Chapter 3: Finite Groups; Subgroups



Definition: Order of a Group

The order of a group GG is the number of elements it contains (finite or infinite).

Notation: |G" denotes the order of .

Examples

« /, under addition has infinite order

- U(10) = {1, 3,7,9} under multiplication mod 10 has order 4



Definition: Order of an Element

For element g in group G, the order of g is the smallest positive integer 1 such that
n

g = e
Notation: |g| denotes the order of element g.

If no such n exists, then g has infinite order.

Finding Element Orders

Compute the sequence g, g2, gg, ... until reaching the identity e for the first time.



Example 1: Orders in U(15)

Given: U(15) = {1,2,4,7,8,11, 13,14} under multiplication mod 15
Finding |7/:

- TH=T

- 77=49=4 (mod 15)

+ 7*=7-4=28=13 (mod 15)

- 7"=7-13=91=1 (mod 15)

Therefore: |7| = 4

Computational Trick: Since 13 = —2 (mod 15):



Example 2: Orders in 7z,
Given: Zjg under addition mod 10

Finding |2| (additive notation: 7 - 2 means 2 + 2 + - - - + 2).

n times
e 1-2=2
«2:2=1
«3:-2=6
«4.2=28
+5-2=10=0 (mod 10)

Therefore: |2| — 5

Complete Results: [0| =1, [5| = 2, |2| = |4| = |6| = |8| = 5,
1] =3[ =7 = 9] =10



Example 3: Orders in Z

Given: Z under ordinary addition
For any nonzero element a:

 The sequence is a, 2a, 3a, 4a, . ..
» Since a # 0, we never reach ()

« Therefore: Every nonzero element has infinite order

+ Only: 0| =1



Subgroups

Definition: Subgroup

If subset H of group G is itself a group under the operation of G, then H is a subgroup of
G.

Notation:;

« H < G means "H is a subgroup of G"

« H < G means "H is a proper subgroup of G" (not equal to G3)

Special Subgroups

+ Trivial subgroup: {e}

« Nontrivial subgroup: Any subgroup except {e}



Subgroup Tests

Theorem 3.1: One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab ' € H whenever a,b € H, then
H is a subgroup of G.

Proof of Theorem 3.1

Associativity: Inherited from G

Identity: Since H nonempty, pickx € H.leta = z,b = x:
e=zzr "=ab '€ H

Inverses: Forx € H,leta =e,b = x:
rl=ex'=ablecH

Closure: Forz,y € H,wehavey ' € H.leta=z,b=1vy "

zy=x(y ') ' =ab'cH



Applying the One-Step Test

Four Steps:

1. ldentify property P that defines elements of H
2. Verify identity has property P (ensures H nonempty)
3. Assume elements a, b have property P

4. Show ab ! has property P



Example 4. Elements of Order 2

Claim: In Abelian group G, H = {a: cG:z’= e} Is a subgroup.

2 1]
— €

Step 1: Property P is "z
Step2:e2 — e soe & H
Step 3: Assume a,b € H,soa” = eand b* = e

Step 4: Show (ab ')* = e:
(ab')? =ab lab ' =a*(b ')’ =a’(b®) '=e-e ' =e

Therefore: H is a subgroup by Theorem 3.1.



Theorem 3.2: Two-Step Subgroup Test

Let GG be a group and H a nonempty subset of G. If:

1. ab € H whenever a,b € H (closure)

2. a ' € H whenevera € H (inverse closure)

Then H is a subgroup of G.

Proof of Theorem 3.2

Since H nonempty and closed, picka € H.

+ Thena ' € H by condition 2
+ Soe =aa ' € H by condition 1

« Associativity inherited from G

Therefore: H is a subgroup.



Example 6: Elements of Finite Order

Claim: In Abelian group G, H = {x € G : |z| is finite} is a subgroup.
Property P: "Element has finite order”

Identity: |e| — 1 (finite), soe € H

Closure: If |a,| — m and ‘b‘ — n, then:

So ‘ab\ divides mn (hence finite)

Inverses: If ‘a,‘ — m, then:
(a—l)m _ (am)—l _ 8_1 — e

So ‘a_l‘ < m (hence finite)



Example 7: Product of Subgroups

Claim: For Abelian group GG with subgroups H, K:
HK ={hk:he€e H ke K}
is a subgroup of G.

Identity:e = e-e € HK (sincee € H ande € K)

Closure: For h1k1, hoky € HK:
(hlkl)(hgkg) — hikihoks = hihok1ko € HK

(using commutativity and closure in $H, K$)

Inverses: For hk € HK:
(hk) '=k'ht'=h"'k' € HK



Showing a Subset is NOT a Subgroup

Three Ways to Disprove:

1. Show identity not in set
2. Find element whose inverse is not in set

3. Find two elements whose product is not in set



Example 8: Non-Subgroups

Group: Nonzero reals under multiplication
Set H = {z : x = 1 or x irrational }:

‘ \/EEHbut\/ﬁ'\/?:2¢H

* Not closed, so not a subgroup

Set K ={z:x > 1}

: 1
2eKbut2—1:2¢K

* Not inverse-closed, so not a subgroup



Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of group G. If H is closed under the operation of G,
then H is a subgroup of GG.

Proof of Theorem 3.3

Need only show inverse closure (Theorem 3.2).

Fora € H with a # e, consider a, a*, a’, . . .

Since H finite and closed, not all powers are distinct.
Say a' = a’ with $i > j$,s0a’ 7 = e.

Letm = ¢ — 7 > 0 (smallest such positive integer).
m—1

Then a ~a:am:e,soa_1:a,m_1EH.

Therefore: H is a subgroup.



Cyclic Subgroups

Notation For element a in group G: (a) = {a" : n € Z}

Note: Includes all integer powers (positive, negative, and zero)

Theorem 3.4: (a) Is a Subgroup

For any element a in group G, (a) is a subgroup of G.

Proof of Theorem 3.4

Sincea =a' € a,> the set is nonempty.

<
For a™ € (a):
am(an) 1 am a —n _ am—n c <CL>

By Theorem 3.1, {a) is a subgroup.



Cyclic Groups and Generators
Definition:

» (a) is the cyclic subgroup generated by a
+ If G = (a), then G is cyclic and a is a generator of G

« Every cyclic group is Abelian

Key Fact: In Chapter 4, we'll prove |(a)| = |a]



Example 9: U(10) is Cyclic
Given: U (10) = {1,3,7,9}

Computing (3):

3' =3
3*=9
3°=27=7 (mod 10)
3'=21=1 (mod 10)

Negative Powers (since 3~ ' = 7in U(10)):
+31=737%=93°=33"=1
Result: (3) =4{3,9,7,1} = U(10)

Therefore: U (10) is cyclic with generator 3.



Example 10: Additive Cyclic Group
Given: Z1g under addition mod 10

Computing (2) (additive notation: m - 2):

«e1-2=2
« 2.-2=4
«3:2=26
¢« 4.2=28
« 5 -2 = 0 (identity)

Result: (2) = {0, 2,4, 6,8}

Observation: This is the subgroup of even elements in Zqy.



Example 11: Infinite Cyclic Group
Given: Z under addition
Computing (—1):

« Positive multiples: 1(—1) = —1,2(—1) = —-2,3(—1) = -3,...

« Negative multiples: (—1)(—1) =1,(-2)(—1) = 2,(-3)(-1) = 3,...

+ Zero multiple: 0(—1) = 0
Result: (—1) = Z

Therefore: Z is cyclic with generator —1 (also generator 1).



Example 12: Dihedral Group Rotations

360°
Given: D,, with rotation R of
n

Computing (R):

R'=R (rotation by 360 )

n
2 =]
R? (rotation by 720 )
n

R"™ = R3" — ¢ (full rotation)

RMM'=R.R"=R-e=R

Pattern: Powers cycle with period n

(R) ={e,R,R*,...,R" '}

Visual: Moving counterclockwise around vertices for positive powers, clockwise for negative
powers.



Example 13: D; as Subgroup of Dy
Setup: Equilateral triangle inscribed in regular hexagon

Elements:

e Rotations: Ry, R120, R240
o« Reflections: F', Ri99F', RogoF’

Verification: K = { Ry, R120, R240, F', R120F', Ro49F'} forms a subgroup of Dg.

Structure: This demonstrates how smaller dihedral groups naturally embed in larger ones.



Generated Subgroups

Definition: Subgroup Generated by Set S
For subset S of group G, (S) is the smallest subgroup of G containing S.

Equivalently: (.S) is the intersection of all subgroups of G that contain S.



Example 14: Multiple Generators

In Zgoi <8, 14> — {0, 2, 4, e ooy 18} — <2>

InZ: (8,13) = Z

In Dy: <Ha V> — {ROaRISOaHa V} ,. <R909 V> = Dy

In R (addition): (2, , \/§> = {2a

br

cV2:a,bc€eZ}



Center of a Group

Definition: Center of a Group

The center Z(G) of group G is:
Z(G)={a € G:ax ==zxaforall z € G}

Interpretation: Elements that commute with every group element.



Theorem 3.5: Center Is a Subgroup

The center Z (@) of any group G is a subgroup of G.

Proof of Theorem 3.5

Identity: ex = zeforallz € G,soe € Z(Q).

Closure: Fora,b € Z(G) and any xz € G-
(ab)x = a(bx) = a(xb) = (ax)b = (za)b = x(ab)

Soab € Z(G).

Inverses: Fora € Z(G) and any € G, we have ax = za.
Multiply both sides by a ! on left and right:
a ‘(az)a ' =a (za)a"

—1 1

ra  —a X

Soa '€ Z(G’).



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

