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Well Ordering Principle

Axiom (Well Ordering Principle)

Every nonempty set of positive integers contains a smallest member.

Key Point: This property cannot be proved from usual arithmetic properties—we take it as an
axiom.

Why Important: Foundation for mathematical induction and many fundamental theorems in
number theory.
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Divisibility
Definition: A nonzero integer t is a divisor of an integer s if there exists an integer u such
that s = tu.

Notation:

+ t|s means "t divides 8"

e {1 )( S means "t does not divide 8"

Definition: A prime is a positive integer greater than 1 whose only positive divisors are 1 and
itself.

Definition: An integer s is a multiple of integer £ if § = tu for some integer u.
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The Division Algorithm

Theorem (Division Algorithm)

Let @ and b be integers with b > 0. Then there exist unique integers g and r such that:
a=bg+r, where0<r<b

Terminology:

* q

« 7 = remainder upon dividing a by b

quotient upon dividing a by b
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Examples of Division Algorithm

Example 1:

e Fora=17andb=5:17T=5-3 + 2
¢« Fora=—23andb = 6: —23:6(—4)—|—1

Strateqgy for Divisibility Proofs:
To show b divides a, write @ = bg + 7 where 0 < r < b, then use properties of @ and b to

show r = 0.
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Greatest Common Divisor

Definition: The greatest common divisor of nonzero integers a and b is the largest of all
common divisors of @ and b.

Notation: gcd(a, b)

Definition: When gcd(a, b) = 1, we say a and b are relatively prime.

GCD as Linear Combination

Theorem: For any nonzero integers a and b, there exist integers s and ¢ such that:

gcd(a, b) = as + bt

Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.
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Corollary: Relatively Prime Characterization

Corollary: Integers a and b are relatively prime if and only if there exist integers s and ¢ such
that as + bt = 1.

Examples:

gcd(4,15) = 1; ged(4,10) = 2
ged(22-32-5,2-3%.7%) = 2.3
4-4415(-1) =1
4(—2)+10-1=2
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Application: Polynomial Expressions
Example: For any integer n, the integers n + 1 and n®+mn+ 1 are relatively prime.
Proof: We need to show ged(n + 1,n* +n+1) = 1.

Observe that:
n“+n+l—-nn+l)=n*+n+1l-n"—n=1

so(n*+n+1)-1+(n+1)(—n) =1

By our corollary, n + 1 and n*+mn+1are relatively prime.
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Euclid's Lemma

Lemma (Euclid's Lemma): If p is a prime that divides ab, then p divides a or p divides b.

Proof: Suppose plab but p 1 a.

Since p Is prime and p )( a, we have gcd(p, CL) = 1.

By our corollary, there exist integers s and ¢ such that 1 = as + pt.
Multiplying by b: b = abs + ptb.

Since p|ab, we have p|abs.

Since p|pt, we have p|ptb.

Therefore p|(abs + ptb) = b.

Note: This fails when p is not prime: 6[(4 - 3) but 6 { 4 and 6 1 3.
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Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic):
Every integer greater than 1is a prime or a product of primes. This product is unique, except

for the order in which the factors appear.

Thatis, it n = p1p2 -+ - pr andn = q1q2 * - - gs Where the p;'s and g;'s are primes, then
r = s and after renumbering, p; = q; for all 4.

Key Point: Primes are the "building blocks" for all integers.
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Application: Irrationality Proof

Example: For any integer n > 1, /2 is irrational.

Proof: Suppose V2 = a/b where a /b is in lowest terms.
Then 2 = a" /b", s0 20" = a".

By Fundamental Theorem, 2|a™, so 2|a (since 2 is prime).
Write @ = 2¢. Then 2b™ = (2¢)" = 2"¢c"

So b = 2" 1",

This implies 2|b", so 2|b.

But then gcd(a, b) > 2, contradicting that a /b is in lowest terms.
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Least Common Multiple

Definition: The least common multiple of nonzero integers a and b is the smallest positive
integer that is a multiple of both a and b.

Notation: lcm(a, b)
Examples:

+ lem(4,6) = 12

22 3.5,2-3°.7%)=2%.3.5.7°
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Introduction to Modular Arithmetic

Motivation: How do we count cyclically?

 Ifit's September, what month will it be 25 months from now?
« Answer: October (since 20 =2 -12 + 1)

« |fit's Wednesday, what day will it be in 23 days?

 Answer: Friday (since 23 =7 -3 + 2)

Key Insight: We don't count sequentially—we use remainders!
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Modular Arithmetic Notation

Definition: When a = gn + 7 where q is quotient and 7 is remainder upon dividing a by n
. we write:
amodn=r

Examples:

« 3mod2=1sinced =1-2+1

« 6mod 2=0since6=3-2+4+0

« 11 mod 3 =2sincell =33+ 2

« 62 mod 85 = 62 since 62 =0 -85 + 62

+ —2mod 15 =13 since —2 =(—1)-15+ 13
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Key Property of Modular Arithmetic

Important Fact: a mod n = b mod n if and only if n divides a — b.

Computing Tip: When computing (ab) mod n or (a, -+ b) mod n, it's easier to "mod
first."

Example: To compute (27 - 36) mod 11:

» 27Tmod 11 =5

» 36 mod 11 =3
+ (27-36) mod 11 = (5-3) mod 11 = 15 mod 11 =4

9/3/2025 MATH 343 - 14471 - Fahd M. Alshammari 16



Application: Check Digits
US Postal Service Money Orders:

 10-digit identification number plus check digit
« Check digit = (10-digit number) mod 9
 Example: 3953988164 has check digit 2 since 3953988164 mod 9 = 2

Error Detection:

If 39539881642 is incorrectly entered as 39559881642, computer calculates check digit as 4,
but entered check digit is 2 — Error detected!
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Mathematical Induction: First Principle

Theorem (First Principle of Mathematical Induction):
Let .S be a set of integers containing a. Suppose S has the property that whenever some

integer n > a belongs to S, then n + 1 also belongs to S. Then S contains every integer
greater than or equal to a.

Proof Strategy:

1. Base Case: Verify statement forn = a

2. Inductive Step: Assume true for n, prove true forn + 1
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Second Principle of Mathematical Induction

Theorem (Second Principle/Strong Induction):
Let S be a set of integers containing a. Suppose S has the property that n belongs to S
whenever every integer less than n and greater than or equal to a belongs to S. Then S

contains every integer greater than or equal to a.

When to Use: When proving statement for n requires knowing it's true for multiple previous

values, not justn — 1.
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Equivalence Relations
Motivation: In different contexts, different objects may be considered "the same":

« 2+ 1and 4 + 4 are different in arithmetic, same mod 5
« Congruent triangles in different positions

« Vectors with same magnitude and direction

Need: Formal mechanism to specify when objects are "equivalent”
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Definition of Equivalence Relation

Definition: An equivalence relation on set S is a set R of ordered pairs such that:

1. Reflexive: (a,a) € Rforalla € S
2. Symmetric: (a,b) € Rimplies (b,a) € R
3. Transitive: (a,b) € Rand (b,c) € Rimply (a,c) € R

Notation: Write @ ~ b instead of (a,b) € R
Equivalence Class: [a] = {z € S | x ~ a}
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Examples of Equivalence Relations

Example 1: Similar triangles

« S = set of all triangles in a plane

« a ~ bifaand b are similar (same corresponding angles)
Example 2: Polynomials with same derivative

« S = set of polynomials with real coefficients
- f~giff =4
[fl={f+clceR}

9/3/2025 MATH 343 - 14471 - Fahd M. Alshammari

22



Modular Congruence

Example 3: Congruence modulo n

« S = integers, n = positive integer

+a=b (mod n)ifn|(a—b)
Verification:

+ Reflexive: a = a (mod n) since n|(a —a) =n|0 v

« Symmetric:Ifa = b (mod n), then n|(a — b), son|(b — a), thus
b=a (modn)Vv

+ Transitive: Ifa =b (mod n)andb=c¢ (mod n), thenn|(a —b) andn|(b— c),
son|((a—0b)+ (b——c)) =n|(a—-c), thusa=c (mod n)v

Egyjaéélence CIaSSES: [a'] — {a +N&’L}34L&,ﬂ4§— 4}M.Alshammari 23



Rational Numbers as Equivalence Classes
Example 4: Fraction equivalence

- S ={(a,b) | a,bintegers,b # 0}
¢ (a,b) ~ (c,d) ifad = bc

Verification:

+ Reflexive: (a,b) ~ (a,b) since ab = ba v

+ Symmetric: If (a,b) ~ (c,d), then ad = bc, so ¢b = da, thus (¢, d) ~ (a,b) v

+ Transitive: If (a,b) ~ (c,d) and (¢, d) ~ (e, f), then ad = bc and cf = de.
Multiplying: adf = bef = bde. Since d # 0, we get af = be, so (a,b) ~ (e, ) v

Intes!/ng%tation: (CL, b) represents f&@rﬁth@@ﬂﬁ/r—lghd M. Alshammari 24



Definition: Partition

Definition: A partition of a set S is a collection of nonempty disjoint subsets of .S whose

union is S.

Examples of Partitions

Example 21: The sets {0}, {1,2,3,...},and {..., —3, —2, —1} constitute a partition of

the set of integers.

Example 22: The set of nonnegative integers and the set of nonpositive integers do NOT

partition the integers, since both contain 0.

Key Point: Partition subsets must be disjoint (no overlapping elements).
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Equivalence Classes Form Partitions

Theorem 0.7 (Equivalence Classes Partition)

The equivalence classes of an equivalence relation on a set S constitute a partition of S.

Conversely: For any partition P of S, there is an equivalence relation on .S whose
equivalence classes are the elements of P.

Big Picture: Equivalence relations and partitions are two ways of describing the same
mathematical structure!

9/3/2025 MATH 343 - 14471 - Fahd M. Alshammari 26



Proof Strategy
To show equivalence classes partition S

1. Non-empty: Each [a] Is non-empty (reflexive property: a € [a])
2. Unionis S: Every element belongs to some equivalence class

3. Disjoint: If [a] £ [b], then [a] N [b] = 0

Key Insight: If ¢ € |a| N [b], then ¢ ~ a and ¢ ~ b, which forces [a] = [b] by transitivity.
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Functions (Mappings)

Definition: A function (or mapping) ¢ from a set A to a set B is a rule that assigns to each

element a of A exactly one element b of B.
Notation: ¢ : A — B

Terminology:

« A = domainof ¢
« B =range of ¢

* Cf)(a) — b means "b is the image of a under ¢"
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Function Well-Definedness

Important Issue: When elements have multiple representations, must verify function is well-
defined.

Bad Example: ¢(a/b) = a + b on rational numbers

CH(1/2) =142 =3
CH(2/4) =2+ 4 =6
« But 1/2 — 2/4, so this is not a function!

Test: If £; = x, then ¢(x1) = P(x2) must hold.
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Composition of Functions

Definition: Let ¢ : A — B and vy : B — C'. The composition 1)¢ is the mapping from
A to C' defined by:

(Yo)(a) = 1(p(a)) foralla € A

Note: We write 1) ¢ instead of ¢ o ¢ (no circle).
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Composition Example
Example 23: Let f(z) = 2z + 3 and g(z) = 2* + 1.

Specific Values:

General Forms:

c (fg)(z) = f(z®+1)=2(z* +1)+3=22"+5
+ (9f)(z) =92z +3) = (22 + 3)° + 1 = 42" + 122 + 10

I(Q%XOZFS,Oint: 'fg # gf In general#H 343 - 14471 - Fahd M. Alshammari



One-to-One Functions
Definition: A function ¢ : A — B is one-to-one if: (,z’)(a,l) — q.’)(ag) — a] = a9
Alternative: Different inputs give different outputs: a; # as = ¢(a1) # ¢(as)

Visual Interpretation: Each element of B can be the image of at most one element of A.

Onto Functions

Definition: A function ¢ : A — B is onto B if each element of B is the image of at least

one element of A.
In Symbols: For each b € B, there exists a € A such that ¢(a) = b.

Visual Interpretation: Every elemgnt.of B, is "hit" by some element from A. .



Properties of Functions
Theorem 0.8: Given functionsa: A - B, 8: B — C,andy : C — D:

1. Associativity: y(Sa) = (76)a
One-to-one preserved: If a and 3 are one-to-one, then Ba is one-to-one

2
3. Onto preserved: If o and 3 are onto, then B« is onto
4

Inverses exist: If «¢ is one-to-one and onto, then Cu_l exists
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Function Inverses

When does a_l exist? When o« : A — B is both one-to-one and onto.

Properties of a

+ (a'a)(a) =aforalla € A
- (ax')(b) = bforallb € B

Key Insight: If a(s) = t, then a_l(t) =S
a ! "undoes" what a does!
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Function Properties: Examples

Example 24: Let Z = integers, R = real numbers, N = nonnegative integers.

Domain Range Rule One-to-One Onto

7 Z z — z°
R R T — z°
Z Z T — |z
N Z. T — z’
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