

Definitions and Basic Concepts

Definition: Permutation of A

A permutation of a set A is a function from A to A that is both one-to-one and onto.

Definition: Permutation Group of A

A permutation group of a set A is a set of permutations of A that forms a group under function composition.

- Focus on finite sets $A=\{1,2,3,\ldots,n\}$
- The group of all permutations of the set $\{1,2,3,\ldots,n\}$ is called the symmetric group and is denoted by S_n .
- Array notation: place lpha(j) directly below j. **Example of Array Notation:** For $lpha:\{1,2,3,4\} o \{1,2,3,4\}$ where lpha(1)=2, lpha(2)=3, lpha(3)=1, lpha(4)=4: $lpha=\begin{pmatrix}1&2&3&4\\2&3&1&4\end{pmatrix}$

- Performed from right to left
- Go from top to bottom, then top to bottom again

Detailed Example: Let
$$\sigma=\begin{pmatrix}1&2&3&4&5\\2&4&3&5&1\end{pmatrix}$$
 and $\gamma=\begin{pmatrix}1&2&3&4&5\\5&4&1&2&3\end{pmatrix}$

Step-by-step calculation of $\gamma \sigma$:

•
$$(\gamma \sigma)(1) = \gamma(\sigma(1)) = \gamma(2) = 4$$

•
$$(\gamma \sigma)(2) = \gamma(\sigma(2)) = \gamma(4) = 2$$

•
$$(\gamma \sigma)(3) = \gamma(\sigma(3)) = \gamma(3) = 1$$

•
$$(\gamma \sigma)(4) = \gamma(\sigma(4)) = \gamma(5) = 3$$

•
$$(\gamma \sigma)(5) = \gamma(\sigma(5)) = \gamma(1) = 5$$

Therefore:
$$\gamma\sigma=egin{pmatrix}1&2&3&4&5\\4&2&1&3&5\end{pmatrix}$$

Example 1 - Symmetric Group S_3

Definition: $S_3=$ set of all one-to-one functions from $\{1,2,3\}$ to itself

All Six Elements:

•
$$arepsilon=egin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$$
 (identity), $lpha=egin{pmatrix}1&2&3\\2&3&1\end{pmatrix}$, $lpha^2=egin{pmatrix}1&2&3\\3&1&2\end{pmatrix}$

$$oldsymbol{\dot{}}$$
 $eta=egin{pmatrix}1&2&3\\1&3&2\end{pmatrix}$, $lphaeta=egin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$, $lpha^2eta=egin{pmatrix}1&2&3\\3&2&1\end{pmatrix}$

Key Properties:

- $\beta \alpha = \alpha^2 \beta$ (verify this!)
- S_3 is non-Abelian
- $|S_3| = 6$
- Relation $eta lpha = lpha^2 eta$ allows computation without arrays

Example 2 - General Symmetric Group S_n

Definition: $S_n=$ symmetric group of degree n= set of all permutations of $\{1,2,\ldots,n\}$

Order Calculation:

- Choose lpha(1): n choices
- Choose lpha(2): n-1 choices (must be different from lpha(1))
- Choose $\alpha(3)$: n-2 choices
- Continue this pattern...
- Total: $n(n-1)(n-2)\cdots 3\cdot 2\cdot 1=n!$

Key Facts:

- $|S_n| = n!$
- S_n is non-Abelian for $n\geq 3$
- S_4 has 30 subgroups
- S_5 has over 100 subgroups
- $|S_{60}| pprox$ number of atoms in the universe!

Example 3 Symmetries of a Square (D_4 as Subgroup of S_4)

Setup: Label square corners as 1, 2, 3, 4 and track their positions

90° Counterclockwise Rotation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

Horizontal Reflection:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

3 2 4 1

Key Insight:

- These two elements generate the entire dihedral group D_4
- D_4 can be viewed as a subgroup of S_4
- This shows how geometric symmetries relate to permutation groups

Cycle Notation - Introduction and Motivation

Basic Idea:

Instead of arrows showing lpha(1) o 2 o 4 o 6 o 3 o 1, we write (1,2,4,6,3)

Example Conversion:

$$lpha=egin{pmatrix}1&2&3&4&5&6\2&1&4&6&5&3\end{pmatrix}$$
 becomes $lpha=(1,2)(3,4,6)(5)$

Terminology:

- Expression (a_1,a_2,\ldots,a_m) is called an m-cycle or cycle of length m
- Cycles fix elements not appearing in them

Exercise:

Which of the following is true about D_n and S_n for all $n \geq 1$?

- a) $D_n=S_n$
- b) D_n is a subgroup of S_n
- c) S_n is a subgroup of D_n
- d) D_n and S_n have no relationship

Exercise:

For which values of $n \geq 1$ is $D_n = S_n$?

- a) 1, and 2 only.
- b) for all $n \geq 1$.
- c) 1, 2, and 3 only.
- d) No such values exists.

Cycle Notation - Detailed Examples

Example 1:
$$eta = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{pmatrix}$$

Tracing the cycles:

- Start with 1: 1 o 5 o 2 o 3 o 1, so (1,5,2,3)
- Remaining elements: 4 o 6 o 4, so (4,6)
- Result: $\beta=(1,5,2,3)(4,6)$ or equivalently (4,6)(5,2,3,1)

Example 2: Converting back to array form If $\gamma=(134)$, then:

- $1 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 1$
- $2 \rightarrow 2$ (fixed)
- Array form: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$

Multiplying Cycles - Complex Example

Problem: Find lphaeta where lpha=(13)(27)(456)(8) and eta=(1237)(648)(5)

Method: Trace each element through all cycles from right to left

Detailed calculation for element 1:

(5) fixes
$$1\to (648)$$
 fixes $1\to (1237)$ sends 1 to $2\to (8)$ fixes $2\to (456)$ fixes $2\to (27)$ sends 2 to $7\to (13)$ fixes 7

Result: $1 \rightarrow 7$, so $\alpha\beta$ begins $(17\ldots)$

Continuing the process:

- 7 o 3: (5) o (648) o (1237) o (8) o (456) o (27) o (13) gives 7 o 7 o 7 o 7 o 7 o 3
- 3 o 2: similar tracing gives 3 o 2
- 2 o 1: tracing gives 2 o 1

Final Answer: $\alpha\beta=(1732)(48)(56)$

Theorem 5.1(Products of Disjoint Cycles): Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Proof:

- 1. Start with any element $a_1 \in A$
- 2. Form sequence: $a_1, \alpha(a_1), \alpha^2(a_1), \alpha^3(a_1), \ldots$
- 3. Since A is finite, eventually $lpha^m(a_1)=a_1$ for some m
- 4. This gives cycle $(a_1, \alpha(a_1), \alpha^2(a_1), \ldots, \alpha^{m-1}(a_1))$
- 5. If elements remain, pick b_1 not in first cycle and repeat
- 6. Continue until all elements are accounted for

Note that new cycles are disjoint from previous ones because if $\alpha^i(a_1) = \alpha^j(b_1)$, then b_1 would equal some $\alpha^t(a_1)$, contradicting the choice of b_1 .

Theorem 5.2(Disjoint Cycles Commute): If cycles $\alpha=(a_1,a_2,\ldots,a_m)$ and $\beta=(b_1,b_2,\ldots,b_n)$ have no entries in common, then $\alpha\beta=\beta\alpha$.

Proof: Consider $S=\{a_1,\ldots,a_m,b_1,\ldots,b_n,c_1,\ldots,c_k\}$ where c's are fixed by both α and β .

Case 1 - Element a_i :

- $(lphaeta)(a_i)=lpha(eta(a_i))=lpha(a_i)=a_{i+1}$ (eta fixes a-elements)
- $(etalpha)(a_i)=eta(lpha(a_i))=eta(a_{i+1})=a_{i+1}$ (eta fixes a-elements)

Case 2 - Element b_j :

- $(lphaeta)(b_j)=lpha(eta(b_j))=lpha(b_{j+1})=b_{j+1}$ (lpha fixes b-elements)
- $(etalpha)(b_j)=eta(lpha(b_j))=eta(b_j)=b_{j+1}$

Case 3 - Element c_k :

- $ullet (lphaeta)(c_k) = lpha(eta(c_k)) = lpha(c_k) = c_k$
- $(etalpha)(c_k)=eta(lpha(c_k))=eta(c_k)=c_k$

Conclusion: $\alpha\beta=\beta\alpha$

Theorem 5.3(Order of a Permutation (Ruffini, 1799)): The order of a permutation written in disjoint cycle form is the least common multiple of the lengths of the cycles.

Proof Outline:

- 1. A cycle of length n has order n
- 2. For disjoint cycles α (length m) and β (length n):
 - Let $k = \operatorname{lcm}(m, n)$
 - Both $lpha^k = arepsilon$ and $eta^k = arepsilon$
 - Since lpha and eta commute: $(lphaeta)^k=lpha^keta^k=arepsilon$
 - So |lphaeta| divides k
- 3. If $(\alpha\beta)^t = \varepsilon$, then $\alpha^t\beta^t = \varepsilon$
- 4. Since cycles are disjoint: $\alpha^t = \varepsilon$ and $\beta^t = \varepsilon$. So m|t and n|t.
- 5. Since k is the least common multiple: $k \leq t$
- 6. Combined with step 2: k=|lphaeta|

Extension: The proof generalizes to products of more than two disjoint cycles.

Examples Using Theorem 5.3

Example 4 - Order Calculations:

a)
$$|(132)(45)| = \operatorname{lcm}(3,2) = 6$$

b)
$$|(1432)(56)| = \text{lcm}(4,2) = 4$$

c)
$$|(123)(456)(78)| = lcm(3, 3, 2) = 6$$

d)
$$|(123)(145)| = ?$$

- First convert to disjoint cycles: (123)(145) = (14523)
- |(14523)| = 5

Key Insight: Must convert to disjoint cycle form first when cycles overlap!

Exercise:

Question: Which of the following statements is TRUE?

- a) The order of (12)(34)(56) is 2+2+2=6
- b) To find the order of (123)(345), we can directly compute ${
 m lcm}(3,3)=3$
- c) The permutation (1234)(56) has order ${
 m lcm}(4,2)=4$
- d) Disjoint cycles always have the same length

Example 5 - Systematic Order Analysis in S_7

Goal: Determine all possible orders of elements in S_7

Method: List all disjoint cycle structures, compute lcm of cycle lengths 7

Cycle Structures in S_7 : We write ($\underline{\mathbf{k}}$) to mean a cycle of k elements.

- (7)-cycle: order = 7,
- $(\underline{6})(\underline{1})$: order = 6
- $(\underline{5})(\underline{2})$: order = lcm(5,2)=10, $(\underline{5})(\underline{1})(\underline{1})$: order = $\underline{5}$
- (4)(3): order = lcm(4,3) = 12, (4)(2)(1): order = lcm(4,2) = 4, (4)(1)(1)(1): order = 4
- $(\underline{3})(\underline{3})(\underline{1})$: order = 3, $(\underline{3})(\underline{2})(\underline{2})$: order = 1cm(3,2) = 6, $(\underline{3})(\underline{1})(\underline{1})(\underline{1})$: order = 1cm(3,2) = 6, $(\underline{3})(\underline{1})(\underline{1})(\underline{1})\underline{1}$): order = 3
- (2)(2)(2)(1): order = 2, (2)(2)(1)(1)(1): order = 2, (2)(1)(1)(1)(1)(1): order = 2
- (1)(1)(1)(1)(1)(1)(1): order = 1

Example: How many n-cycles in S_n ?

Solution: An n-cycle in S_n uses all n elements.

Step-by-step counting:

- 1. Choose first element: n ways (but any element can start the cycle)
- 2. Choose second element: (n-1) ways
- 3. Choose third element: (n-2) ways
- 4. Continue until all elements are chosen: n! total arrangements

Adjustment for cycle equivalence:

- The cycles $(1,2,3,\ldots,n)$, $(2,3,\ldots,n,1)$, $(3,\ldots,n,1,2)$, etc. all represent the same permutation
- ullet There are n equivalent representations for each n-cycle
- Must divide by n to avoid overcounting

Answer:
$$rac{n!}{n}=(n-1)!$$
 distinct n -cycles in S_n

Example: How many (n-1)-cycles in S_n ?

Solution: An (n-1)-cycle in S_n uses (n-1) elements and fixes one element.

Step-by-step counting:

- 1. Choose (n-1) elements to form the cycle: $egin{pmatrix} n \\ n-1 \end{pmatrix} = n$ ways
- 2. Arrange them in an (n-1)-cycle: (n-2)! ways (by the previous example)

Answer: $n \cdot (n-2)!$ distinct (n-1)-cycles in S_n

Example 6 - Counting Elements of Specific Order

Problem: How many elements in S_7 have order 12?

Analysis: Need cycle structure (4)(3) by Theorem 5.3

Step-by-step counting:

- 1. Choose 4 elements for the 4-cycle: $\binom{7}{4}$ ways
- 2. Arrange them in a 4-cycle: (4-1)! = 3! ways
- 3. Choose 3 elements from remaining for 3-cycle: $\binom{3}{3}=1$ way
- 4. Arrange them in a 3-cycle: (3-1)! = 2! ways

Calculation:

$$\binom{7}{4} imes 3! imes 1 imes 2! = 35 imes 6 imes 1 imes 2 = 420$$

Transpositions

Definition: A transposition is a 2-cycle (ab) that interchanges elements a and b.

Example 8 - Writing Cycles as Products of Transpositions:

$$(a_1a_2\dots a_k)=(a_1a_k)(a_1a_{k-1})\cdots(a_1a_2)$$

Theorem 5.4: Every permutation in $S_n\ (n>1)$ is a product of 2-cycles.

Proof:

- Identity: arepsilon=(12)(12)
- By Theorem 5.1, any permutation $=(a_1a_2\dots a_k)(b_1b_2\dots b_t)\cdots$
- Each k-cycle $=(a_1a_k)(a_1a_{k-1})\cdots(a_1a_2)$ \square

Theorem 5.4: Every permutation in $S_n\ (n>1)$ is a product of 2-cycles.

Proof:

- Identity: $\varepsilon = (12)(12)$
- By Theorem 5.1, any permutation $=(a_1a_2\dots a_k)(b_1b_2\dots b_t)\cdots$
- Each k-cycle $=(a_1a_k)(a_1a_{k-1})\cdots(a_1a_2)$ \Box

Non-Uniqueness of Transposition Decompositions

Example 9 - Multiple Decompositions:

$$(12345) = (54)(53)(52)(51)$$

 $(12345) = (54)(52)(21)(25)(23)(13)$

Key Observations:

- Decompositions use different numbers of transpositions (4 vs 6)
- BUT: both have even number of transpositions!
- This is not a coincidence...

Lemma: If $\varepsilon = \beta_1 \beta_2 \cdots \beta_r$ where each β_i is a 2-cycle, then r is even.

Proof: Assume r is odd and $\varepsilon=\beta_1\beta_2\cdots\beta_r$ where $\beta_1=(ab)$. Clearly r>1 (since a single 2-cycle is not the identity). There must be an i>1 such that β_i contains a, say $\beta_i=(ac)$ for some c. May assume the product is chosen so that:

- 1. i is the smallest possible (i.e., a first reappears at position i).
- 2. The number of a occurrences is minimum.
- 3. The product has the fewest number of transpositions.

Case 1: If i=2: Either $c=b\Rightarrow (ab)(ab)=arepsilon$, contradicting (3). Or $c\neq b\Rightarrow (ab)(ac)=(ac)(bc)$, contradicting (2)

Case 2: If i>2: β_{i-1} must contain c, otherwise β_{i-1} and β_i are disjoint $\beta_1\cdots\beta_{i-2}\beta_i\beta_{i-1}\cdots\beta_r=\varepsilon$, contradicting (1). So $\beta_{i-1}=(dc)$ where $d\neq a$. But then $\beta_{i-1}\beta_i=(dc)(ac)=(ad)(dc)$, contradicting (1).

Therefore, no such odd r exists, so r must be even. \square

Theorem 5.5 - Always Even or Always Odd

If a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every decomposition of α into 2-cycles must have an even (odd) number of 2-cycles.

Proof:

$$\beta_1\beta_2\cdots\beta_r=\gamma_1\gamma_2\cdots\gamma_s \text{ implies: } \varepsilon=\gamma_1\gamma_2\cdots\gamma_s\beta_r\cdots\beta_2\beta_1$$

Since 2-cycles are self-inverse: $\beta_i^{-1} = \beta_i$

By the Lemma, s+r must be even, so r and s have same parity. \Box

Significance: This allows unambiguous classification of permutations as "even" or "odd"

Even and Odd Permutations - Definitions

Even Permutation: A permutation that can be expressed as a product of an even number of 2-cycles.

Odd Permutation: A permutation that can be expressed as a product of an odd number of 2-cycles.

Examples:

- $(123) = (13)(12) \rightarrow \text{even (2 transpositions)}$
- $(12) \rightarrow \text{odd (1 transposition)}$
- $(1234) = (14)(13)(12) \rightarrow \text{odd (3 transpositions)}$
- $\varepsilon = (12)(12) \rightarrow \text{even (2 transpositions)}$

Theorem 5.6: The set of even permutations in S_n forms a subgroup of S_n .

Proof: Must verify subgroup criteria: **Identity** arepsilon=(12)(12) is even so not empty.

Closure under Products: If lpha and eta are even, then lphaeta is even

- lpha= product of 2k transpositions and eta= product of 2j transpositions
- lphaeta= product of 2k+2j=2(k+j) transpositions ightarrow even

Closure under Inverses: If lpha is even, then $lpha^{-1}$ is even

- $\alpha = \tau_1 \tau_2 \cdots \tau_{2k}$ (τ_i are transpositions)
- $\alpha^{-1} = \tau_{2k} \cdots \tau_2 \tau_1 = \tau_{2k} \cdots \tau_2 \tau_1$ (since $\tau_i^{-1} = \tau_i$)
- α^{-1} is product of 2k transpositions \rightarrow even \square

Alternating Groups - Definition and Order

Definition: The alternating group of degree n, denoted A_n , is the group of all even permutations of n symbols.

Theorem 5.7: For
$$n>1$$
 , $|A_n|=rac{n!}{2}$

Theorem 5.7: For
$$n>1$$
 , $|A_n|=rac{n!}{2}$

Proof: Define $f:S_n \to S_n$ by $f(\alpha)=(12)\alpha$. Claim: f is a bijection.

f is one-to-one: If $f(\alpha)=f(\beta)$, then $(12)\alpha=(12)\beta$, which implies $\alpha=\beta$ by left cancellation.

$$f$$
 is onto: If $eta \in S_n$, then $(12)eta \in S_n$ and $f((12)eta) = (12)((12)eta) = eta$.

Observation: The restriction $f:A_n\to A_n^c$ (where A_n^c denotes the set of odd permutations) is a bijection between even and odd permutations: If $\alpha\in A_n$ (even), then $(12)\alpha$ has one additional transposition, making it odd. Conversely, if α is odd, then $(12)\alpha$ is even. So $|A_n|=|A_n^c|$.

Since $S_n=A_n\cup A_n^c$ and the sets are disjoint we have: $n!=|S_n|=|A_n|+|A_n^c|=2|A_n|$

Therefore:
$$|A_n|=rac{n!}{2}$$
 \Box