Chapter 3: Finite Groups; Subgroups
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Definition: Order of a Group

The order of a group G is the number of elements it contains (finite or infinite).

Notation: IG" denotes the order of (.

Examples

« /, under addition has infinite order

.+ U(10) = {1, 3,7,9} under multiplication mod 10 has order 4
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Definition: Order of an Element

For element g in group G, the order of g is the smallest positive integer n such that
mn

g =e
Notation: |g| denotes the order of element g.

If no such n exists, then g has infinite order.

Finding Element Orders

Compute the sequence g, g2, 93, ... until reaching the identity e for the first time.
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Example 1: Orders in U(15)
Given: U(15) = {1,2,4,7,8,11, 13, 14} under multiplication mod 15
Finding |7|:

e

- 7"=49=4 (mod 15)

- 7*=7-4=28=13 (mod 15)
-7 =7.13=91=1 (mod 15)

Therefore: |7| = 4

Computational Trick: Since 13 = —2  (mod 15):

« 13°=(-2)-4=-8=7 (mod 15)
- 13 =(-2)(-8)=16=1 (mod 15)
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Example 2: Orders in 7,
Given: Z1p under addition mod 10

Finding |2| (additive notation: 1 - 2 means 2 2+ --- + 2).

-~

n times
e 1:2=2
« 2:2=4
«3:2=26
«4-2=28
+5:2=10=0 (mod 10)

Therefore: [2| = 5

Complete Results: [0| =1, |5| =2, |2| = |4| = |6| = |8 = 5,
1 =B =17 =[9] =10

10/26/2025 Fahd Alshammari - MATH343 - Finite Groups and Subgroups



Example 3: Orders in Z

Given: Z under ordinary addition

For any nonzero element a:

The sequence is a, 2a, 3a, 4a, . ..

Since @ # 0, we never reach 0

Therefore: Every nonzero element has infinite order

Only: [0| =1
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Subgroups

Definition: Subgroup

If subset H of group G is itself a group under the operation of G, then H is a subgroup of
G.

Notation:

« H < GG means "H is a subgroup of G"

« H < G means "H is a proper subgroup of G" (not equal to GG)

Special Subgroups

+ Trivial subgroup: {e}

« Nontrivial subgroup: Any subgroup except {e}
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Subgroup Tests

Theorem 3.1: One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. [f ab™' € H whenever a,b € H, then
H is a subgroup of G.

Proof of Theorem 3.1

Associativity: Inherited from G

Identity: Since H nonempty, pick x € H.leta = z,b =
e=zx '=ab '€ H

Inverses: Forxz € H,leta = e,b = a:

rl=ex '=ablcH

Closure: Forz,y € H,wehavey ! € H.leta =z,b=y
zy=z(y ) '=abtcH
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Applying the One-Step Test

Four Steps:

1. ldentify property P that defines elements of H
2. Verify identity has property P (ensures H nonempty)
3. Assume elements a, b have property P

4. Show ab ! has property P
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Example 4: Elements of Order 2

Claim: In Abelian group G, H = {:I: €G:x= e} Is a subgroup.

2 n
— €

Step 1: Property P is "x
Stf-:-p2:e'-32 —e,soec H
Step 3: Assume a,b € H, so a’ = eand b’ = e

Step 4: Show (ab ')* = e:
(ab ') =ablab ' =a*(b ")’ =a’(b’) ' =e-e ' =e

Therefore: H is a subgroup by Theorem 3.1.
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Theorem 3.2: Two-Step Subgroup Test

Let GG be a group and H a nonempty subset of G. If:

1. ab € H whenever a,b € H (closure)

2. a ' € H whenevera € H (inverse closure)

Then H is a subgroup of G.

Proof of Theorem 3.2

Since H nonempty and closed, pick a € H.

. Thena ' € H by condition 2
« Soe =aa ' € H by condition 1

« Associativity inherited from G

Therefore: H is a subgroup.
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Example 6: Elements of Finite Order

Claim: In Abelian group G, H = {x € G : |z| is finite} is a subgroup.
Property P: "Element has finite order"

Identity: |e| = 1 (finite), soe € H

Closure: If |a| = m and |b| = n, then:

So |ab| divides mn (hence finite)

Inverses: If |a| = m, then:
(a—l)m _ (am)—l _ (—3_1 — e

So |a,_1| < m (hence finite)
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Example 7: Product of Subgroups

Claim: For Abelian group GG with subgroups H, K:
HK ={hk:he€ H,k € K}
is a subgroup of G.

Identity:e = e-e € HK (sincee € H ande € K)

Closure: For h1k1, hoks € HK:
(hlkl)(hzkg) = hiki1hoks = hihok1ky € HK

(using commutativity and closure in $H, K$)

Inverses: For hk € HK:
(hk) ' =k 'ht=h'k' € HK
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Showing a Subset is NOT a Subgroup

Three Ways to Disprove:

1. Show identity not in set
2. Find element whose inverse is not in set

3. Find two elements whose product is not in set
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Example 8: Non-Subgroups

Group: Nonzero reals under multiplication
Set H = {x : = 1 or x irrational }:

‘ \/§€Hbut\/§'\/§:2¢f[

* Not closed, so not a subgroup
Set K ={x:z > 1}

: 1
2eKbut2—1:2¢K

* Not inverse-closed, so not a subgroup
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Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of group G. If H is closed under the operation of G,

then H is a subgroup of G.

Proof of Theorem 3.3

Need only show inverse closure (Theorem 3.2).

Fora € H with a # e, consider a, a’,a’, ...

Since H finite and closed, not all powers are distinct.
Say a' = a’ with $i > j$,soa’’ = e.

Letm = 7 — 7 > 0 (smallest such positive integer).

Thena™ '-a=am =esoa '=a™ ' c H.

Therefore: H is a subgroup.

Fahd Alshammari - MATH343 - Finite Groups and Subgroups

16



Cyclic Subgroups
Notation For element a in group G: (a) = {a" : n € Z}

Note: Includes all integer powers (positive, negative, and zero)

Theorem 3.4: (a) Is a Subgroup

For any element a in group G, (a) is a subgroup of G.

Proof of Theorem 3.4
Sincea = a* € a), the set is nonempty.

(
Fora™,a" € (a):
am(an) 1 am a —-n _ am—n c <CL>

By Theorem 3.1, {(a) is a subgroup.
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Cyclic Groups and Generators
Definition:

+ (@) is the cyclic subgroup generated by a
+ If G = (a), then G is cyclic and a is a generator of G

« Every cyclic group is Abelian

Key Fact: In Chapter 4, we'll prove |(a)| = |a]
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Example 9: U(10) is Cyclic
Given: U(10) = {1,3,7,9}
Computing (3):

- 3'=3
«32=9
+ 32 =27=7 (mod 10)
- 3'=21=1 (mod 10)

Negative Powers (since 3 - = 7 in U (10)):
+31=173%2=93°%=33"=1
Result: (3) = {3,9,7,1} = U(10)
Therefore: U (10) is cyclic with generator 3.
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Example 10: Additive Cyclic Group

Given: Z1o under addition mod 10

Computing (2) (additive notation: m - 2):

«1-2=2
«2:2=14
«3:2=26
«4.2=28
« 92 = 0 (identity)

Result: (2) = {0,2,4,6,8}
Observation: This is the subgroup of even elements in Zqy.
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Example 11: Infinite Cyclic Group
Given: Z under addition
Computing (—1):

« Positive multiples: 1(—1) = —1,2(—1) = —2,3(-1) = —3,...
» Negative multiples: (—1)(—1) =1,(=2)(—-1) =2,(-3)(-1) = 3,...
« Zero multiple: 0(—1) =0

Result: (—1) = 7Z
Therefore: Z is cyclic with generator —1 (also generator 1).
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Example 12: Dihedral Group Rotations

360°
Given: D,, with rotation R of
n

Computing (R):

R' = R (rotation by 360 )
n

2 o
R? (rotation by 720 )
n

R™ = R30 — ¢ (full rotation)

RPMM'=R.R"=R-e=R

Pattern: Powers cycle with period n

(R) ={e,R,R* ..., R" '}

Visual: Moving counterclockwise around vertices for positive powers, clockwise for negative
powers.
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Example 13: D; as Subgroup of D
Setup: Equilateral triangle inscribed in regular hexagon

Elements:

« Rotations: Ry, Ri20, Ro49
« Reflections: F', Ri20F', RogoF'

Verification: K = { Ry, R120, Ro40, F', R120F', Ro4oF'} forms a subgroup of Dg.

Structure: This demonstrates how smaller dihedral groups naturally embed in larger ones.
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Generated Subgroups

Definition: Subgroup Generated by Set S
For subset S of group G, (S) is the smallest subgroup of G containing S.

Equivalently: (S) is the intersection of all subgroups of GG that contain \S.
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Example 14: Multiple Generators

In Zso: (8,14) = {0,2,4,...,18} = (2)

InZ: (8,13) = 7Z

In Dy: (H,V) ={Ry, Ris0, H,V}, (Rgo, V) = Dy

In R (addition): (2, , \/5) = {2a + br + cV2:a,b,cc A
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Center of a Group

Definition: Center of a Group

The center Z(G) of group G is:
Z(G)={a€G:ax==zxaforall z € G}

Interpretation: Elements that commute with every group element.

10/26/2025 Fahd Alshammari - MATH343 - Finite Groups and Subgroups

26



10/26/2025

Theorem 3.5: Center Is a Subgroup

The center Z (@) of any group G is a subgroup of G.

Proof of Theorem 3.5

|dentity: ex = zeforallx € G, soe € Z(G).

Closure: Fora,b € Z(G) and any x € G-
(ab)z = a(bzx) = a(xb) = (az)b = (za)b = x(abd)

Soab € Z(G).

Inverses: For a € Z(G) and any x € G, we have ax = zxa.

Multiply both sides by a ! on left and right:

a az)a ' =a Y(za)a !

;va,_l — a_la:

soa ' € Z(G).
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Example 15: Centers of Dihedral Groups
Statement: For (n > 3), Z(D,,) = {RO, R.gy ifniseven Ry if nis odd

Detailed Verification:
Step 1: Rotations commute with each other

« Every rotation in ( D, ) is a power of ( Rgﬁo/n )

« Powers of the same element commute: ( R'-RI =R =R =RI. Ri)
Step 2: When do rotations commute with reflections?

« Let (R) be any rotationin ( D,, ) and ( F) any reflectionin ( D,, )
« Key insight: ( RF') is a reflection (composition of rotation and reflection)

» Therefore: ( RF = (RF)_1 — F 'R ! = FR™') (since reflections are self-inverse)
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Step 3: Condition for commutativity

R and F' commute ifand only if RF = FR
From Step 2: RF = FR™!

So: RF = FR ifandonlyif FR=FR !
By cancellation: R = R ™!

Step 4: When does R =R 1 ?

. (R=R! ) if and onlyif(R2 —e)
« In (D, ) only (Ry) (identity) and ( R_{180} ) (when it exists) satisfy this

e (Rygp) existsin (D, ) only when (n) is even
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Conclusion:

« When (n ) is odd: only ( Ry ) commutes with all elements — (Z(Dn) = Ry)

« When (n) is even: both ( Ry ) and ( R1g9) commute with all elements
— (Z(Dy) = Ry, Rigo)
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Definition: Centralizer of ain G

Definition: Let a be a fixed element of a group G. The centralizer of a in (G, denoted
C'(a), is the set of all elements in G that commute with a.

Symbolic Definition:

C(a) =19 € G | ga = ag}
Key Properties:

« a € C(a) (every element commutes with itself)

« All powers of @ are in C'(a): a" € C(a) forallm € Z
« e € C(a) (identity commutes with everything)

« Z(G) C C(a) foreverya € G
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Example 16: Centralizers in D4
Setup: Recall Dy = {Rg, Ryg, Rig9, Ro7g, H,V, D, D’}

« Rotations: Ry (identity), Rgg, R1g0. R270

« Reflections: H (horizontal), V' (vertical), D (diagonal), D' (other diagonal)
Detailed Calculations:

1. Centralizers of Rotations:

C(Ry) = D (identity commutes with everything)
C'(R180) = Dy (from Example 15, Ryg9 € Z(Dy))
C(Rgo) = {Ro, Roo, Riso, Roro }

« All rotations commute with each other

* No reflections commute with Rgq (since Rgg # Rg_ol = Ro70)
C(Rar0) = {Ro, Roo, Riso, Raro} = C(Roo)

« Same reasoning as for Ry
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2. Centralizers of Reflections:

C(H) = {Ry, H, Rigy, V)

« Ry, Rqgp are in the center

« H commutes with itself

« V commutes with H because both are "axis-parallel" reflections
C(V) = {Ry, H, Rigo, V} = C(H)

C(D) = {Ry, D, Ryso, D’}

« Ry, Rygp are in the center
o D commutes with itself

« D' commutes with D because both are diagonal reflections

O(D’) — {Ro,D,ngg,D,} — C(D)

Pattern: Each centralizer forms a subgroup of order 4 in D4 (which has order 8).
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Theorem 3.6: C(a) Is a Subgroup

Theorem: For each a in a group G, the centralizer of a is a subgroup of G.
Proof: We use the Two-Step Subgroup Test (Theorem 3.2).

Step 1: Show C(a) is nonempty

+ Since ae = ea = a, we have e € C(a)

+ Therefore C'(a) # ()

Step 2: Show closure under the operation

. Letg, g2 € C(a)
« This means gia = ag; and goa = ag»

« We must show (9192)‘1 — a(9192)
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Computation: (glgg)a = gl(gga,) = gl(agz) — (g1a)92 — (691)92 — 3(9192)
« Therefore g1g2 € C(a)

Step 3: Show closure under inverses

. letg € C(a), soga = ag

« We must show g 'a = ag™?

Computation: From ga = ag, multiply both sides on the left by g*1 and on the right by
—1
g

1

9 '(9a)g ' =g '(ag)g

(9 '9)ag ' =g 'algg ")

~1 —1
ceag =g ae

cag ‘=g 'a

Therefore g € C(a)

Conclusion: By the Two-Step Subgroup Test, C'(a) is a subgroup of G. o
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Key Relationships: Center and Centralizers

1. Center is contained in every centralizer:

Z(G) CC(a)foralla € G
Proof: If z € Z(G), then za = az foralla € G, so z € C(a) for any particular a.

2. Characterization of Abelian groups:

G is Abelian < C(a) =G foralla € G
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Proof:

« (=) If G is Abelian, every element commutes with every other element

« (=) If C(a) = ( for all a, then every element commutes with every other element
3. Self-centralizing property: a € C(a) always holds

4. Hierarchy of containment:
For any element a in group G
le} S {a) CCla) CG
Z(G)CC(a) CG
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