Math 343 Group Theory

TEXTBOOK

Contemporary Abstract Algebra,. 10th Edition. Joseph A. Gallian

CH0 Preliminaries: Properties of Integers and Foundations

Well Ordering Principle

Axiom (Well Ordering Principle)

Every nonempty set of positive integers contains a smallest member.

Key Point: This property cannot be proved from usual arithmetic properties—we take it as an axiom.

Why Important: Foundation for mathematical induction and many fundamental theorems in number theory.

Divisibility

Definition: A nonzero integer t is a **divisor** of an integer s if there exists an integer t such that s=tu.

Notation:

- t | s means "t divides s"
- $t \nmid s$ means "t does not divide s"

Definition: A **prime** is a positive integer greater than 1 whose only positive divisors are 1 and itself.

Definition: An integer s is a **multiple** of integer t if s=tu for some integer u.

The Division Algorithm

Theorem (Division Algorithm)

Let a and b be integers with b>0. Then there exist unique integers q and r such that:

$$a = bq + r$$
, where $0 \le r < b$

Terminology:

- q = quotient upon dividing a by b
- r = remainder upon dividing a by b

Examples of Division Algorithm

Example 1:

- For a=17 and b=5: $17=5\cdot 3+2$
- For a = -23 and b = 6: -23 = 6(-4) + 1

Strategy for Divisibility Proofs:

To show b divides a, write a=bq+r where $0\leq r < b$, then use properties of a and b to show r=0.

Greatest Common Divisor

Definition: The **greatest common divisor** of nonzero integers a and b is the largest of all common divisors of a and b.

Notation: gcd(a, b)

Definition: When $\gcd(a,b)=1$, we say a and b are **relatively prime**.

GCD as Linear Combination

Theorem: For any nonzero integers a and b, there exist integers s and t such that:

$$\gcd(a,b) = as + bt$$

Moreover, $\gcd(a,b)$ is the smallest positive integer of the form as+bt.

Corollary: Relatively Prime Characterization

Corollary: Integers a and b are relatively prime if and only if there exist integers s and t such that as + bt = 1.

Examples:

- gcd(4,15) = 1; gcd(4,10) = 2
- $\gcd(2^2 \cdot 3^2 \cdot 5, 2 \cdot 3^3 \cdot 7^2) = 2 \cdot 3^2$
- $4 \cdot 4 + 15(-1) = 1$
- $4(-2) + 10 \cdot 1 = 2$

Application: Polynomial Expressions

Example: For any integer n, the integers n+1 and n^2+n+1 are relatively prime.

Proof: We need to show $\gcd(n+1, n^2+n+1)=1$.

Observe that:

$$n^{2} + n + 1 - n(n+1) = n^{2} + n + 1 - n^{2} - n = 1$$

So
$$(n^2 + n + 1) \cdot 1 + (n + 1)(-n) = 1$$
.

By our corollary, n+1 and n^2+n+1 are relatively prime.

Euclid's Lemma

Lemma (Euclid's Lemma): If p is a prime that divides ab, then p divides a or p divides b.

Proof: Suppose p|ab but $p\nmid a$.

Since p is prime and $p \nmid a$, we have $\gcd(p, a) = 1$.

By our corollary, there exist integers s and t such that 1=as+pt.

Multiplying by b: b = abs + ptb.

Since p|ab, we have p|abs.

Since p|pt, we have p|ptb.

Therefore p|(abs+ptb)=b.

Note: This fails when p is not prime: $6 | (4 \cdot 3)$ but $6 \nmid 4$ and $6 \nmid 3$.

Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic):

Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear.

That is, if $n=p_1p_2\cdots p_r$ and $n=q_1q_2\cdots q_s$ where the p_i 's and q_j 's are primes, then r=s and after renumbering, $p_i=q_i$ for all i.

Key Point: Primes are the "building blocks" for all integers.

Application: Irrationality Proof

Example: For any integer n>1, $\sqrt[n]{2}$ is irrational.

Proof: Suppose $\sqrt[n]{2} = a/b$ where a/b is in lowest terms.

Then $2 = a^n/b^n$, so $2b^n = a^n$.

By Fundamental Theorem, $2|a^n$, so 2|a (since 2 is prime).

Write a=2c. Then $2b^n=(2c)^n=2^nc^n$.

So $b^n=2^{n-1}c^n$.

This implies $2|b^n$, so 2|b.

But then $\gcd(a,b) \geq 2$, contradicting that a/b is in lowest terms.

Least Common Multiple

Definition: The **least common multiple** of nonzero integers a and b is the smallest positive integer that is a multiple of both a and b.

Notation: lcm(a, b)

Examples:

- lcm(4,6) = 12
- lcm(4,8) = 8
- lcm(10, 12) = 60
- lcm(6,5) = 30
- $\operatorname{lcm}(2^2 \cdot 3^2 \cdot 5, 2 \cdot 3^3 \cdot 7^2) = 2^2 \cdot 3^3 \cdot 5 \cdot 7^2$

Introduction to Modular Arithmetic

Motivation: How do we count cyclically?

- If it's September, what month will it be 25 months from now?
- Answer: October (since $25=2\cdot 12+1$)
- If it's Wednesday, what day will it be in 23 days?
- Answer: Friday (since $23 = 7 \cdot 3 + 2$)

Key Insight: We don't count sequentially—we use remainders!

Modular Arithmetic Notation

Definition: When a=qn+r where q is quotient and r is remainder upon dividing a by n , we write:

 $a \mod n = r$

Examples:

- $3 \mod 2 = 1$ since $3 = 1 \cdot 2 + 1$
- $6 \mod 2 = 0$ since $6 = 3 \cdot 2 + 0$
- $11 \mod 3 = 2$ since $11 = 3 \cdot 3 + 2$
- $62 \mod 85 = 62$ since $62 = 0 \cdot 85 + 62$
- $-2 \mod 15 = 13$ since $-2 = (-1) \cdot 15 + 13$

Key Property of Modular Arithmetic

Important Fact: $a \mod n = b \mod n$ if and only if n divides a - b.

Computing Tip: When computing $(ab) \bmod n$ or $(a+b) \bmod n$, it's easier to "mod first."

Example: To compute $(27 \cdot 36) \mod 11$:

- $27 \mod 11 = 5$
- $36 \mod 11 = 3$
- $(27 \cdot 36) \mod 11 = (5 \cdot 3) \mod 11 = 15 \mod 11 = 4$

Application: Check Digits

US Postal Service Money Orders:

- 10-digit identification number plus check digit
- Check digit = (10-digit number) mod 9
- ullet Example: 3953988164 has check digit 2 since 3953988164 mod 9 = 2

Error Detection:

If 39539881642 is incorrectly entered as 39559881642, computer calculates check digit as 4, but entered check digit is $2 \rightarrow Error detected$!

Mathematical Induction: First Principle

Theorem (First Principle of Mathematical Induction):

Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \geq a$ belongs to S, then n+1 also belongs to S. Then S contains every integer greater than or equal to a.

Proof Strategy:

- 1. **Base Case:** Verify statement for n=a
- 2. **Inductive Step:** Assume true for n, prove true for n+1

Second Principle of Mathematical Induction

Theorem (Second Principle/Strong Induction):

Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S. Then S contains every integer greater than or equal to a.

When to Use: When proving statement for n requires knowing it's true for multiple previous values, not just n-1.

Equivalence Relations

Motivation: In different contexts, different objects may be considered "the same":

- 2+1 and 4+4 are different in arithmetic, same $mod\ 5$
- Congruent triangles in different positions
- Vectors with same magnitude and direction

Need: Formal mechanism to specify when objects are "equivalent"

Definition of Equivalence Relation

Definition: An equivalence relation on set S is a set R of ordered pairs such that:

- 1. **Reflexive:** $(a,a) \in R$ for all $a \in S$
- 2. Symmetric: $(a,b) \in R$ implies $(b,a) \in R$
- 3. **Transitive**: $(a,b) \in R$ and $(b,c) \in R$ imply $(a,c) \in R$

Notation: Write $a \sim b$ instead of $(a,b) \in R$

Equivalence Class: $[a] = \{x \in S \mid x \sim a\}$

Examples of Equivalence Relations

Example 1: Similar triangles

- S = set of all triangles in a plane
- $a \sim b$ if a and b are similar (same corresponding angles)

Example 2: Polynomials with same derivative

- S = set of polynomials with real coefficients
- $f \sim g$ if f' = g'
- $[f] = \{f + c \mid c \in \mathbb{R}\}$

Modular Congruence

Example 3: Congruence modulo n

- S = integers, n = positive integer
- $a \equiv b \pmod{n}$ if n|(a-b)

Verification:

- Reflexive: $a \equiv a \pmod n$ since n|(a-a)=n|0 \checkmark
- Symmetric: If $a\equiv b\pmod n$, then n|(a-b), so n|(b-a), thus $b\equiv a\pmod n$ \checkmark
- Transitive: If $a\equiv b\pmod n$ and $b\equiv c\pmod n$, then n|(a-b) and n|(b-c), so n|((a-b)+(b-c))=n|(a-c), thus $a\equiv c\pmod n$ <

Equivalence Classes:
$$[a]=\{a+kn_{34},k\in\mathbb{Z}\}_{M.\,Alshammari}$$

Rational Numbers as Equivalence Classes

Example 4: Fraction equivalence

- $S = \{(a, b) \mid a, b \text{ integers}, b \neq 0\}$
- $(a,b)\sim (c,d)$ if ad=bc

Verification:

- Reflexive: $(a,b) \sim (a,b)$ since ab = ba \checkmark
- Symmetric: If $(a,b) \sim (c,d)$, then ad=bc, so cb=da, thus $(c,d) \sim (a,b)$ \checkmark
- Transitive: If $(a,b)\sim (c,d)$ and $(c,d)\sim (e,f)$, then ad=bc and cf=de. Multiplying: adf=bcf=bde. Since $d\neq 0$, we get af=be, so $(a,b)\sim (e,f)$ \checkmark

Interpretation: (a,b) represents fraction a/b represents a/b

Definition: Partition

Definition: A **partition** of a set S is a collection of nonempty disjoint subsets of S whose union is S.

Examples of Partitions

Example 21: The sets $\{0\}$, $\{1,2,3,\ldots\}$, and $\{\ldots,-3,-2,-1\}$ constitute a partition of the set of integers.

Example 22: The set of nonnegative integers and the set of nonpositive integers do **NOT** partition the integers, since both contain 0.

Key Point: Partition subsets must be disjoint (no overlapping elements).

Equivalence Classes Form Partitions

Theorem 0.7 (Equivalence Classes Partition)

The equivalence classes of an equivalence relation on a set S constitute a partition of S.

Conversely: For any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.

Big Picture: Equivalence relations and partitions are two ways of describing the same mathematical structure!

Proof Strategy

To show equivalence classes partition S:

- 1. **Non-empty:** Each [a] is non-empty (reflexive property: $a \in [a]$)
- 2. Union is S: Every element belongs to some equivalence class
- 3. **Disjoint:** If [a]
 eq [b], then $[a] \cap [b] = \emptyset$

Key Insight: If $c \in [a] \cap [b]$, then $c \sim a$ and $c \sim b$, which forces [a] = [b] by transitivity.

Functions (Mappings)

Definition: A **function** (or **mapping**) ϕ from a set A to a set B is a rule that assigns to each element a of A exactly one element b of B.

Notation: $\phi:A o B$

Terminology:

- A = domain of ϕ
- B = range of ϕ
- $\phi(a)=b$ means "b is the **image** of a under ϕ "

Function Well-Definedness

Important Issue: When elements have multiple representations, must verify function is **well-defined**.

Bad Example: $\phi(a/b)=a+b$ on rational numbers

- $\phi(1/2) = 1 + 2 = 3$
- $\phi(2/4) = 2 + 4 = 6$
- But 1/2=2/4, so this is **not** a function!

Test: If $x_1=x_2$, then $\phi(x_1)=\phi(x_2)$ must hold.

Composition of Functions

Definition: Let $\phi:A o B$ and $\psi:B o C$. The **composition** $\psi\phi$ is the mapping from

A to C defined by:

$$(\psi\phi)(a) = \psi(\phi(a))$$
 for all $a \in A$

Note: We write $\psi\phi$ instead of $\psi\circ\phi$ (no circle).

Composition Example

Example 23: Let f(x)=2x+3 and $g(x)=x^2+1$.

Specific Values:

- (fg)(5) = f(g(5)) = f(26) = 55
- (gf)(5) = g(f(5)) = g(13) = 170

General Forms:

- $(fg)(x) = f(x^2 + 1) = 2(x^2 + 1) + 3 = 2x^2 + 5$
- $(gf)(x) = g(2x+3) = (2x+3)^2 + 1 = 4x^2 + 12x + 10$

Key Point: fg
eq gf in general!

One-to-One Functions

Definition: A function $\phi:A o B$ is **one-to-one** if: $\phi(a_1)=\phi(a_2)\implies a_1=a_2$

Alternative: Different inputs give different outputs: $a_1 \neq a_2 \implies \phi(a_1) \neq \phi(a_2)$

Visual Interpretation: Each element of B can be the image of **at most one** element of A.

Onto Functions

Definition: A function $\phi:A o B$ is **onto** B if each element of B is the image of at least one element of A.

In Symbols: For each $b \in B$, there exists $a \in A$ such that $\phi(a) = b$.

Visual Interpretation: Every element of B_7 is "hit" by some element from A.

Properties of Functions

Theorem 0.8: Given functions $\alpha:A\to B$, $\beta:B\to C$, and $\gamma:C\to D$:

- 1. Associativity: $\gamma(\beta\alpha)=(\gamma\beta)\alpha$
- 2. **One-to-one preserved:** If lpha and eta are one-to-one, then etalpha is one-to-one
- 3. Onto preserved: If α and β are onto, then $\beta\alpha$ is onto
- 4. Inverses exist: If α is one-to-one and onto, then α^{-1} exists

Function Inverses

When does $lpha^{-1}$ exist? When lpha:A o B is both one-to-one and onto.

Properties of α^{-1} :

- $(\alpha^{-1}\alpha)(a)=a$ for all $a\in A$
- $(lphalpha^{-1})(b)=b$ for all $b\in B$

Key Insight: If lpha(s)=t, then $lpha^{-1}(t)=s$

 α^{-1} "undoes" what α does!

Function Properties: Examples

Example 24: Let \mathbb{Z} = integers, \mathbb{R} = real numbers, \mathbb{N} = nonnegative integers.

Domain	Range	Rule	One-to-One	Onto
\mathbb{Z}	\mathbb{Z}	$x\mapsto x^3$		
\mathbb{R}	\mathbb{R}	$x\mapsto x^3$		
\mathbb{Z}	\mathbb{Z}	$x\mapsto x $		
\mathbb{N}	\mathbb{Z}	$x\mapsto x^2$		