eta$ implies lpha=eta.

Solution: From Problem 49: $\phi_{\alpha}=\phi_{\beta}\iff \beta^{-1}\alpha\in Z(S_n)$. **Key fact:** For $n\geq 3$, $Z(S_n)=\{e\}$. Since $\beta^{-1}\alpha\in Z(S_n)=\{e\}$, we have $\beta^{-1}\alpha=e$, so $\alpha=\beta$

Problem53: Suppose ϕ and ψ are isomorphisms from a group G to itself (i.e., automorphisms). Prove that $H=\{g\in G\mid \phi(g)=\psi(g)\}$ is a subgroup of G.

Proof: We use the subgroup test (or verify the subgroup axioms):

- **1. Non-empty:** $e \in H$ since $\phi(e) = e = \psi(e)$. Therefore $H
 eq \emptyset$.
- **2. Closed under operation:** Let $a,b\in H$. Then $\phi(a)=\psi(a)$ and $\phi(b)=\psi(b)$. We have $\phi(ab)=\phi(a)\phi(b)=\psi(a)\psi(b)=\psi(ab)$. Therefore $ab\in H$.
- 3. Closed under inverses: Let $a\in H$, so $\phi(a)=\psi(a)$. Taking inverses on both sides: $[\phi(a)]^{-1}=[\psi(a)]^{-1}$. Since ϕ and ψ are isomorphisms: $\phi(a^{-1})=[\phi(a)]^{-1}=[\psi(a)]^{-1}=\psi(a^{-1})$. Therefore $a^{-1}\in H$.

Problem56: Let ϕ be an automorphism of D_8 . What are the possibilities for $\phi(R_{45})$?

Solution: D_8 has 8 rotations and 8 reflections, for a total of 16 elements and $|R_{45}|=8$. Since automorphisms preserve element order: $|\phi(R_{45})|=|R_{45}|=8$. Elements of order 8 in D_8 : Since all reflections have order 2 need only to check rotations: Since the rotations form a cyclic group generated by R_{45} which has order 8, so $|R_{45}^k|=8\iff\gcd(k,8)=1$. Therefore $k\in\{1,3,5,7\}$, giving:

- $R_{45}^1 = R_{45}$
- $R_{45}^3 = R_{135}$
- $R_{45}^5 = R_{225}$
- $R_{45}^7 = R_{315}$

Answer: $\phi(R_{45}) \in \{R_{45}, R_{135}, R_{225}, R_{315}\}$