Chapter 5: Permutation Groups
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Definitions and Basic Concepts

Definition: Permutation of A
A permutation of a set A is a function from A to A that is both one-to-one and onto.

Definition: Permutation Group of A
A permutation group of a set A is a set of permutations of A that forms a group under

function composition.
» Focus on finite sets A = {1, 2,3,...,n}

« The group of all permutations of the set {1, 2,3,..., n} is called the symmetric group
and is denoted by \S,,.

» Array notation: place a(7) directly below 7. Example of Array Notation: For
a:{1,2,3,4} —{1,2,3,4} wherea(l) =2, a(2) =3, a(3) =1, a(4) = 4

/1 2 3 4
= \2 3 1 4
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Composition of Permutations

« Performed from right to left

« Go from top to bottom, then top to bottom again

Detailed E I'Lt—12345 d—1
etailed Example: Leto = |, , 4 o ]andy = |,

Step-by-step calculation of yo:

+ (yo)(1) = v(0(1)) =~(2) =

¢ (10)(2) = v(0(2)) =~v(4) =

* (10)(3) =7(e(3)) =~(3) =1
+ (y0)(4) = v(0(4)) =~(5) =3
+ (v0)(5) =v(e(5)) =~(1) =5
Therefore: yo = (31 ; i) g g)
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Example 1 - Symmetric Group S;
Definition: S3 = set of all one-to-one functions from {1, 2, 3} to itself

All Six Elements:

co (23, (123 , (123
€=\ o gjleentia=1,y 4 ()@ =13 1 5

: 1 2 3 1 2 3 1 2 3
’8:(1 3 2)’“’8:(2 1 3)’“25:(3 2 1)

Key Properties:

.« Ba = a*B (verify this!)
« S3is non-Abelian
. ’83| =6

* Relation Ba = OfQﬁ allows computation without arrays
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Example 2 - General Symmetric Group s,
Definition: S,, = symmetric group of degree n = set of all permutations of {1, 2,..., n}
Order Calculation:

« Choose a(1): n choices

Choose a(2): n — 1 choices (must be different from a(l))

Choose a(3): m — 2 choices

Continue this pattern...

Tota n(n —1)(n —2)---3-2-1=n!

Key Facts:

Sn| = n!

S,, is non-Abelian forn > 3

S4 has 30 subgroups

S has over 100 subgroups

|Se0| =~ number of atoms in the universe!
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Example 3 Symmetries of a Square (p, as Subgroup of s,)

Setup: Label square corners as 1, 2, 3, 4 and track their positions

90° Counterclockwise Rotation:

(1234) 3 P

2 3 4 1

Horizontal Reflection:
1 2 3 4
43 2 1 4 I

Key Insight:

« These two elements generate the entire dihedral group Dy
« Dy can be viewed as a subgroup of Sy

« This shows how geometric symmetries relate to permutation groups



Cycle Notation - Introduction and Motivation

Basic Idea:
Instead of arrows showing a(1) =+ 2 — 4 — 6 — 3 — 1, we write (1, 2,4, 6, 3)

Example Conversion:

(123456
o =

5 1 4 6 & 3) becomes a = (1,2)(3,4,6)(5)

Terminology:

« Expression (a,l, A9y« v ,a,m) s called an m-cycle or cycle of length m

« Cycles fix elements not appearing in them
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Exercise:

Which of the following is true about D,, and S,, for allm > 1?

a) D, =5,

b) D,, is a subgroup of S,

) S,, is a subgroup of D,,

d) D,, and S,, have no relationship

* Multiple Choice
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Exercise:
For which valuesof n > 1is D,, = S,,?

a) 1, and 2 only.

b) forallm > 1.

c) 1, 2, and 3 only.

d) No such values exists.

* Multiple Choice
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Cycle Notation - Detailed Examples

1 2 3 4 5 6
Example1:/6’:(5 3 1 6 9 4)

Tracing the cycles:

o Startwith1:1 -5 —2 =3 — 1,50(1,5,2,3)
+ Remaining elements: 4 — 6 — 4, so (4, 6)
« Result: 8 = (1,5,2,3)(4,6) or equivalently (4,6)(5,2,3,1)

Example 2: Converting back to array form

f vy = (134), then:

e 1—+33—-44—1
e 2 — 2 (fixed)

e (1203 4
rrayorm.3241
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Multiplying Cycles - Complex Example
Problem: Find a3 where a = (13)(27)(456)(8) and 8 = (1237)(648)(5)
Method: Trace each element through all cycles from right to left

Detailed calculation for element 1:
(5) fixes 1 - (648) fixes 1 - (1237) sends 1 to 2 — (8) fixes 2 — (456) fixes 2 - (27)
sends 2to 7 - (13) fixes 7

Result: 1 — 7, so a3 begins (17...)

Continuing the process:

« 7—3:(5) — (648) — (1237) — (8) — (456) — (27) — (13) gives
1T—>7T—-7T—-T—>7—7—3

« 3 — 2:similar tracing gives 3 — 2

« 2 — 1:tracing gives 2 — 1

Final Answer: a8 = (1732)(48)(56)
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Theorem 5.1(Products of Disjoint Cycles): Every permutation of a finite set can be written as

a cycle or as a product of disjoint cycles.
Proof:

1. Start with any elementa; € A

2. Form sequence: a1, a(ay), a (al) ( 1), -

3. Since A is finite, eventually « (al) a1 for some m
4. This gives cycle (a1, a(ar), a(a1), ..., o™ *(a1))
5. If elements remain, pick by not in first cycle and repeat
6. Continue until all elements are accounted for

Note that new cycles are disjoint from previous ones because if ai(al) = aj(bl), then by
would equal some at(al), contradicting the choice of by.
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Theorem 5.2(Disjoint Cycles Commute): If cycles ¢ = (a,l, as, . .. ,am) and

B = (by, by, ...,by,) have no entries in common, then a8 = Ba.
Proof: Consider S = {a1,...,m,b1,...,bn,C1,...,Cr} where c's are fixed by both «
and .

Case 1 - Element a;:

(6(a:))
a(a;)

( (ai ) = B(aiﬂ) = a; 1 (B fixes a-elements)

« (aB)(a;) = a a(a;) = a;,1 (B fixes a-elements)
+ (Ba)(a;) =6

Case 2 - Element bj:

Case 3 - Element c;.:

+ (aB)(er) = alB(cr)) = aler) = cx
+ (Ba)(er) = Bla(er)) = Bler) = ck

Conclusion: a8 = Ba L]
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Theorem 5.3(Order of a Permutation (Ruffini, 1799)): The order of a permutation written in ~in
disjoint cycle form is the least common multiple of the lengths of the cycles.

Proof Outline:

1. A cycle of length 1 has order n

2. For disjoint cycles a (length m) and (3 (length n):

o letk = lem(m,n)
. Both o :z-:andﬁk =
* Since ax and B commute: (aﬁ)k = ak,ﬁ’k =¢c

« So |af3| divides k

3. If (a,@)t — ¢, thena’f' = ¢

4. Since cycles are disjoint: a' = e and ,Bt = e€.50 mlt and nlt.
5. Since k is the least common multiple: k < ¢

6. Combined with step 2: k = |a3|

Extension: The proof generalizes to products of more than two disjoint cycles. h
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Examples Using Theorem 5.3
Example 4 - Order Calculations:

a) [(132)(45)| = lem(3,2) = 6

b) |(1432)(56)| = lem(4, 2) = 4

o) |(123)(456)(78)| = lem(3,3,2) = 6
d) |(123)(145)| =?

» First convert to disjoint cycles: (123)(145) = (14523)
. 1(14523) = 5

Key Insight: Must convert to disjoint cycle form first when cycles overlap!
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Exercise:

Question: Which of the following statements is TRUE?

a) The order of (12)(34)(56)is2 +2+2 =6

b) To find the order of (123)(345), we can directly compute lem(3, 3) = 3
¢) The permutation (1234)(56) has order lem(4,2) = 4

d) Disjoint cycles always have the same length

* Multiple Choice
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Example 5 - Systematic Order Analysis in s;

Goal: Determine all possible orders of elements in S7
Method: List all disjoint cycle structures, compute Icm of cycle lengths 7
Cycle Structures in S7: We write (k) to mean a cycle of k elements.

« (1)-cycle: order = 7,

* (©)(): order = 6

* (5)(): order = lem(5,2) = 10, (9)()(1): order = 5

¢ (4)(Q3): order =1lcm(4,3) = 12, @)Q)(): order = lcm(4, 2) = 4, @D D (Q): order = 4

*
ODA)D: order = 3

* (QRE)D: order = 2, QDD Q: order = 2, QODODQ): order = 2
« (MHAOMMMM): order = 1

(O8]

Ino
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Example: How many »n-cycles in s,,?
Solution: An n-cycle in S, uses all n elements.
Step-by-step counting:

1. Choose first element: n ways (but any element can start the cycle)
2. Choose second element: (n — 1) ways
3. Choose third element: (1 — 2) ways

4. Continue until all elements are chosen: n! total arrangements

Adjustment for cycle equivalence:
* The cycles (1,2,3,...,n),(2,3,...,n,1),(3,...,n,1,2), etc. all represent the
same permutation
« There are n equivalent representations for each n-cycle
« Must divide by n to avoid overcounting
n!

Answer: = (n — 1)! distinct n-cycles in Sy,
n
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Example: How many (» — 1)-cycles in s,?

Solution: An (n — 1)-cycle in Sy, uses (n — 1) elements| and fixes one element.

Step-by-step counting:

1. n
Choose (n-1) elements to form the cycle: ( 1) — m ways
n S

2. Arrange them in an (n — 1)—cycle: (n — 2)! ways (by the previous example)

Answer: n - (n — 2)! distinct (n — 1)-cycles in s,
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Example 6 - Counting Elements of Specific Order
Problem: How many elements in S~ have order 12?

Analysis: Need cycle structure (4)(3) by Theorem 5.3

Step-by-step counting:

1. 7
Choose 4 elements for the 4-cycle: A ways

2. Arrange them in a 4-cycle: (4 — 1)! = 3! ways

- 3
Choose 3 elements from remaining for 3-cycle: 5 = 1 way
4. Arrange them in a 3-cycle: (3 — 1)! = 2! ways

Calculation:

(Z)XB!X1X2!235X6X1X2:420
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Transpositions

Definition: A transposition is a 2-cycle (ab) that interchanges elements a and b.
Example 8 - Writing Cycles as Products of Transpositions:

(a1as...ar) = (arar)(arar_1) - - - (a1a2)

h’heorem 5.4: Every permutation in S, (n > 1) s a product of 2-cycles.

Proof:
+ Identity: e = (12)(12)

» By Theorem 5.1, any permutation = (a1@s . .. ay)(bibs ... by) - -

 Each k-cycle = (alak)(alak_l) R (alaz) []
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Theorem 5.4: Every permutation in .S, (n > 1) s a product of 2-cycles.
Proof:

+ Identity: e = (12)(12)

« By Theorem 5.1, any permutation = (aias ...ax)(bibs...by) - -

* Each k-cycle = (ajax)(aiar_1) - - - (a1a2)
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Non-Uniqueness of Transposition Decompositions

Example 9 - Multiple Decompositions:
(12345) = (54)(53)(52)(51)

(12345) = (54)(52)(21)(25)(23)(13)
Key Observations:

« Decompositions use different numbers of transpositions (4 vs 6)
« BUT: both have even number of transpositions!

 This Is not a coincidence...
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Lemma: If e = 81085 - - - B, where each [; is a 2-cycle, then 7 is even.

Proof: Assume 7 is odd and € = 312 - - - B where 81 = (ab). Clearly 7 > 1 (since a
single 2-cycle is not the identity). There must be an 7 > 1 such that §; contains a, say
B; = (ac) for some ¢. May assume the product is chosen so that:

1. 1 is the smallest possible (i.e., a first reappears at position 2).

2. The number of a occurrences is minimum.

3. The product has the fewest number of transpositions.

Case 1: If i = 2: Either ¢ = b = (ab)(ab) = ¢, contradicting (3). Or
¢ # b= (ab)(ac) = (ac)(bc), contradicting (2)

Case 2: If 1 > 2: ;1 must contain ¢, otherwise 3;_1 and (3; are disjoint
B1---Bi9BiBi1- -+ Br = €, contradicting (1). So B;_1 = (dc) where d # a. But then
Bi—18; = (dc)(ac) = (ad)(dc), contradicting (1).

Therefore, no such odd 7 exists, so 7 must be even. []
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Theorem 5.5 - Always Even or Always Odd

If a permutation ¢ can be expressed as a product of an even (odd) number of 2-cycles, then
every decomposition of ¢ into 2-cycles must have an even (odd) number of 2-cycles.

Proof:

BiB2 - Br = v1v2 s implies: € = y1y2 -+ - ysBr - - - P21

Since 2-cycles are self-inverse: ,6’2-_1 = [3;
By the Lemma, s + 7 must be even, so r and s have same parity. [

Significance: This allows unambiguous classification of permutations as "even" or "odd"
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Even and Odd Permutations - Definitions

Even Permutation: A permutation that can be expressed as a product of an even number of
2-cycles.

Odd Permutation: A permutation that can be expressed as a product of an odd number of
2-cycles.

Examples:

12 ) ( )(12) — even (2 transpositions)

1234) = (14)(13)(12) - odd (3 transpositions)
(12)(12) - even (2 transpositions)

(

* (12) - odd (1 transposition)
(
E —
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Theorem 5.6: The set of even permutations in .S,, forms a subgroup of .S,,.
Proof: Must verify subgroup criteria: Identity ¢ = (12)(12) is even so not empty.
Closure under Products: If o and (3 are even, then a3 is even

« « = product of 2k transpositions and 8 = product of 27 transpositions

+ af8 = product of 2k + 2j = 2(k + j) transpositions — even
Closure under Inverses: If a is even, then a 1is even

s X = T1T2 "' Tok (T; are transpositions)

-1 : —1
* O = Tok - ToT1L = Tok " ToTi (SINCET;, = = T;)
e o i product of 2k transpositions — even []
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Alternating Groups - Definition and Order

Definition: The alternating group of degree n, denoted A,,, is the group of all even
permutations of n symbols.

n!

Theorem 5.7: Forn > 1, 0

Ayl =
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n!

Theorem 5.7: Forn > 1, |A,| = 5

Proof: Define f : S;, — S, by f(a) = (12)a. Claim: f is a bijection.

f is one-to-one: If f(a) = f(B), then (12)a = (12)/3, which implies a = 3 by left
cancellation.

fisonto:If 8 € Sy, then (12)8 € S,, and f((12)8) = (12)((12)8) = B.

Observation: The restriction f : A, — A (where A denotes the set of odd
permutations) is a bijection between even and odd permutations: If &« € A,, (even), then
(12)a has one additional transposition, making it odd. Conversely, if a is odd, then (12)a
is even. So |A,| = | A5

Since S;, = A, U A7 and the sets are disjoint we have:

nl =[] = [An] 4 [45] = 2| An|

n!
Therefore: | A, | = 5 []
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