Chapter 6: Isomorphisms

Motivation Examples We've Already Seen

Example 1: Symmetries of a Square

- Chapter 1: Geometric description $(R_{90},R_{180},H,V,\ldots)$
- Chapter 5: Permutation description (permutations of corners)
- Same underlying group!

Example 2: Cyclic Groups

- A cyclic group $\langle a
 angle$ of order n satisfies: $a^r \cdot a^s = a^k$ where k = (r+s) mod n
- ullet This is essentially addition modulo n
- Both U(43) and U(49) are cyclic of order 42
- Each has the form $\langle a
 angle$ where $a^r \cdot a^s = a^{(r+s) \bmod 42}$

Exercise:

Which of the following groups looks like Z_4 ?

- A) U(10)
- B) U(8)
- C) A_4
- D) D_4

The Concept of Isomorphism

Etymology:

- Greek: isos = "same" or "equal"
- Greek: *morphe* = "form"
- Introduced by Galois ~190 years ago

Colorful Definition (R. Allenby):

"An algebraist is a person who can't tell the difference between isomorphic systems."

Intuition: Isomorphic groups are "the same" group in different notation.

Definition - Group Isomorphism

An ${f isomorphism}\ \phi$ from a group G to a group ar G is a one-to-one onto mapping (function) from G to ar G that preserves the group operation. That is,

$$\phi(ab)=\phi(a)\phi(b)$$
 for all $a,b\in G$.

If there is an isomorphism from G onto ar G, we say that G and ar G are **isomorphic** and write Gpprox ar G.

Understanding the Definition

Key Points:

- 1. One-to-one: If $\phi(a)=\phi(b)$, then a=b
- 2. **Onto:** For every $ar{g} \in ar{G}$, there exists $g \in G$ such that $\phi(g) = ar{g}$
- 3. Operation-preserving: $\phi(ab) = \phi(a)\phi(b)$

Implicit in the definition:

- Isomorphic groups have the same order
- The operation on the left side of $\phi(ab)=\phi(a)\phi(b)$ is from G
- The operation on the right side is from $ar{G}$

Four Steps to Prove Isomorphism To prove $G \approx \bar{G}$:

Step 1: "Mapping" Define a candidate function $\phi:G o ar{G}$

Step 2: "1-1" (One-to-one). Assume $\phi(a)=\phi(b)$ and prove a=b

Step 3: "Onto". For any $ar{g} \in ar{G}$, find $g \in G$ such that $\phi(g) = ar{g}$

Step 4: "O.P." (Operation-Preserving). Show $\phi(ab) = \phi(a)\phi(b)$ for all $a,b \in G$

Example 1: $G=\mathbb{R}$ under addition, $ar{G}=\mathbb{R}^+$ under multiplication. Claim: $Gpprox ar{G}$ via $\phi(x)=2^x$.

Proof: Step 1 (Mapping): $\phi: \mathbb{R} o \mathbb{R}^+$ defined by $\phi(x) = 2^x$

Step 2 (One-to-one): Assume $\phi(x)=\phi(y)$. Then $2^x=2^y$. Taking \log_2 of both sides: x=y \checkmark

Step 3 (Onto): Let $y\in\mathbb{R}^+$ (arbitrary). Need to find $x\in\mathbb{R}$ such that $\phi(x)=y$ That is, $2^x=y$. Solving: $x=\log_2 y$ \checkmark

Step 4 (Operation-Preserving): For all $x,y\in\mathbb{R}$:

$$\phi(x+y)=2^{x+y}=2^x\cdot 2^y=\phi(x)\phi(y)$$
 <

Conclusion: \mathbb{R} under addition $pprox \mathbb{R}^+$ under multiplication

Example 2a - Infinite Cyclic Groups

Any infinite cyclic group is isomorphic to \mathbb{Z} .

Proof: Let $\langle a
angle$ be an infinite cyclic group. Define $\phi:\langle a
angle o \mathbb{Z}$ by $\phi(a^k)=k$

- Well-defined and one-to-one: By Theorem 4.1, distinct powers of a are distinct elements
- Onto: For any $k \in \mathbb{Z}$, we have $\phi(a^k) = k$
- Operation-preserving: $\phi(a^k \cdot a^m) = \phi(a^{k+m}) = k + m = \phi(a^k) + \phi(a^m)$ 🗸

Example 2b - finite Cyclic Groups

Any finite cyclic group $\langle a \rangle$ of order n is isomorphic to \mathbb{Z}_n .

Proof: Define $\phi:\langle a
angle o \mathbb{Z}_n$ by $\phi(a^k)=k mod n$

• By Theorem 4.1 and properties of modular arithmetic, this is an isomorphism

Example 3: When Operation-Preservation Fails. Consider $\phi:\mathbb{R}\to\mathbb{R}$ (both under addition) defined by $\phi(x)=x^3$.

Check:

- One-to-one: If $x^3=y^3$, then x=y \checkmark
- Onto: For any $y \in \mathbb{R}$, we have $\phi(\sqrt[3]{y}) = y$ 🗸
- Operation-preserving: Is $\phi(x+y) = \phi(x) + \phi(y)$?

$$\phi(x+y) = (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

 $\phi(x) + \phi(y) = x^3 + y^3$

Since $(x+y)^3 \neq x^3 + y^3$ in general, ϕ is **NOT** operation-preserving. **Conclusion:** ϕ is NOT an isomorphism.

Example 4: $U(10) pprox \mathbb{Z}_4$ and $U(5) pprox \mathbb{Z}_4$. Verification:

 $U(10)=\{1,3,7,9\}$ under multiplication modulo 10 $U(5)=\{1,2,3,4\}$ under multiplication modulo 5

Key Observations:

- |U(10)|=4 and U(10) is cyclic (generated by 3 or 7)
- |U(5)|=4 and U(5) is cyclic (generated by 2 or 3)
- $|\mathbb{Z}_4|=4$ and \mathbb{Z}_4 is cyclic

By Example 2: Any cyclic group of order 4 is isomorphic to \mathbb{Z}_4 . Therefore: $U(10) pprox \mathbb{Z}_4$ and $U(5) pprox \mathbb{Z}_4$. Transitive property: U(10) pprox U(5)

Example 5: There is NO isomorphism from $\mathbb Q$ (addition) to $\mathbb Q^*$ (multiplication)

Proof by Contradiction: Suppose $\phi:\mathbb{Q}\to\mathbb{Q}^*$ is an isomorphism. Then there exists $a\in\mathbb{Q}$ such that $\phi(a)=-1$. Now consider:

$$-1 = \phi(a) = \phi\left(\frac{a}{2} + \frac{a}{2}\right) = \phi\left(\frac{a}{2}\right) \cdot \phi\left(\frac{a}{2}\right) = \left[\phi\left(\frac{a}{2}\right)\right]^2$$

This says
$$\left[\phi\left(rac{a}{2}
ight)
ight]^2=-1$$

But $\phi\left(rac{a}{2}
ight)\in\mathbb{Q}^*$, and no rational number squared equals -1! **Contradiction!**

Conclusion: No such isomorphism exists.

Example 6: Conjugation as an Isomorphism

Let $G=SL(2,\mathbb{R})$ = $\{2 imes 2$ real matrices with determinant $1\}$ Let $M\in G$ (any fixed matrix with determinant 1)

Define $\phi_M:G o G$ by $\phi_M(A)=MAM^{-1}$ for all $A\in G$

Claim: ϕ_M is an isomorphism from G to itself.

Step 1 (Well-defined - maps G to G): For any $A \in G$: $\det(\phi_M(A)) = \det(MAM^{-1}) = \det(M) \cdot \det(A) \cdot \det(M^{-1}) = 1 \cdot 1 \cdot 1 = 1$. So $\phi_M(A) \in G$ \checkmark

Step 2 (One-to-one): Assume $\phi_M(A) = \phi_M(B)$.

- Then $MAM^{-1} = MBM^{-1}$
- Left-multiply by M^{-1} : $AM^{-1}=BM^{-1}$
- Right-multiply by M: A=B \checkmark

Step 3 (Onto): Let $B \in G$ (arbitrary)

- Need to find $A \in G$ such that $\phi_M(A) = B$
- That is, $MAM^{-1} = B$
- Solving for A: $A = M^{-1}BM$

Verify: Since $\det(M^{-1}BM) = \det(M^{-1}) \cdot \det(B) \cdot \det(M) = 1$, we have $A \in G$

And: $\phi_M(A)=M(M^{-1}BM)M^{-1}=B$ \checkmark

Step 4 (Operation-Preserving): Let $A,B\in G$:

$$\phi_{M}(AB) = M(AB)M^{-1}$$
 $= MA(M^{-1}M)BM^{-1}$
 $= MA(I)BM^{-1}$
 $= (MAM^{-1})(MBM^{-1})$
 $= \phi_{M}(A)\phi_{M}(B) \checkmark$

Conclusion: ϕ_M is an isomorphism from G to G

Definition: ϕ_M is called **conjugation by** M

Properties of Isomorphisms - Two Major Theorems:

Theorem 6.1: Properties of Isomorphisms Acting on Elements

7 properties about how isomorphisms affect individual elements

Theorem 6.2: Properties of Isomorphisms Acting on **Groups**

6 properties about how isomorphisms affect group structure

Key Insight: Isomorphic groups have all group-theoretic properties in common.

Theorem 6.1: Properties of Isomorphisms Acting on Elements

Suppose ϕ is an isomorphism from a group G onto a group $ar{G}$. Then:

- 1. ϕ carries the identity of G to the identity of $ar{G}$
- 2. For every integer n and for every group element $a\in G$: $\phi(a^n)=[\phi(a)]^n$ (Additive form: $\phi(na)=n\phi(a)$)
- 3. For any elements $a,b\in G$: a and b commute iff $\phi(a)$ and $\phi(b)$ commute
- 4. $G=\langle a
 angle$ if and only if $ar{G}=\langle \phi(a)
 angle$
- 5. $|a|=|\phi(a)|$ for all $a\in G$ (isomorphisms preserve orders)
- 6. For fixed integer k and fixed $b\in G$: the equation $x^k=b$ has the same number of solutions in G as does $x^k=\phi(b)$ in $\bar G$
- 7. If G is finite, then G and $ar{G}$ have exactly the same number of elements of every order

Theorem 6.1 - Proof Strategy

Dependencies Among Properties:

- Property 5 follows from properties 1 and 2
- Property 6 follows from property 2
- Property 7 follows from property 5

We will prove: Properties 1, 2, and 4

Notation: e = identity in G and $ar{e}$ = identity in $ar{G}$

Property 1: ϕ carries the identity of G to the identity of $ar{G}$

Proof: We know $\phi(e) \in ar{G}$ and $e = e \cdot e$. Therefore:

•
$$\bar{e} \cdot \phi(e) = \phi(e) = \phi(e \cdot e) = \phi(e) \cdot \phi(e)$$

By right cancellation in $ar{G}$: $ar{e}=\phi(e)$ \checkmark . **Conclusion:** Isomorphisms map identity to identity.

Property 2: For every integer n and element $a \in G$: $\phi(a^n) = [\phi(a)]^n$

Proof for n > 0: By induction on n:

Base case (
$$n=1$$
): $\phi(a^1)=\phi(a)=[\phi(a)]^1$ \checkmark

Inductive step: Assume $\phi(a^k) = [\phi(a)]^k$ for some $k \geq 1$. Then:

$$egin{aligned} \phi(a^{k+1}) &= \phi(a^k \cdot a) \ &= \phi(a^k) \cdot \phi(a) \ &= [\phi(a)]^k \cdot \phi(a) \ &= [\phi(a)]^{k+1} \checkmark \end{aligned}$$

By induction, the property holds for all positive integers n.

Proof for n=0: $\phi(a^0)=\phi(e)=ar e=[\phi(a)]^0$ \checkmark (using Property 1)

Proof for n < 0: If n < 0, then -n > 0. From Property 1 and the positive case:

$$ar{e}=\phi(e)=\phi(a^n\cdot a^{-n})=\phi(a^n)\cdot\phi(a^{-n})=\phi(a^n)\cdot[\phi(a)]^{-n}$$

Multiplying both sides on the right by $[\phi(a)]^n$: $[\phi(a)]^n = \phi(a^n)$ \checkmark

Conclusion: Property 2 holds for all integers n.

Property 4: $G=\langle a
angle$ if and only if $ar{G}=\langle \phi(a)
angle$

Proof (\Rightarrow): Assume $G=\langle a \rangle$. First, by closure: $\langle \phi(a) \rangle \subseteq \bar{G}$.

Now let $b\in ar{G}$ be arbitrary. Since ϕ is onto, there exists $a^k\in G$ such that $\phi(a^k)=b$

By Property 2:
$$b=\phi(a^k)=[\phi(a)]^k$$
. So $b\in\langle\phi(a)
angle$

Since b was arbitrary: $ar{G} \subseteq \langle \phi(a)
angle$

Conclusion: $ar{G} = \langle \phi(a)
angle \, \checkmark$

Proof (\Leftarrow): Assume $ar{G}=\langle \phi(a)
angle$. Clearly, $\langle a
angle \subseteq G$.

Let $b\in G$ be arbitrary. Then $\phi(b)\in ar G=\langle \phi(a)
angle$. So for some integer k: $\phi(b)=[\phi(a)]^k$

By Property 2: $[\phi(a)]^k = \phi(a^k)$. Therefore: $\phi(b) = \phi(a^k)$

Since ϕ is one-to-one: $b=a^k$. Thus $b\in \langle a
angle$

Since b was arbitrary: $G \subseteq \langle a
angle$

Conclusion: $G = \langle a \rangle \checkmark$

Important Corollary: Isomorphisms map generators to generators.

Theorem 6.2: Properties of Isomorphisms Acting on Groups

Suppose ϕ is an isomorphism from a group G onto a group $ar{G}$. Then:

- 1. ϕ^{-1} is an isomorphism from $ar{G}$ onto G
- 2. G is Abelian if and only if $ar{G}$ is Abelian
- 3. G is cyclic if and only if $ar{G}$ is cyclic
- 4. If K is a subgroup of G, then $\phi(K)=\{\phi(k)\mid k\in K\}$ is a subgroup of $ar{G}$
- 5. If K is a subgroup of $ar{G}$, then $\phi^{-1}(K)=\{g\in G\mid \phi(g)\in K\}$ is a subgroup of G
- 6. $\phi(Z(G)) = Z(\bar{G})$

Proof Strategy:

- Properties 1 and 4 are left as exercises (Exercises 17 and 34)
- **Property 2** (Abelian): Direct consequence of Property 3 of Theorem 6.1 If ab=ba for all $a,b\in G$, then $\phi(ab)=\phi(ba)$, so $\phi(a)\phi(b)=\phi(b)\phi(a)$
- **Property 3** (Cyclic): Follows from Property 4 of Theorem 6.1 and Property 1 of Theorem 6.2
- **Property 5**: Follows from Properties 1 and 4 of Theorem 6.2
- **Property 6** (Center): Direct consequence of Property 3 of Theorem 6.1 $a\in Z(G)$ means a commutes with everything; $\phi(a)$ commutes with everything in \bar{G}

Key Insight: These properties show that isomorphic groups are indistinguishable from a group-theoretic perspective.

Using Theorems to Prove Non-Isomorphism

Five Methods to Prove $G \not\approx \bar{G}$: Strategy: Look for the easiest structural difference!

- 1. Show $|G|
 eq |ar{G}|$
- 2. Show one is cyclic and the other is not
- 3. Show one is Abelian and the other is not
- 4. Show the largest order of any element differs
- 5. Show the number of elements of some specific order differs

Example: Consider \mathbb{Z}_{12} , D_6 , and A_4 (all have order 12)

Method 1: Largest element order

- \mathbb{Z}_{12} : Largest order = 12 (e.g., |1|=12)
- D_6 : Largest order = 6 (rotations R_{60}, R_{120}, \ldots)
- A_4 : Largest order = 3 (e.g., (123) has order 3)

Since 12
eq 6
eq 3: **No two are isomorphic**

Method 2: Number of elements of order 2

- \mathbb{Z}_{12} : Only $\{6\}$ has order 2 ightharpoonup 1 element
- D_6 : Reflections and $R_{180} o extbf{7}$ elements
- A_4 : Elements like (12)(34), (13)(24), (14)(23) o 3 elements

Since $1 \neq 7 \neq 3$: No two are isomorphic

Exercise:

Which property can be used to prove that $\mathbb{Z}_6 \not\approx S_3$?

- A) \mathbb{Z}_6 is abelian but S_3 is not
- B) \mathbb{Z}_6 has 6 elements but S_3 has 5 elements
- C) \mathbb{Z}_6 is cyclic but S_3 is infinite
- D) \mathbb{Z}_6 has no elements of order 2

Example: \mathbb{Q} under addition vs. \mathbb{Q}^* under multiplication

Analysis:

In \mathbb{Q} (addition):

- Every non-identity element has infinite order
- For any x
 eq 0: nx = 0 iff n = 0 or x = 0
- So if $x \neq 0$, then $|x| = \infty$

In \mathbb{Q}^* (multiplication):

- ullet The element -1 has finite order: |-1|=2
- Because $(-1)^2 = 1$

Conclusion: The groups have different element order structures. By Property 5 of Theorem 6.1: $\mathbb{Q} \not\approx \mathbb{Q}^*$

1. Simplify difficult problems

- ullet Question about complicated group G
- Find simpler isomorphic group $ar{G}$
- Answer question about $ar{G}$ instead
- Answer applies to G!

2. Provide concrete realizations

- Abstract group ${\it G}$
- Find concrete isomorphic group $ar{G}$
- Better intuition and computation

Coming attractions: Chapters 8 and 11 will have many examples!

Definition: An isomorphism from a group G onto **itself** is called an $\operatorname{automorphism}$ of G.

Example (Complex Conjugation): Define $\phi:\mathbb{C}\to\mathbb{C}$ by $\phi(a+bi)=a-bi$. Show that ϕ is an automorphism of \mathbb{C} under addition.

Proof:

- One-to-one: If a-bi=c-di, then a=c and b=d
- Onto: For any c+di, we have $\phi(c-di)=c+di$
- Operation-preserving:

$$\phi((a+bi) + (c+di)) = \phi((a+c) + (b+d)i)$$

= $(a+c) - (b+d)i = (a-bi) + (c-di)$
= $\phi(a+bi) + \phi(c+di)$

Example (Reflection Automorphism of \mathbb{R}^2): Let $\mathbb{R}^2=\{(a,b)\mid a,b\in\mathbb{R}\}$ under componentwise addition. Define $\phi:\mathbb{R}^2\to\mathbb{R}^2$ by $\phi(a,b)=(b,a)$. Show that ϕ is an automorphism of \mathbb{R}^2 .

Proof:

- One-to-one: If (b,a)=(d,c), then b=d and a=c
- Onto: $\phi(b,a)=(a,b)$ for any (a,b)
- Operation-preserving: $\phi((a_1,b_1)+(a_2,b_2))=\phi(a_1+a_2,b_1+b_2)$ $=(b_1+b_2,a_1+a_2)=(b_1,a_1)+(b_2,a_2)=\phi(a_1,b_1)+\phi(a_2,b_2)$

General fact: Any reflection across a line through the origin or rotation about the origin is an automorphism of \mathbb{R}^2 .

Linear algebra connection: Every invertible linear transformation of vector space V to itself is an automorphism

Definition (Inner Automorphism Induced by a): Let G be a group and $a \in G$. The function $\phi_a:G\to G$ defined by $\phi_a(x)=axa^{-1}$ for all $x\in G$ is called the **inner automorphism** of G induced by a.

Note: This is conjugation by a (generalization of Example 6)

Verification that ϕ_a **is an automorphism:** (Similar to Example 6)

- One-to-one: If $axa^{-1}=aya^{-1}$, then x=y by cancellation
- Onto: For any $y \in G$, we have $\phi_a(a^{-1}ya) = y$
- Operation-preserving: $\phi_a(xy)=axya^{-1}=(axa^{-1})(aya^{-1})=\phi_a(x)\phi_a(y)$

Example (Inner Automorphism of D_4 induced by R_{90}) Recall $D_4=\{R_0,R_{90},R_{180},R_{270},H,V,D,D'\}$. $\phi_{R_{90}}$ acts as follows:

x	$\phi_{R_{90}}(x) = R_{90} \cdot x \cdot R_{90}^{-1}$	Result
R_0	$R_{90}R_0R_{90}^{-1} = R_{90}R_0R_{270}$	R_0
R_{90}	$R_{90}R_{90}R_{90}^{-1} = R_{90}R_{90}R_{270}$	R_{90}
R_{180}	$R_{90}R_{180}R_{90}^{-1} = R_{90}R_{180}R_{270}$	R_{180}
R_{270}	$R_{90}R_{270}R_{90}^{-1} = R_{90}R_{270}R_{270}$	R_{270}
H	$R_{90}HR_{90}^{-1} = R_{90}HR_{270}$	V
V	$R_{90}VR_{90}^{-1} = R_{90}VR_{270}$	H
D	$R_{90}DR_{90}^{-1} = R_{90}DR_{270}$	D'
D'	$R_{90}D'R_{90}^{-1} = R_{90}D'R_{270}$	D

Observation: Rotations are fixed; reflections are permuted

Theorem 6.3: $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ are Groups.

Proof: (Left as Exercise 17, but outline provided)

For Aut(G):

- Closure: If $\phi, \psi \in \operatorname{Aut}(G)$, then $\phi \circ \psi$ is an automorphism
- Associativity: Function composition is associative
- Identity: The identity function $\operatorname{id}(x) = x$ is in $\operatorname{Aut}(G)$
- Inverses: If $\phi \in \operatorname{Aut}(G)$, then $\phi^{-1} \in \operatorname{Aut}(G)$ (Property 1 of Theorem 6.2)

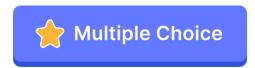
For Inn(G):

- Note that $\mathrm{Inn}(G)\subseteq\mathrm{Aut}(G)$ is not empty Identity: $\phi_e=\mathrm{id}$. So need to varify
 - Closed under composition: Follows from $\phi_a \circ \phi_b = \phi_{ab}$ (can be verified directly)
 - Closed under Inverses: $(\phi_a)^{-1} = \phi_{a^{-1}}$

Exercise:

Which of the following is **always** true about Inn(G)?

- A) $\mathrm{Inn}(G)=\mathrm{Aut}(G)$ for every group G
- B) $\mathrm{Inn}(G)$ is a subgroup of $\mathrm{Aut}(G)$
- C) $\mathrm{Inn}(G)$ is empty if G is abelian
- D) $\mathrm{Inn}(G)$ contains exactly |G| distinct automorphisms



General Strategy for Computing $\mathrm{Inn}(G)$:

If $G=\{e,a,b,c,\ldots\}$, then $\mathrm{Inn}(G)=\{\phi_e,\phi_a,\phi_b,\phi_c,\ldots\}$. But: This list may have duplicates!

- ϕ_a may equal ϕ_b even though a
 eq b
- This happens when $axa^{-1}=bxb^{-1}$ for all $x\in G$
- Equivalently: when $ab^{-1} \in Z(G)$

Task: Identify which distinct elements give distinct automorphisms

Note: Determining $\operatorname{Aut}(G)$ is generally much harder than determining $\operatorname{Inn}(G)$

General Strategy for Computing Inn(G):

If $G=\{e,a,b,c,\ldots\}$, then $\mathrm{Inn}(G)=\{\phi_e,\phi_a,\phi_b,\phi_c,\ldots\}$. But: This list may have duplicates! ϕ_a may equal ϕ_b even though $a\neq b$. This happens when

- $axa^{-1}=bxb^{-1}$ for all $x\in G$. Equivalently, $a^{-1}bxb^{-1}a=x$ for all $x\in G$.
- Equivalently, $(a^{-1}b)x(a^{-1}b)^{-1}=x$ for all $x\in G$. Equivalently, $(a^{-1}b)x=x(a^{-1}b)$ for all $x\in G$. Equivalently: when $a^{-1}b\in Z(G)$.
- So: $\phi_a = \phi_b$ iff there exists $z \in Z(G)$ such that b = az.

Task: Identify which distinct elements give distinct automorphisms

Note: Determining $\operatorname{Aut}(G)$ is generally much harder than determining $\operatorname{Inn}(G)$

Example: Computing $\operatorname{Inn}(D_4)$

Step 1: List all candidates. Candidates: $\phi_{R_0}, \phi_{R_{90}}, \phi_{R_{180}}, \phi_{R_{270}}, \phi_H, \phi_V, \phi_D, \phi_{D'}$.

Step 2: Compute $Z(D_4) = \{R_0, R_{180}\}$.

Step 3: Multiply by R_{180}

- Since $R_0R_{180}=R_{180}$, then $\phi_{R_{180}}=\phi_{R_0}$
- Since $R_{90} \cdot R_{180} = R_{270}$, then $\phi_{R_{270}} = \phi_{R_{90}}$.
- Since $VR_{180}=H$, then $\phi_H=\phi_V$.
- Since $DR_{180}=D'$, then $\phi_{D'}=\phi_D$.

Therefore, $\operatorname{Inn}(D_4) = \{\phi_{R_0}, \phi_{R_{90}}, \phi_H, \phi_D\}$.

Exercise:

If $oldsymbol{G}$ is an abelian group, then we must have

$$A)\operatorname{Inn}(G) = \operatorname{Aut}(G)$$

B)
$$\operatorname{Inn}(G) pprox Z(G)$$

$$C) \left| \operatorname{Inn}(G) \right| = 1$$

$$|\operatorname{Inn}(G)| = |G|$$

Theorem 6.4: For every positive integer n: $\operatorname{Aut}(\mathbb{Z}_n) pprox U(n)$.

Proof:

- Any $lpha\in\operatorname{Aut}(\mathbb{Z}_n)$ is determined by lpha(1)
- We have lpha(k)=klpha(1) for all $k\in\mathbb{Z}_n$
- By Property 5 of Theorem 6.1: |lpha(1)|=|1|=n
- So $lpha(1) \in U(n)$ (elements of order n are exactly the generators)

Define: $T: \operatorname{Aut}(\mathbb{Z}_n) o U(n)$ by $T(\alpha) = \alpha(1)$

T is one-to-one: Suppose $lpha,eta\in\mathrm{Aut}(\mathbb{Z}_n)$ with T(lpha)=T(eta). Then lpha(1)=eta(1).

• For any $k\in\mathbb{Z}_n$: lpha(k)=klpha(1)=keta(1)=eta(k). Therefore lpha=eta 🗸

T is onto: Let $r \in U(n)$ (arbitrary). Define $\alpha: \mathbb{Z}_n \to \mathbb{Z}_n$ by $\alpha(s) = sr \pmod n$ for all $s \in \mathbb{Z}_n$. Claim: $\alpha \in \operatorname{Aut}(\mathbb{Z}_n)$:

- Well-defined: If $s \equiv s' \pmod n$, then $sr \equiv s'r \pmod n$
- One-to-one: If $sr \equiv tr \pmod n$, then $s \equiv t \pmod n$ (since $\gcd(r,n) = 1$)
- Onto: For any $k \in \mathbb{Z}_n$, solve $sr \equiv k \pmod n$ for s (possible since $\gcd(r,n) = 1$)
- Operation-preserving: lpha(s+t)=(s+t)r=sr+tr=lpha(s)+lpha(t)

So
$$lpha\in\operatorname{Aut}(\mathbb{Z}_n)$$
 and $T(lpha)=lpha(1)=r$ 🗸

T is operation-preserving: Let $lpha,eta\in\mathrm{Aut}(\mathbb{Z}_n)$. Then:

$$T(\alpha \circ \beta) = (\alpha \circ \beta)(1) = \alpha(\beta(1)) = \alpha(\underbrace{1 + 1 + \dots + 1}_{\beta(1) \text{ times}})$$
$$= \underbrace{\alpha(1) + \alpha(1) + \dots + \alpha(1)}_{\beta(1) \text{ times}} = \alpha(1) \cdot \beta(1) = T(\alpha) \cdot T(\beta)$$

(where the last multiplication is in U(n))

Conclusion: T is an isomorphism, so $\operatorname{Aut}(\mathbb{Z}_n) pprox U(n)$

Exercise:

Using Theorem 6.4, what is $|\operatorname{Aut}(\mathbb{Z}_{10})|$?

- A) 10
- B) 5
- C) 4
- D) 2

Theorem 6.5 (Cayley's Theorem): Every group is isomorphic to a group of permutations.

Strategy of proof:

- Start with arbitrary group ${\it G}$
- Construct a specific group $ar{G}$ of permutations
- Prove $Gpprox ar{G}$

Proof: Let G be any group.

Step 1: Construct permutations from G: For each $g \in G$, define a function

• $T_g:G o G$ by $T_g(x)=gx$ for all $x\in G$. In words: T_g is "left multiplication by g"

Claim: Each T_g is a permutation of G (i.e., a bijection from G to G):

- One-to-one: If gx=gy, then x=y by cancellation
- Onto: For any $y \in G$, we have $T_g(g^{-1}y) = g(g^{-1}y) = y$

Step 2: Form the group of permutations: Let $ar{G} = \{T_g \mid g \in G\}$

Claim: $ar{G}$ is a group under function composition:

- Closure: For any $g,h\in G$: $(T_g\circ T_h)(x)=T_g(T_h(x))=T_g(hx)=g(hx)=(gh)x=T_{gh}(x)$ So $T_g\circ T_h=T_{gh}\in ar{G}$
- Identity: T_e is the identity function (since $T_e(x) = ex = x$)
- Inverses: $(T_g)^{-1}=T_{g^{-1}}$ (because $T_g\circ T_{g^{-1}}=T_{gg^{-1}}=T_e$)
- Associativity: Function composition is always associative

Step 3: Define the isomorphism: Define $\phi:G oar G$ by $\phi(g)=T_g$ for all $g\in G$

- one-to-one: Suppose $\phi(g)=\phi(h)$. Then $T_g=T_h$. So $T_g(e)=T_h(e)$. Thus ge=he, which gives g=h .
- onto: By construction, for every $T_g \in ar{G}$, we have $\phi(g) = T_g$.
- operation-preserving: For any $a,b\in G$, $\phi(ab)=T_{ab}$. We showed earlier that $T_{ab}=T_a\circ T_b$. Therefore: $\phi(ab)=T_a\circ T_b=\phi(a)\circ\phi(b)$

Conclusion: ϕ is an isomorphism from G to $ar{G}$, where $ar{G}$ is a group of permutations.

Definition: The group $ar{G}$ is called the **left regular representation** of G.

Explicit Computation $U(12)=\{1,5,7,11\}$ under multiplication modulo 12. Compute permutations in array form:

$$T_1 = egin{pmatrix} 1 & 5 & 7 & 11 \ 1 & 5 & 7 & 11 \end{pmatrix}$$

$$T_5 = egin{pmatrix} 1 & 5 & 7 & 11 \ 5 & 1 & 11 & 7 \end{pmatrix}$$

$$T_7 = egin{pmatrix} 1 & 5 & 7 & 11 \ 7 & 11 & 1 & 5 \end{pmatrix}$$

$$T_{11} = egin{pmatrix} 1 & 5 & 7 & 11 \ 11 & 7 & 5 & 1 \end{pmatrix}$$

Explanation: $T_5(1)=5\cdot 1=5$, $T_5(5)=5\cdot 5=25\equiv 1\pmod{12}$, etc.

Cayley Tables Comparison

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Cayley Table for $\overline{U(12)}$:

0	T_1	T_5	T_7	T_{11}
T_1	T_1	T_5	T_7	T_{11}
T_5	T_5	T_1	T_{11}	T_7
T_7	T_7	T_{11}	T_1	T_5
T_{11}	T_{11}	T_7	T_5	T_1

Observation: The tables are identical (up to notation)!

Two sophisticated isomorphism results:

Theorem (advanced): $(\mathbb{R},+)pprox (\mathbb{C},+)$

The real numbers under addition are isomorphic to the complex numbers under addition!

Theorem (advanced): $(\mathbb{C}^*,\cdot)pprox (S^1,\cdot)$

The nonzero complex numbers under multiplication are isomorphic to the unit circle under multiplication.

