Chapter 6: Isomorphisms




Motivation Examples We've Already Seen

Example 1: Symmetries of a Square

« Chapter 1: Geometric description (Rgg, R1g0, H,V,...)
« Chapter 5: Permutation description (permutations of corners)

« Same underlying group!
Example 2: Cyclic Groups

* A cyclic group (a) of order n satisfies: a” - a® = a” where k = (’r‘ + s) mod n
« This is essentially addition modulo n

« Both U(43) and U(49) are cyclic of order 42

* Each has the form (@) where @” - @® = g("+*) mod 42
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Exercise:

Which of the following groups looks like Z47

o) P
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The Concept of Isomorphism
Etymology:

« Greek: (sos = "same" or "equal”
« Greek: morphe = "form"

* Introduced by Galois ~190 years ago

Colorful Definition (R. Allenby):

"An algebraist is a person who can't tell the difference between isomorphic systems."

Intuition: Isomorphic groups are "the same" group in different notation.
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Definition - Group Isomorphism

An isomorphism ¢ from a group GG to a group G is a one-to-one onto mapping (function)

from G to G that preserves the group operation. That is,

¢(ab) = ¢(a)p(b) foralla,b € G.

If there is an isomorphism from GG onto G, we say that G and G are isomorphic and write

G~QG@G.
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Understanding the Definition
Key Points:

1. One-to-one: If ¢(a) = ¢(b), thena = b

2. Onto: For every g € G, there exists g € G such that ¢(g) = g
3. Operation-preserving: ¢(ab) = ¢(a)d(b)

Implicit in the definition:

 |somorphic groups have the same order

+ The operation on the left side of ¢(ab) = ¢(a)@(b) is from G

» The operation on the right side is from G
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Four Steps to Prove Isomorphism To prove G ~ G-
Step 1: "Mapping" Define a candidate function ¢ : G — G

Step 2: "1-1" (One-to-one). Assume ¢(a) = ¢(b) and prove a = b

Step 3: "Onto". Forany g € G, find g € G such that ¢(g) = g

Step 4: "O.P." (Operation-Preserving). Show ¢(ab) = ¢(a)p(b) foralla,b € G
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Example 1: G = R under addition, G = R under multiplication. Claim: G ~ G via

p(x) = 2%,
Proof: Step 1 (Mapping): ¢ : R — R defined by ¢(z) = 2*

Step 2 (One-to-one): Assume ¢(z) = ¢(y). Then 2% = 2Y. Taking log, of both sides:
=YV

Step 3 (Onto): Let y € R™ (arbitrary). Need to find £ € R such that d(z) =y
That is, 2 = y. Solving: * = log, y v

Step 4 (Operation-Preserving): For all x,y € R:
dlz +y)=2""=2"-2Y = ¢(z)(y) v

Conclusion: R under addition =~ R™ under multiplication
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Example 2a - Infinite Cyclic Groups
Any infinite cyclic group is isomorphic to Z.
Proof: Let (a) be an infinite cyclic group. Define ¢ : (a) — Z by q‘)(a)k) =k

« Well-defined and one-to-one: By Theorem 4.1, distinct powers of a are distinct elements
+ Onto: For any k € Z, we have ¢(a”) = k
+ Operation-preserving: ¢(a" - a™) = ¢(a*™) = k +m = ¢(a”) + ¢(a™) v
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Example 2b - finite Cyclic Groups

Any finite cyclic group <a,> of order n is isomorphic to Z,.
Proof: Define ¢ : (a) — Z,, by (,i)(a,k) = k mod n

« By Theorem 4.1 and properties of modular arithmetic, this is an isomorphism
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Example 3: When Operation-Preservation Fails. Consider ¢ : R — R (both under
addition) defined by ¢(x) = z°.

Check:

+ One-to-one: If 2° = ’yg, thenx =y v

« Onto: Forany y € R, we have ¢(J/y) =y v

+ Operation-preserving: Is ¢(z + y) = ¢(x) + d(y)?

oz +vy) = (z +v)° =2 + 32°y + 3zy® + °
d(z) + ¢(y) = 2° + y°

Since (:1: + y)3 -+ T3 + y?’ in general, ¢ is NOT operation-preserving. Conclusion: ¢ is
NOT an isomorphism.
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Example 4: U(10) ~ Z4 and U(5) ~ Zj4. Verification:

U(10) = {1,3,7,9} under multiplication modulo 10
U(5) = {1,2, 3,4} under multiplication modulo 5

Key Observations:

+ |U(10)| = 4 and U(10) is cyclic (generated by 3 or 7)
« |[U(5)| =4and U(5) is cyclic (generated by 2 or 3)
o |Z4| = 4 and Zy is cyclic

By Example 2: Any cyclic group of order 4 is isomorphic to Z4. Therefore: U(lO) SN
and U (5) ~ Zj4. Transitive property: U(10) ~ U (5)
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Example 5: There is NO isomorphism from Q (addition) to Q* (multiplication)

Proof by Contradiction: Suppose ¢ : Q — Q™ is an isomorphism. Then there exists
a € Q such that ¢(a) = —1. Now consider:

_1:¢(a)=¢(g+;):¢(;).¢(g): [qb(;)]z

This says [qf) (;)]2 = —1

a * . . e
But ¢ (2) € 7, and no rational number squared equals —1! Contradiction!

Conclusion: No such isomorphism exists.
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Example 6: Conjugation as an Isomorphism

let G = SL(2,R) = {2 x 2 real matrices with determinant 1}
Let M € G (any fixed matrix with determinant 1)

Define ¢ : G — G by par(A) = MAM 'forall A € G

Claim: ¢y is an isomorphism from G to itself

Step 1 (Well-defined - maps G to G): Forany A € G: det(¢p(A)) = det(MAM ™)
— det(M) - det(A4) -det(M )=1-1-1=1.5 ¢y (4A) € GV
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Step 2 (One-to-one): Assume ¢y (A) = o (B).

+ Then MAM ' = MBM !
o Left-multipyby M Y AM ' = BM !
e Right-multiply by M: A = B vV
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Step 3 (Onto): Let B € G (arbitrary)

+ Need to find A € G suchthat ¢y (A) = B
+ Thatis, MAM ' =B
+ Solving for A: A = M 'BM

Verify: Since det(M 'BM) = det(M ') - det(B) - det(M) = 1,we have A € G

And: ¢pr(A) = M(M 'BM)M ' =B v
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Step 4 (Operation-Preserving): Let A, B € G-
o (AB) = M(AB)M ™!

— MA(M *M)BM !

— MA(I)BM ™

= (MAM Y(MBM )

= ¢um(A)pm(B) v

Conclusion: ¢ is an isomorphism from GG to G

Definition: ¢, is called conjugation by M
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Properties of Isomorphisms - Two Major Theorems:

Theorem 6.1: Properties of Isomorphisms Acting on Elements

« 7 properties about how isomorphisms affect individual elements
Theorem 6.2: Properties of Isomorphisms Acting on Groups

* 6 properties about how isomorphisms affect group structure

Key Insight: Isomorphic groups have all group-theoretic properties in common.
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Theorem 6.1: Properties of Isomorphisms Acting on Elements

Suppose @ is an isomorphism from a group G onto a group G. Then:

1.

o A~ W

10/26/2025

¢ carries the identity of GG to the identity of G

For every integer i and for every group elementa € G: ¢(a”) = [¢(a)]"
(Additive form: ¢(na) = neo(a))

For any elements a, b € G- a and b commute iff ¢(a) and ¢(b) commute
G = (a)ifandonlyif G = (¢(a))
la| = |¢(a)|foralla € G (isomorphisms preserve orders)

For fixed integer k and fixed b € G the equation " = b has the same number of
solutions in G as does " = $(b)in G

If G is finite, then G and G have exactly the same number of elements of every order
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Theorem 6.1 - Proof Strategy

Dependencies Among Properties:

* Property 5 follows from properties 1 and 2
* Property 6 follows from property 2

* Property 7 follows from property 5
We will prove: Properties 1, 2, and 4
Notation: e = identity in G and & = identity in G
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Property 1: ¢ carries the identity of (G to the identity of G

Proof: We know ¢(e) € G ande = e - e. Therefore:

+ e-¢(e) = ¢(e) = p(e-e) = de) - p(e)

By right cancellation in G. e = q‘)(e) V. Conclusion: Isomorphisms map identity to identity.
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Property 2: For every integer nn and elementa € G- qﬁ(an) — [gb(a)]n

Proof for n > (: By induction on n:

Base case (n = 1) ¢(a') = ¢(a) = [¢p(a)]' v

Inductive step: Assume ¢(a”) = [¢(a)]" for some k > 1. Then:
@’)(akﬂ) = ¢(a" - a)
= ¢(a") - ¢(a)

IO
(o) v

By induction, the property holds for all positive integers n.
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Proof forn = O: qﬁ(aﬂ) = ¢p(e) = e = [qf)(a,)]o Vv (using Property 1)

Proof forn < 0:1fn < 0,then —n > 0. From Property 1 and the positive case:

e=¢(e) = ¢la"-a™") = ¢(a”") - #(a™") = #(a”) - [$(a)] "
Multiplying both sides on the right by [¢(a)]™: [¢(a)]" = ¢(a™) v

Conclusion: Property 2 holds for all integers n.
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Property 4: G = (a) ifand only if G = {¢(a))

Proof (=): Assume G = (a). First, by closure: {(¢(a)) C G.

Now let b € G be arbitrary. Since ¢ is onto, there exists a* € G such that ¢(a*) = b
By Property 2:b = ¢(a") = [¢(a)]". Sob € (¢(a))

Since b was arbitrary: G C {¢p(a))

Conclusion: G = (¢(a)) v
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Proof (<): Assume G' = (¢(a)). Clearly, (a) C G.

Let b € G be arbitrary. Then ¢(b) € G = (¢(a)). So for some integer k: ¢(b)
By Property 2: [¢(a)]* = ¢(a”). Therefore: ¢(b) = $(a”)

Since ¢ is one-to-one: b = a”. Thus b € (a)

Since b was arbitrary: G C (a)

Conclusion: G = (a) v

Important Corollary: Isomorphisms map generators to generators.
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Theorem 6.2: Properties of Isomorphisms Acting on Groups
Suppose ¢ is an isomorphism from a group G onto a group G. Then:

1. qb_l is an isomorphism from G onto G

G is Abelian if and only if G is Abelian

G is cyclic if and only if G is cyclic

If K is a subgroup of G, then ¢(K ) = {#(k) | k € K} isa subgroup of G

if K is a subgroup of G, then ¢ (K) = {g € G | ¢(g) € K} isasubgroup of G
5(2(G)) = 2(G)

S T A
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Proof Strategy:

* Properties 1and 4 are left as exercises (Exercises 17 and 34)

* Property 2 (Abelian): Direct consequence of Property 3 of Theorem 6.1

ifab = baforalla,b € G, then ¢(ab) = ¢(ba), so p(a)d(b) = ¢(b)p(a)
* Property 3 (Cyclic): Follows from Property 4 of Theorem 6.1 and Property 1 of Theorem 6.2
* Property 5: Follows from Properties 1 and 4 of Theorem 6.2
* Property 6 (Center): Direct consequence of Property 3 of Theorem 6.1

a < Z(G’) means a commutes with everything; qﬁ(a) commutes with everything in G

Key Insight: These properties show that isomorphic groups are indistinguishable from a
group-theoretic perspective.
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Using Theorems to Prove Non-lIsomorphism

Five Methods to Prove G % G- Strategy: Look for the easiest structural difference!

1. Show |G| # |G|

2. Show one is cyclic and the other is not

3. Show one is Abelian and the other is not

4. Show the largest order of any element differs

5. Show the number of elements of some specific order differs
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Example: Consider Zy9, Dg, and A4 (all have order 12)

Method 1: Largest element order

+ Zq9: Largest order = 12 (e.g., |1]| = 12)

« Dyg: Largest order = 6 (rotations Rgg, R199, - - -)
» Ay Largest order = 3 (e.g., (123) has order 3)

Since 12 # 6 # 3: No two are isomorphic
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Method 2: Number of elements of order 2

« Z719:Only {6} has order 2 — 1 element

« Dg: Reflections and

-
-

« Ay Elements like (

R130 — 7 elements

12)(34), (13)(24), (14)(23) - 3 elements

Since 1 # 7 # 3: No two are isomorphic

10/26/2025
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4

Exercise:

Which property can be used to prove that Zg 5 S37?

A) Zg is abelian but S3 is not

B) Zg has 6 elements but S3 has 5 elements
C) Zg is cyclic but S is infinite

D) Zg has no elements of order 2

* Multiple Choice
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Example: QQ under addition vs. Q" under multiplication
Analysis:
In Q (addition):

* Every non-identity element has infinite order

« Foranyx # 0:nx = 0iffn =0orz =0
- Soifx # 0, then || = 00

In Q" (multiplication):

« The element —1 has finite order: | — 1| = 2
* Because (—1)2 =1

Conclusion: The groups have different element order structures. By Property 5 of Theorem 6.1:

Q#Q
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Two main applications of Isomorphisms:

—

. Simplify difficult problems

Question about complicated group G

Find simpler isomorphic group G

Answer question about G instead

Answer applies to G'!
2. Provide concrete realizations

« Abstract group G
* Find concrete isomorphic group G

* Better intuition and computation
Coming attractions: Chapters 8 and 11 will have many examples!
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Definition: An isomorphism from a group G onto itself is called an automorphism of GG

Example (Complex Conjugation): Define ¢ : C — C by ¢(a + bi) = a — bi. Show that
¢ is an automorphism of C under addition.

Proof:

« One-to-one:lfa — bi = ¢ — di, thena = candb = d
» Onto: For any ¢ + di, we have ¢(c — di) = c + di

» Operation-preserving:
d((a+bi) + (c+di)) = ¢((a + ¢) + (b + d)i)
=(a+c)—(b+d)i = (a—bi)+ (c — di)
= ¢(a + bi) + ¢(c + di)
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Example (Reflection Automorphism of R?): Let R* = {(a,b) | a,b € R} under
componentwise addition. Define ¢ : R* — R* by ¢p(a, b) = (b, a). Show that ¢ is an
automorphism of R

Proof:

+ One-to-one: If (b,a) = (d,c), thenb=danda = c

+ Onto: ¢(b,a) = (a,b) forany (a, b)

- Operation-preserving: ¢((a1,b1) + (a2, b2)) = ¢(a; + ag, by + bs)
= (b1 + b2, a1 + a2) = (b1, a1) + (b2, a2)= ¢(a1,b1) + ¢(asz, bs)

General fact: Any reflection across a line through the origin or rotation about the origin is an
automorphism of R?,

Linear algebra connection: Every invertible linear transformation of vector space V' to itself is
an automorphism
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Definition (Inner Automorphism Induced by a): Let G be a group and @ € G'. The function
bq : G — G defined by ¢, () = axa ' forall z € G is called the inner automorphism
of (G induced by a.

Note: This is conjugation by a (generalization of Example 6)

Verification that ¢, is an automorphism: (Similar to Example 6)

* One-to-one: If aa:a_l

= aya,_l, then £ = y by cancellation
« Onto: Foranyy € G, we have d)a(a_lya) =

+ Operation-preserving: ¢q(zy) = azya " = (aza ') (aya ') = ¢o(z)da(y)
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Example (Inner Automorphism of )4 induced by Rg() Recall
D, = {Ry, Ry, Ris0, Ro70, H,V, D, D’}.lgbRgo acts as follows:

T GRy () = Rog - T - Ryy Result
Ry RgoRoRyy = RooRoRaro Ry
Ry RgoRooRgy = RooRooRaro  Roo
Rigo RyoRis0Rgy = RooRisoRaro  Riso
Roro RyoRo0Ryy = RooRanoRarg  Ramo
H RoyHRyy = RooH Rarg 1%

v Rg)V Ryy = RgyV Raro H

D RyyD Ry, = RgoD Rarg D’
D' RyyD'R,y = RygyD'Ryyg D

Observation: Rotations are fixed; reflections are permuted
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Theorem 6.3: Aut(G) and Inn(G) are Groups.

Proof: (Left as Exercise 17, but outline provided)

For Aut(G):

Closure: If ¢, € Aut(G), then ¢ o 1 is an automorphism

Associativity: Function composition is associative

Identity: The identity functionid(z) = zisin Aut(G)

Inverses: If ¢ € Aut(G),then ¢+ € Aut(G) (Property 1of Theorem 6.2)
For Inn(G):

» Note that Inn(G) € Aut(G) is not empty Identity: ¢ = id. So need to varify
* Closed under composition: Follows from ¢, © ¢p = ¢4 (can be verified directly)

* Closed under Inverses: (gba)_l = Qg-1
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Exercise:

Which of the following is always true about Inn(G)?

A) Inn(G) = Aut(G) for every group G
B) Inn G) is a subgroup of Aut(G)
Inn(G) is empty if G is abelian
Inn(G) contains exactly |G| distinct automorphisms

* Multiple Choice
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General Strategy for Computing IIlIl(G):

fG =A{e,a,b,c,...}, thenInn(G) = { e, du, b, Pc, - - . }. But: This list may have

duplicates!

* ¢, may equal ¢ eventhougha # b
+ This happens when aza © = bxb foralz € G

+ Equivalently: whenab ' € Z(G)
Task: Identify which distinct elements give distinct automorphisms

Note: Determining Aut(G) is generally much harder than determining Inn(G)
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General Strategy for Computing Inn(G):

fG =A{e,a,b,c,...},thenInn(G) = {@e, Pa, Pb, Pec, . . . }. But: This list may have
duplicates! ¢, may equal ¢y even though a # b. This happens when

.« aza ' =bxb forallz € G.Equivalently, a tbzb la = zforallz € G.

+ Equivalently, (e 'b)z(a'b) ' = zforallz € G. Equivalently, (& 'b)z = z(a ™ 'b)
forallz € G.Equivalently:whena ‘b € Z(G).

* So: P, = ¢y iff there exists z € Z(G) suchthatb = az.
Task: Identify which distinct elements give distinct automorphisms

Note: Determining Aut(G) is generally much harder than determining Inn(G)
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Example: Computing Inn(Dy)
Step 1: List all candidates. Candidates: @r,, @Ry s PRigs PRorgs PH> PV PD, D
Step 2: Compute Z(Dy4) = { Ro, Ris0}-

Step 3: Multiply by R1g

Since RoR130 = Rigp, then (.leg() — QBRU

Since Rgg - Rigog = Ra7p, then qﬁRzm — (»bRg{}'
Since V R1g9 = H, then ¢ = oy.
Since D R1gp = D,; then ¢p = @dp.

Therefore, Inn(Dy) = {@r,, PRy, OH, dD }-
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Exercise:

If G is an abelian group, then we must have
A) Inn(G) = Aut(G)

B) Inn(G) ~ Z(G)

C) Inn(G)| =1

0) [Inn(G)] = |G|
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Theorem 6.4: For every positive integer n: Aut(Z,) ~ U(n).

Proof:

+ Any a € Aut(Z,,) is determined by (1)
+ We have a(k) = ka(1) forallk € Zy,
» By Property 5 of Theorem 6.1: |a(1)| = [1| = n

« So a(l) c U(n) (elements of order n are exactly the generators)

Define: T : Aut(Z,) — U(n) by T(a) = a(1)
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T is one-to-one: Suppose a, 3 € Aut(Z,,) withT(a) = T(B). Then a(1) = B(1).
» Foranyk € Zn:a(k) = ka(l) = kB(1) = B(k). Therefore e = 5V

T is onto: Let 7 € U(n) (arbitrary). Define o : Z,, — Zy, by a(8) = sr  (mod n) for all
S € L. Claim: a € Aut(Z,):

Well-defined: If s = s’ (mod n), thensr = s'r (mod n)

One-to-one: If st = tr (mod n),thens =t (mod n) (since gcd(r,n) = 1)

Onto: Forany k € Z,, solve sr = k (mod n) for s (possible since ged(r,n) = 1)

Operation-preserving: a(s +t) = (s + t)r = sr + tr = a(s) + «(t)

Soa € Aut(Zy) and T (o) = (1) =7V
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T is operation-preserving: Let o, 8 € Aut(Zn). Then:

TaofB)=(aoB)(l)=a(f(l)=a(l+1+---+1)

B(1) ti
=a(l)+a(l)+--+al)=a(l) 8(1)=T(a) - T(B)
B(1) times

(where the last multiplication is in U (1))

Conclusion: T is an isomorphism, so Aut(Z,) ~ U(n)
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Exercise:

Using Theorem 6.4, what is | Aut(Zqq)|?

A) 10
B) 5
C) 4

D) 2
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Theorem 6.5 (Cayley's Theorem): Every group is isomorphic to a group of permutations.

Strategy of proof:

e Start with arbitrary group G

 Construct a specific group G of permutations

¢ ProveG ~ G
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Proof: Let G be any group.

Step 1: Construct permutations from G For each g € G, define a function
+ T,: G — GbyTy(x) = gxforallz € G.Inwords: Ty, is "left multiplication by g
Claim: Each T, is a permutation of G (i.e., a bijection from G to G):

* One-to-one: If gx = gy, then & = Y by cancellation

« Onto: Foranyy € G, we have Tg(g_ly) = g(g_ly) =Y
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Step 2: Form the group of permutations: Let G = {Tg | g <€ G}
Claim: G is a group under function composition:

« Closure:Forany g, h € G-
(Ty oTh)(z) = Ty(Th(x)) = T,(hx) = g(hz) = (gh)x = Tyn(x) So

TgOTh:TghEG

Identity: T, is the identity function (since T.(xz) = ex = x)
* Inverses: (fZWQ)_1 = Ty (because Ty 0T y-1 =T y1 = 1¢)

 Associativity: Function composition is always associative
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Step 3: Define the isomorphism: Define ¢ : G — G by ¢(g) =T, forallg € G

+ one-to-one: Suppose ¢(g) = @¢(h). Then T, = T}.So T,(e) = Th(e). Thus ge = he,
which gives g = h .

* onto: By construction, for every T}, € G, we have o(g) =T,

* operation-preserving: For any a, b € G, qﬁ(a,b) = T up. We showed earlier that
Ty = T, o Ty. Therefore: p(ab) = T, o Ty = @d(a) o ¢(b)

Conclusion: ¢ is an isomorphism from G to G, where G'is a group of permutations.

Definition: The group G is called the left regular representation of G5.
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Explicit Computation U (12) = {1, 5,7, 11} under multiplication modulo 12. Compute
permutations in array form:

(3

ts = (é i) 171 171)

= G 151 I 151)

fu= (111 ? g 111)

Explanation: T5(1) =5-1=5,T5(5) =5-5=25=1 (mod 12), etc.
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Cayley Tables Comparison

Cayley Table for U (12):
1 5
1 1 5
5 5 1
7 7 1
1 1 7

Observation: The tables are identical (up to notation)!

10/26/2025

1

N

Cayley Table for U (12):
o Ty
T T
15 15
T T
Tu Tu
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Two sophisticated isomorphism results:
Theorem (advanced): (R, +) ~ (C, +)
The real numbers under addition are isomorphic to the complex numbers under addition!
Theorem (advanced): (C*, ) ~ (S, )

The nonzero complex numbers under multiplication are isomorphic to the unit circle under
multiplication.
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