Chapter 3: Finite Groups; Subgroups

Definition: Order of a Group

The **order** of a group G is the number of elements it contains (finite or infinite).

Notation: |G| denotes the order of G.

Examples

- \mathbb{Z} under addition has **infinite order**
- $U(10) = \{1, 3, 7, 9\}$ under multiplication mod 10 has **order 4**

Definition: Order of an Element

For element g in group G, the **order** of g is the smallest positive integer n such that $g^n=e$.

Notation: |g| denotes the order of element g.

If no such n exists, then g has **infinite order**.

Finding Element Orders

Compute the sequence g, g^2, g^3, \ldots until reaching the identity e for the first time.

Example 1: Orders in U(15)

Given: $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$ under multiplication mod 15

Finding |7|:

- $7^1 = 7$
- $7^2 = 49 \equiv 4 \pmod{15}$
- $7^3 = 7 \cdot 4 = 28 \equiv 13 \pmod{15}$
- $7^4 = 7 \cdot 13 = 91 \equiv 1 \pmod{15}$

Therefore: |7| = 4

Computational Trick: Since $13 \equiv -2 \pmod{15}$:

- $13^2 = (-2)^2 = 4$
- $13^3 = (-2) \cdot 4 = -8 \equiv 7 \pmod{15}$
- $13^4 = (-2)(-8) = 16 \equiv 1 \pmod{15}$

Example 2: Orders in \mathbb{Z}_{10}

Given: \mathbb{Z}_{10} under addition mod 10

Finding
$$|2|$$
 (additive notation: $n \cdot 2$ means $\underbrace{2 + 2 + \cdots + 2}_{n \text{ times}}$):

•
$$1 \cdot 2 = 2$$

•
$$2 \cdot 2 = 4$$

•
$$3 \cdot 2 = 6$$

•
$$4 \cdot 2 = 8$$

•
$$5 \cdot 2 = 10 \equiv 0 \pmod{10}$$

Therefore: |2| = 5

Complete Results:
$$|0|=1$$
, $|5|=2$, $|2|=|4|=|6|=|8|=5$, $|1|=|3|=|7|=|9|=10$

Example 3: Orders in Z

Given: \mathbb{Z} under ordinary addition

For any nonzero element a:

- The sequence is $a, 2a, 3a, 4a, \ldots$
- Since $a \neq 0$, we never reach 0
- Therefore: Every nonzero element has infinite order
- Only: |0| = 1

Subgroups

Definition: Subgroup

If subset H of group G is itself a group under the operation of G, then H is a **subgroup** of G.

Notation:

- ullet $H \leq G$ means "H is a subgroup of G"
- H < G means "H is a proper subgroup of G" (not equal to G)

Special Subgroups

- Trivial subgroup: $\{e\}$
- Nontrivial subgroup: Any subgroup except $\{e\}$

Subgroup Tests

Theorem 3.1: One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If $ab^{-1} \in H$ whenever $a,b \in H$, then H is a subgroup of G.

Proof of Theorem 3.1

Associativity: Inherited from ${\it G}$

Identity: Since H nonempty, pick $x \in H$. Let a = x, b = x:

$$e = xx^{-1} = ab^{-1} \in H$$

Inverses: For $x \in H$, let a = e, b = x:

$$x^{-1} = ex^{-1} = ab^{-1} \in H$$

Closure: For $x,y\in H$, we have $y^{-1}\in H$. Let $a=x,b=y^{-1}$: $xy=x(y^{-1})^{-1}=ab^{-1}\in H$

Applying the One-Step Test

Four Steps:

- 1. **Identify property** P that defines elements of H
- 2. Verify identity has property P (ensures H nonempty)
- 3. Assume elements a,b have property P
- 4. Show ab^{-1} has property P

Example 4: Elements of Order 2

Claim: In Abelian group G, $H=\{x\in G: x^2=e\}$ is a subgroup.

Step 1: Property P is " $x^2=e$ "

Step 2: $e^2=e$, so $e\in H$

Step 3: Assume $a,b\in H$, so $a^2=e$ and $b^2=e$

Step 4: Show $(ab^{-1})^2=e$: $(ab^{-1})^2=ab^{-1}ab^{-1}=a^2(b^{-1})^2=a^2(b^2)^{-1}=e\cdot e^{-1}=e$

Therefore: H is a subgroup by Theorem 3.1.

Theorem 3.2: Two-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If:

- 1. $ab \in H$ whenever $a,b \in H$ (closure)
- 2. $a^{-1} \in H$ whenever $a \in H$ (inverse closure)

Then H is a subgroup of G.

Proof of Theorem 3.2

Since H nonempty and closed, pick $a \in H$.

- Then $a^{-1} \in H$ by condition 2
- So $e=aa^{-1}\in H$ by condition 1
- Associativity inherited from ${\it G}$

Therefore: H is a subgroup.

Example 6: Elements of Finite Order

Claim: In Abelian group G, $H=\{x\in G: |x| ext{ is finite}\}$ is a subgroup.

Property P: "Element has finite order"

Identity: |e|=1 (finite), so $e\in H$

Closure: If |a|=m and |b|=n, then: $(ab)^{mn}=(a^m)^n(b^n)^m=e^n\cdot e^m=e$ So |ab| divides mn (hence finite)

Inverses: If |a|=m, then: $(a^{-1})^m=(a^m)^{-1}=e^{-1}=e$ So $|a^{-1}|\leq m$ (hence finite)

Example 7: Product of Subgroups

Claim: For Abelian group G with subgroups H,K:

$$HK = \{hk : h \in H, k \in K\}$$

is a subgroup of G.

Identity: $e=e\cdot e\in HK$ (since $e\in H$ and $e\in K$)

Closure: For $h_1k_1, h_2k_2 \in HK$:

$$(h_1k_1)(h_2k_2)=h_1k_1h_2k_2=h_1h_2k_1k_2\in HK$$

(using commutativity and closure in \$H, K\$)

Inverses: For $hk \in HK$:

$$(hk)^{-1} = k^{-1}h^{-1} = h^{-1}k^{-1} \in HK$$

Showing a Subset is NOT a Subgroup

Three Ways to Disprove:

- 1. Show identity not in set
- 2. Find element whose inverse is not in set
- 3. Find two elements whose product is not in set

Example 8: Non-Subgroups

Group: Nonzero reals under multiplication

Set
$$H = \{x : x = 1 \text{ or } x \text{ irrational}\}$$
:

•
$$\sqrt{2} \in H$$
 but $\sqrt{2} \cdot \sqrt{2} = 2 \notin H$

Not closed, so not a subgroup

Set
$$K = \{x : x \ge 1\}$$
:

•
$$2 \in K$$
 but $2^{-1} = rac{1}{2}
otin K$

Not inverse-closed, so not a subgroup

Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of group G. If H is closed under the operation of G, then H is a subgroup of G.

Proof of Theorem 3.3

Need only show inverse closure (Theorem 3.2).

For $a \in H$ with $a \neq e$, consider a, a^2, a^3, \ldots

Since H finite and closed, not all powers are distinct. Say $a^i=a^j$ with i > i, so $a^{i-j}=e$.

Let m=i-j>0 (smallest such positive integer). Then $a^{m-1}\cdot a=a^m=e$, so $a^{-1}=a^{m-1}\in H$.

Therefore: H is a subgroup.

Cyclic Subgroups

Notation For element a in group $G:\langle a\rangle=\{a^n:n\in\mathbb{Z}\}$

Note: Includes all integer powers (positive, negative, and zero)

Theorem 3.4: $\langle a \rangle$ Is a Subgroup

For any element a in group G, $\langle a \rangle$ is a subgroup of G.

Proof of Theorem 3.4

Since $a=a^1\in\langle a
angle$, the set is nonempty.

For
$$a^m, a^n \in \langle a
angle$$
: $a^m (a^n)^{-1} = a^m \cdot a^{-n} = a^{m-n} \in \langle a
angle$

By Theorem 3.1, $\langle a \rangle$ is a subgroup.

Cyclic Groups and Generators

Definition:

- $\langle a
 angle$ is the **cyclic subgroup generated by** a
- If $G=\langle a
 angle$, then G is **cyclic** and a is a **generator** of G
- Every cyclic group is Abelian

Key Fact: In Chapter 4, we'll prove $|\langle a \rangle| = |a|$

Example 9: U(10) is Cyclic

Given: $U(10) = \{1, 3, 7, 9\}$

Computing $\langle 3 \rangle$:

- $3^1 = 3$
- $3^2 = 9$
- $3^3 = 27 \equiv 7 \pmod{10}$
- $3^4 = 21 \equiv 1 \pmod{10}$

Negative Powers (since $3^{-1}=7$ in U(10)):

•
$$3^{-1} = 7$$
, $3^{-2} = 9$, $3^{-3} = 3$, $3^{-4} = 1$

Result: $\langle 3 \rangle = \{3,9,7,1\} = U(10)$

Therefore: U(10) is cyclic with generator 3.

Example 10: Additive Cyclic Group

Given: \mathbb{Z}_{10} under addition mod 10

Computing $\langle 2 \rangle$ (additive notation: $n \cdot 2$):

- $1 \cdot 2 = 2$
- $2 \cdot 2 = 4$
- $3 \cdot 2 = 6$
- $4 \cdot 2 = 8$
- $5 \cdot 2 = 0$ (identity)

Result: $\langle 2 \rangle = \{0,2,4,6,8\}$

Observation: This is the subgroup of even elements in \mathbb{Z}_{10} .

Example 11: Infinite Cyclic Group

Given: \mathbb{Z} under addition

Computing $\langle -1 \rangle$:

- Positive multiples: $1(-1) = -1, 2(-1) = -2, 3(-1) = -3, \dots$
- Negative multiples: $(-1)(-1)=1, (-2)(-1)=2, (-3)(-1)=3, \ldots$
- Zero multiple: 0(-1) = 0

Result: $\langle -1 \rangle = \mathbb{Z}$

Therefore: \mathbb{Z} is cyclic with generator -1 (also generator 1).

Example 12: Dihedral Group Rotations

Given: D_n with rotation R of $\frac{360}{}^\circ$

Computing $\langle R \rangle$:

- $R^1=R$ (rotation by $\dfrac{360°}{n}$)
 R^2 (rotation by $\dfrac{720°}{n}$)
- $R^n=R^{360^\circ}=e$ (full rotation)
- $R^{n+1} = R \cdot R^n = R \cdot e = R$

Pattern: Powers cycle with period n $\langle R \rangle = \{e, R, R^2, \dots, R^{n-1}\}$

Visual: Moving counterclockwise around vertices for positive powers, clockwise for negative powers.

Example 13: D_3 as Subgroup of D_6

Setup: Equilateral triangle inscribed in regular hexagon

Elements:

- Rotations: R_0, R_{120}, R_{240}
- Reflections: $F, R_{120}F, R_{240}F$

Verification: $K = \{R_0, R_{120}, R_{240}, F, R_{120}F, R_{240}F\}$ forms a subgroup of D_6 .

Structure: This demonstrates how smaller dihedral groups naturally embed in larger ones.

Generated Subgroups

Definition: Subgroup Generated by Set S

For subset S of group G, $\langle S \rangle$ is the **smallest subgroup** of G containing S.

Equivalently: $\langle S
angle$ is the intersection of all subgroups of G that contain S.

Example 14: Multiple Generators

In
$$\mathbb{Z}_{20}$$
: $\langle 8,14
angle = \{0,2,4,\ldots,18\} = \langle 2
angle$

In
$$\mathbb{Z}$$
: $\langle 8, 13 \rangle = \mathbb{Z}$

In
$$D_4$$
: $\langle H,V
angle=\{R_0,R_{180},H,V\}$, $\langle R_{90},V
angle=D_4$

In
$$\mathbb R$$
 (addition): $\langle 2,\pi,\sqrt{2}
angle=\{2a+b\pi+c\sqrt{2}:a,b,c\in\mathbb Z\}$

Center of a Group

Definition: Center of a Group

The **center** Z(G) of group G is:

$$Z(G) = \{a \in G : ax = xa \text{ for all } x \in G\}$$

Interpretation: Elements that commute with every group element.

Theorem 3.5: Center Is a Subgroup

The center Z(G) of any group G is a subgroup of G.

Proof of Theorem 3.5

Identity: ex=xe for all $x\in G$, so $e\in Z(G)$.

Closure: For $a,b\in Z(G)$ and any $x\in G$: (ab)x=a(bx)=a(xb)=(ax)b=(xa)b=x(ab)

So $ab \in Z(G)$.

Inverses: For $a \in Z(G)$ and any $x \in G$, we have ax = xa. Multiply both sides by a^{-1} on left and right:

 $a^{-1}(ax)a^{-1} = a^{-1}(xa)a^{-1}$ $xa^{-1} = a^{-1}x$

So
$$a^{-1} \in Z(G)$$
.