4 Cyclic Groups



Definition & Basic Concepts

Recall: A group G is called cyclic if there exists an element a € GG such that
G={d"|neZ}

 Such an element a is called a generator of G

+ We write G = (a) to indicate G is cyclic with generator a

« Focus: Examine cyclic groups in detail and determine their characteristics



Example 1: The Integers Z

Claim: Z under ordinary addition is cyclic

Generators: Both 1 and —1 are generators

Explanation:

« When operation is addition, 1" means:

e 1+1+---+1Mmterms)whenn >0

e (1) 4+ (=1)+---+(—1)¢

« Every integer can be written as 1 - |

+ Therefore Z = (1) = (—1)

n| terms) whenn < 0

L orn - (—1)



Example 2: The Group 7,
Claim: Z,, = {0,1,...,n — 1} is cyclic under addition modulo m
Generators: 1 and —1 = n — 1 are always generators

Key Insight: Unlike Z (which has only two generators), Z,, may have many generators

depending on the value of n.



Example 3: Generators of 7,

Detailed Analysis:

Verification that 3 generates Zsg:

- (3) ={3°3,3%3%...3={0,3,6,1,4,7,2,5}

2 is not a generator since (2) = {0, 2,4, 6} # Zg



Non-Example: U(8) is Not Cyclic
Analysis: U (8) = {1, 3,5, 7}

Checking each element:

- (1) =11}

. (3)={3,9=1} = {3,1}
. (5) = {5,25 =1} = {5, 1}
(7)) ={7,49 =1} = {7,1}

Conclusion: No element generates all of U (8), so U(8) is not cyclic.



Theorem 4.1: Criterion for o’ = o/
Statement: Let G be a group, and leta € G.

1. If @ has infinite order, then a;i — a,j if and only if7 = 7

2. If a has finite order n, then:

. (a) = {e,a,a,2, . ,a”_l}

. a' = d’ if and only if n divides (2 —7)



Proof of Theorem 4.1

Part 1 (Infinite Order):
f |a| = oo, there is no nonzero m such that a™ = e.
Since a* = @’ impliesa’ ™’ = e, we musthavei — j = 0,s0% = §.



Part 2 (Finite Order): Assume ‘a,‘ — n.
First, prove (a) = {e,a,...,a" '}

+ Clearly {e,a,...,a™ '} C (a)
+ Leta” € (a) be arbitrary

« By division algorithm: kK = ng + r where 0 < r < n

k ng+r __ r

* Thena” = a =(a")?-a" =¢€e?-a" =a

+ Soad” € {e,a,...,a" '}



Next, prove the equivia!ence for al = a’:
(=) Assume a' = a’, prove n (2 —7):
- a' =a’ implies av Il =e

« By division algorithm: 2 — 3 = nqg + rwhere 0 < r <n

ng+r __ r

« Thene=a'"7=a""""=(a")?-a" =¢e?-a" =a
« Since n is the smallest positive integer with @ = e, we need r

+ Thereforen | (i — 7)

(<=)Ifi —j = ng thena’ 7 = a™ = (a")? = e = ¢, s0 @’



Corollaries of Theorem 4.1
Corollary 1: For any group element a, |a| = |{a)]

Corollary 2: For any group element a, a® = eifand only if |a| divides k

k

Corollary 3: For any group element a, a” = e if and only if k is a multiple of |a

Corollary 4: If @ and b belong to a finite group and ab = ba, then |ab| divides |a||b|

Proof of Corollary 4: Let |a| = m and |b| = n. Then
(ab)™ = a™"b™" = (a™)"(b")™ = e"e™ = e. By Corollary 2, |ab| divides mn.

Key Insight: Multiplication in <a,> s essentially addition modulo n.

f (i + j) mod n = k, then a’a’ = a”.



Theorem 4.2: Order and Subgroup Generation
Statement: Let a be an element of order n in a group and let k be a positive integer. Then:

. <ak> _ <agcd('n,,k)>
k| _ n

~ ged(n, k)

a

Significance: This theorem provides a simple method for computing |a,k| and determining
when (a') = (a’).



Proof of Theorem 4.2
Let d = gecd(n, k) and write k = dr.
Part 1 <ak> — <a,d>

5how< ) <a, %
Since a® & (a d) by closure (a k) C (a,d>.

Show (a®) C (a®):

By gcd theorem: d = ns + kt for integers s, t
. SO ad _ ans+kt — o™ . akt _ (an)S(ak)t _ eS(ak)t

* Therefore (a,d> C (ak>



n
gcd(n, k)
From Part 1: |ak| — |<ak>| - |<ad>| = |a

Part 2: |ak| —

d gcd(n,k)



Example 5: Applications of Theorem 4.2
Given: |a| = 30. Find <a26>,. <a17>, <a18> and ‘a,%‘, ‘a”‘, |a18‘.

Solution:

For a26:

- gcd(30,26) = 2

o ((),26) — (a2> = {e,aZ,a4,a6, . ,a28}
2 _ 30
2

" a =15



For (),17:

. gcd(30,17) =1

o (a”) = (a') = (a) = {e,a,a*,...,a*}
30
¢ |17
— — 30
a7 = %
For a18:

» gcd(30,18) =6
(') = (@) = {e,a,a'%,a'¥, a2}
s _ 30 _

D
6

.|a,



Example 6: Large Values Using Prime Factorization
Given: |a| = 1000. Find {a'*"), (a*®"), (a®®) and their orders.

Prime factorizations: 1000 = 23 - 5% 140 = 2%-5-7 400 = 2* - 52 62 = 2 - 31

: 1000
gcd(1000,140) = 22 - 5 = 20: (a'*?) = (a*?), |a'*| = 2 =20

: 1000
gcd(1000,400) = 2% - 5% = 200: (a*?) = (a®P), [a*?| = 200 =2

: 1000
gcd (1000, 62) = 2: (a®?) = (a?), |a®| = = 500



Corollaries of Theorem 4.2

Corollary 1: In a finite cyclic group, the order of an element divides the order of the group.
Corollary 2: Let |a| = n. Then:

+ {a') = (a’) ifand only if ged(n, ) = ged(n, 7) if and only if |a’| = |a?|
Corollary 3: Let |a| = n. Then (a’) = (a) if and only if ged(n, j) = 1.

Corollary 4: An integer k in Z,, is a generator of Z,, if and only if gcd(n, k) = 1.



Application: Finding All Generators
Example: U (50)

+ First determine |U(50)| = ¢(50) = ¢(2-5%) = ¢(2)¢p(5%) = 1-20 = 20
» Direct computation shows 3 is a generator

+ By Corollary 3, all generators are: 3/ where gcd(20,7) =1



Complete list of generators:

+ j=1.3'=3 (mod 50)

+ 7 =3:3° =27 (mod 50)
+ j=73"=37 (mod 50)
+ 7=9:3=33 (mod 50)
.+ j =11:3"" =47 (mod 50)
.+ §=13:38 =23 (mod 50)
. 7 =17-3"=13 (mod 50)
+ j=19:3Y =17 (mod 50)



Theorem 4.3: Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if |<a,>| — n, then:

1. The order of any subgroup of (a) is a divisor of 1

2. For each positive divisor k of n, the group <a,> has exactly one subgroup of order k—
namely, (a,n/k>

Interpretation: For cyclic group of order 30:

* Has subgroups of orders 1, 2, 3, 5,6, 10, 15, 30 only.

« Exactly one subgroup of each order.

* Subgroup of order k is <(130/k>.



Proof of Theorem 4.3: Let G = (a) and H be a subgroup of G.
Step 1: H is cyclic: If H = {e}, then H is cyclic

« Otherwise, H contains some a’ witht > 0 (ifa® € H witht < 0, thena ¢ € H)
« Let m be the least positive integer such that @™ € H. Claim: H = <a,m>

Proof of claim: Let b € H be arbitrary. Since b € G = (a), we have b = a®

By division algorithm: K = mq + r where 0 < r < m
Thena” = a* ™ = a,k(a,m)_q c H (sincea® € H anda™ € H)

Since m is minimal and 0 < r < m, we must have r = (

Therefore b = a" = a™ = (a™)? € (a™)



Step 2: Orders divide n

n
From Step 1and Theorem 4.2: H = (a™) where m divides n, and |a™| =

n
So|H| = ", which divides n.
m

Step 3: Unique subgroup of each order

* If k divides n, then |<an/k>| =k

n
f K is any subgroup of order k, then K = (a®) where s dividesm and |a’| = =k
S

n
* This gives s = . SO K = (a™*)

Conclusion: Each divisor k of n corresponds to exactly one subgroup <an/k> of order k.



Example 7: Subgroups of 7z,

Complete list of subgroups of Zs,: The divisors of 30 are 30, 15, 10, 6, 5, 3, 2, and 1.

2) = {0,2,4,...,28}, order 15

3) =10,3,6,...,27}, order 10

5) = {0,5,10,15,20,25}, order 6
6) ={0,6,12,18,24}, order 5

Pattern: For divisor k of 30, the subgroup of order k is (30 /k).



Corollary: Subgroups of 7z,

Statement: For each positive divisor k of n, the set (n/k> is the unique subgroup of Z,, of
order k; moreover, these are the only subgroups of Z,,.

General Pattern:

« Divisorsof n: dy,ds, ..., d;

* Subgroups: <n/d1>a <n/d2>a s <n/dt>
« Orders: dy,ds, . ..,d; respectively



Definition:The Euler Phi Function

(1) =1

e Forn > 1: (p(n) — number of positive integers less than . and relatively prime to n

« Note: |U(n)| = ¢(n)

Key formulas:

+ @(p") =p" —p" for prime p
. (,o(p?{l -pgz ceep) = go(p?)go(pgz) K (p(p%”) for distinct primes



Theorem 4.4: Number of Elements of Each Order

f d|n, d > 0. The number of elements of order d in a cyclic group of order n is (d).

Proof: Let a be a generator.

* By Theorem 4.3, there is exactly one subgroup of order d: <an/d>

Every element of order d generates this subgroup

+ By Corollary 3 of Theorem 4.2, a* generates (a™4) iff gcd(k, d) = 1

« Number of such k is precisely ¢(d)

Example: Zg, Zgao, and Zgpooo each have p(8) = 4 elements of order 8.



Example 9: Orders in U(50) and U (13)

For element 3 in U (50):

+ 9(50) = p(2-5%) = p(2)p(5%) = 1-20 = 20

+ So |U(50)| = 20, possible orders for
- 3'=81=31#1 (mod 50), so

3
3

:1,2,4,5,10, 20
+ 2,4

. 310=3°.3=243.243= (-7)(-7) =49 #1 (mod 50)
+ So|3| # 5, 10, therefore |3| = 20 and U (50) = (3)



For element 2 in U (13):

+ [U(13)] = ¢(13) = 12

- 2'=16=3#1 (mod 13) so|2| # 2,4

+ 2°=64=12=-1#1 (mod 13),s02| # 3,6
+ Therefore |2| = 12




Non-Cyclic Examples
U(80) is not cyclic:

Note that 9 = 81 =1 (mod 80)

Since =1 9 (mod 80), we have two distinct elements of order 2

For cyclic groups, —1 must be the unique element of order 2

Therefore U (80) is not cyclic



Non-Cyclic Examples
U(80) is not cyclic:
+ Note that 79% = (—1)* = (mod 80) and 9> =81 =1 (mod 80)

+ Since =1 Z9 (mod 80), we have two distinct elements of order 2

+ Therefore U (80) is not cyclic

Key insight: For cyclic groups U (n), —1 (= n — 1) must be the unique element of order 2



U(120) is not cyclic:

« Notethat 112 =121 = 1 (mod 120)

 Again, multiple elements of order 2 exist

+ Therefore U (120) is not cyclic



Subgroup Lattice Diagram

Subgroup Lattice of Zj3:

T<10>

0>

Reading the diagram:

« Each line represents a proper subgroup relation

« (10) is a subgroup of both (2) and (5)
» (6) is not a subgroup of (10)



Comparison: Cyclic vs. Non-Cyclic Groups
Cyclic groups (like Zs3):

« Subgroups easily identified by Theorem 4.3
« Exactly one subgroup per divisor of the order

« Simple, predictable structure
Non-cyclic groups (like U (30) or Ds):

« Much more complex subgroup structure
« May have zero, one, or many subgroups for each divisor

« Example: Dy has five subgroups of order 2 and three of order 4
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